Transición entre tipos de locomoción de un robot cuadrúpedo articulado

dc.contributor.advisorHernandez Riveros, Jesus Antoniospa
dc.contributor.authorRico Mesa, Edgar Mariospa
dc.contributor.corporatenameUniversidad Nacionalspa
dc.contributor.researchgroupGrupo de Investigación en Inteligencia Computacionalspa
dc.date.accessioned2020-09-14T14:21:59Zspa
dc.date.available2020-09-14T14:21:59Zspa
dc.date.issued2019-07-15spa
dc.description.abstractThe present work is an investigation of the transitions between types of locomotion using central pattern generators in quadruped robots with three joints per leg. Also, central pattern generators are created with systems of first-order differential equations (recurrent neural networks) of 2, 3, 4, 5, 6 neurons. The central generators of patterns or recurrent neural networks are conformed with specific criteria. These recurring neural networks are related to the movements of the robot. Besides, an approach is made to the biomechanics of the dog.spa
dc.description.abstractEl presente trabajo es una investigación sobre las transiciones entre tipos de locomoción empleando generadores centrales de patrones en robots cuadrúpedos con tres articulaciones por pata. Además, se crean generadores centrales de patrones con sistemas de ecuaciones diferenciales de primer orden (redes neuronales recurrentes) de 2, 3, 4, 5, 6 neuronas. Los generadores centrales de patrones o redes neuronales recurrentes son conformados con criterios específicos. Estas redes neuronales recurrentes se relacionan con los movimientos del robot. También se hace una aproximación a la biomecánica del perro.spa
dc.description.additionalLínea de Investigación: Inteligencia Artificialspa
dc.description.degreelevelDoctoradospa
dc.format.extent142spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRico Mesa Edgar Mario, Hernandez-Riveros Jesus-Antonio, Transición entre tipos de locomoción de un robot cuadrúpedo articulado, Tesis para optar al título de: Doctorado en Ingeniería – Sistemas e Informatica presentada a Universidad Nacional,2019,spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78456
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.referencesChoomuang Rerngwut. Distributed Control on a model of Mars Rover Spirit. IEEE Conference on Robotics, Automation and Mechatronics, pp 1-7, 2008.spa
dc.relation.referencesCappelletto Fuentes, José de la Cruz. Generador de modos de caminado para robot cuadrúpedo basado en principios neurofisiológicos. Tesis para optar título de maestría presentada a la Universidad Simón Bolívar. 2006.spa
dc.relation.referencesJiménez Estrada Ismael. La locomoción en los vertebrados. Revista Elementos, No 31, pp 28,1998.spa
dc.relation.referencesKassim, Muhammad Hafiz, Zainal, Norzeti and Arshad Mohd Rizal. (2008) Central Pattern Generator in Bio-Inspired Robot: Simulation Using MATLAB. In: 2nd International Conference Underwater System Technology, pp 1-4,2008.spa
dc.relation.referencesRico Mesa Edgar Mario. Análisis y aplicación de métodos de desplazamiento en plataformas articuladas basadas en CPG (Central Pattern Generator). Tesis para optar título de Maestría presentada a la Universidad Nacional. Colombia Medellín, 2013.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Reingeniería y desarrollo de un brazo robótico industrial y planteamiento de técnica generadora de movimientos”. Congreso Nacional de Ingeniería Mecánica, Bucaramanga, 2010.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros “Diseño y desarrollo de un robot hexápodo tipo araña aplicando técnicas de CAD y explorando métodos de inteligencia computacional”. Congreso Nacional de Ingeniería Mecánica, Bucaramanga, 2010.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, Goez Edison, Londoño Camilo. “Método de desplazamiento y diseño de una plataforma articulada”. Congreso Colombiano de Computación, Cartagena, 2010.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, Cardona Jaime. Correa Sebastián, “Robot Móvil Solar”. IX Congreso Internacional de Ingeniería Electrónica y Tecnologías de Avanzada – CIETA, Cucuta, 2012.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, Cardona Jaime, Correa Sebastián. “Robot Móvil Solar”, Revista Colombiana de Tecnologías Avanzadas, Número 21, Volumen 1, 2013.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús. -“Los CPG en la robótica articulada”. Jornadas Tecnológicas SENA Antioquia. Octubre, 2012.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Implementación de CPG en robots de locomoción continua y discreta”. III Congreso Internacional de Computación CICOM, 2013.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Implementación de CPG en robots de locomoción continua y discreta”. Revista Vínculos, Numero 18, 2013.spa
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Aplicación de CPG en un brazo robótico de cinco articulaciones”. III Congreso Internacional de Ingeniería Mecatrónica y Automática - CIIMA Cartagena 2014.spa
dc.relation.referencesLiu Chengju, Chen Yifei, Zhang Jiaqi, Chen Qijun. “CPG driven locomotion control of quadruped robot”. IEEE International Conference on Systems, Man, and Cybernetics. USA,. pp 2368 – 2373, 2009.spa
dc.relation.referencesOwaki Dai, Morikawa Leona, Ishiguro Akio. “Listen to body's message: Quadruped robot that fully exploits physical interaction between legs”. IEEE/RSJ International Conference on Intelligent Robots and Systems, Portugal, pp 1950 – 1955, 2012.spa
dc.relation.referencesChengju Liu, Qijun Chen, Jiaqi Zhang, “Coupled Van Der Pol oscillators utilized as Central pattern generators for quadruped locomotion”. Chinese Control and Decision Conference, China, pp 3677 – 3682, 2009.spa
dc.relation.referencesLi Bin, Li Yibin, Rong Xuewen. “Gait generation and transitions of quadruped robot based on Wilson-Cowan weakly neural networks”. IEEE International Conference on Robotics and Biomimetics. China, pp 19- 24, 2010.spa
dc.relation.referencesSantos Cristina P., Matos Vítor, “Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach”, Robotics and Autonomous Systems Vol 59 No 9, pp 620–634, 2011.spa
dc.relation.referencesTrong Tran Duc, Mo Koo Ig, Haeng Lee Yoon, Moon Hyungpil , Park Sangdeok, Choon Koo Ja, Ryeol Choi Hyouk. “Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network”. Robotics and Autonomous Systems, pp 1 – 20,2014.spa
dc.relation.referencesEdin Koco, Alan Mutka, Zdenko Kovacic, New Parameterized Foot Trajectory Shape for Multi-gait Quadruped Locomotion With State Machine-based Approach for Executing Gait Transitions, 22nd Mediterranean Conference on Control and Automation (MED) University of Palermo. June 16-19, pp 1533 - 1539, 2014.spa
dc.relation.referencesShinya Aoi, Soichiro Fujiki, Daiki Katayama, Tsuyoshi Yamashita.Takehisa Kohda, Kei Senda, Kazuo Tsuchiya , Experimental verification of hysteresis in gait transition of a quadruped robot driven by nonlinear oscillators with phase resetting, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2280 – 2285, 2011.spa
dc.relation.referencesXuesong Shao, Qifeng Huang, Zhongdong Wang, Qixin Cai Motion Planning and Compliant Control for a Quadruped Robot on Complicated Terrains, Proceedings of 2014 IEEE International Conference on Mechatronics and Automation, pp 1587 – 1594, 2014.spa
dc.relation.referencesWright Joe , Jordanov Ivan , Intelligent Approaches in Locomotion - A Review , journal J Intell Robot Syst Springer, pp 1-23,2014.spa
dc.relation.referencesIjspeert Auke Jan. “Central pattern generators for locomotion control in animals and robots: A review”. Neural Networks, Vol 2, pp 642–653, 2008.spa
dc.relation.referencesYibin Li, Bin Li, Jiuhong Ruan and Xuewen Rong , Research of Mammal Bionic Quadruped Robots: a Review, 5th International Conference on Robotics, Automation and Mechatronics, pp 166 - 171, 2014.spa
dc.relation.referencesWu QiDi, Liu ChengJu, Zhang JiaQi , Chen QiJun. “Survey of locomotion control of legged robots inspired by biological concept”. Science in China Series F: Information Sciences, Vol. 52, No. 10, pp 1715-1729, 2009.spa
dc.relation.referencesYu Junzhi, Tan Min, Chen Jian, Zhang Jianwei. “A Survey on CPG-Inspired Control Models and System Implementation”. IEEE Transactions on neural networks and learning systems,. pp 441 – 456, 2014.spa
dc.relation.referencesJung Heekyung, Dasen Jeremy S. ,Evolution of Patterning Systems and Circuit Elements for Locomotion, Journal Developmental Cell, Vol 32, 2015, pp 408 – 422.spa
dc.relation.referencesJimenez Estrada Ismael, La locomoción en los vertebrados. Revista Elementos, No 31, pp 28, 1998.spa
dc.relation.referencesBuchli J., Auke Jan Ijspeert, “Distributed central pattern generator model for robotics application based on phase sensitivity analysis”. 1st International Workshop Bio-ADIT: Lecture Notes in Computer Science, Volumen 3141, pp 333-349, 2004.spa
dc.relation.referencesCohen Avis H., Rossignol Serge, Grillner Sten. Neural Control of Rhythmic Movements in Vertebrate. John Wiley & Sons. 500p,1988.spa
dc.relation.referencesSangbae Kim, Cecilia Laschi, Barry Trimmer, “Soft robotics: a bioinspired evolution in robotics”. Trends in Biotechnology. Volumen 31, No. 5, pp 287 – 294, 2013.spa
dc.relation.referencesAbdelghani Chibani , Yacine Amirat , Samer Mohammed, Eric Matson, Norihiro Hagita , Marcos Barreto. “Ubiquitous robotics: Recent challenges and future trends”. Robotics and Autonomous Systems. Volumen 61, pp 1162–1172, 2013.spa
dc.relation.referencesGordon Klaus, Kyrre Glette, Mats Høvin. “Evolving locomotion for a 12-DOF quadruped robot in simulated environments”. BioSystems, Volumen 112, pp 102– 106, 2013.spa
dc.relation.referencesMostafa Ajallooeian, Majid Nili Ahmadabadi, Babak Nadjar Araabi, Hadi Moradi, “Design, implementation and analysis of an alternation-based Central Pattern Generator for multidimensional trajectory generation”. Robotics and Autonomous Systems. Volumen 6, pp 182–198, 2012.spa
dc.relation.referencesSantos Cristina P., Matos Vítor. “CPG modulation for navigation and omnidirectional quadruped locomotion”. Robotics and Autonomous Systems. Volumen 60, pp 912–927, 2012.spa
dc.relation.referencesYibin Li, Bin Li, Jiuhong Ruan , Xuewen Rong. “Research of Mammal Bionic Quadruped Robots: a Review”. IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM). pp 166 – 171, 2011.spa
dc.relation.referencesLiu Chengju, Chen Qijun, XU Tao. “Locomotion Control of Quadruped Robots Based on Central Pattern Generators”. 8th World Congress on Intelligent Control and Automation. pp 1167 - 1172, 2011.spa
dc.relation.referencesLibera Fabio Dalla, Takashi Hiroshi Ishiguro , Menegatti Emanuele. “Direct programming of a central pattern generator for periodic motions by touching”. Robotics and Autonomous Systems , Volumen 58 ,pp 847-854, 2010.spa
dc.relation.referencesAuke Jan Ijspeert ,” Central pattern generators for locomotion control in animals and robots: A review”. Neural Networks, Volumen 21 ,pp 642–653, 2008.spa
dc.relation.referencesLi Bin, LI Xun, Wang Wei, Tang Yanfen, YANG Yiping, “A Method Based on Center Pattern Generator for Quadruped Leg Control”, IEEE International Conference on Robotics and Biomimetics, pp 2035 - 2040, 2009.spa
dc.relation.referencesVogelstein R. Jacob, Tenore Francesco, Etienne-Cummings Ralph, M., Lewis Anthony, Cohen Avis H. “Dynamic control of the central pattern generator for locomotion”. Biol Cybern, Volumen 95, pp 555–566, 2006.spa
dc.relation.referencesJung Heekyung, Dasen Jeremy S. ,Evolution of Patterning Systems and Circuit Elements for Locomotionn Developmental Cell, Vol 32, pp 409 – 422, 2015.spa
dc.relation.referencesGinnobili Santiago. La teoría de la selección natural darwiniana, Revista Theoria 67, pp 37-58,2010.spa
dc.relation.referencesOrtega Víctor M. La evolución de la locomoción animal, Revista Ciencia, pp 60 - 67, 2011.spa
dc.relation.referencesSedeño Bustos Elizabeth. Locomoción de un Robot Cuadrúpedo: Un Enfoque a Celdas Neuronales Analógicas, tesis para optar al título de Maestría en Ciencias a CENIDET. Mexico Cuernavaca, 2011.spa
dc.relation.referencesBarrientos Antonio. Nuevas aplicaciones de la robótica, Robots de servicio. Revista Avances en robótica y visión por computador, pp 231-256, 2002.spa
dc.relation.referencesNavarro Oiza Inaki. Robots en el Espacio. Laboratorio de robótica y control - Escuela Técnica Superior de ingenieros de telecomunicación ,Universidad Politécnica de Madrid, , p 22, 2005.spa
dc.relation.referencesGuimarães Pedro P.S. , Nunes Matheus M. , Galembeck Thaís F. , Kalejaiye Lucas T., Tenório Ruan P.A. , Viana Dianne Magalhães , Vidal Flavio De Barros , Koike Carla M.C. E C. , "A Bio-inspired Apodal and Modular Robot," 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR) , pp. 61-66, 2016.spa
dc.relation.referencesAlves Souza Nathan Costa, de Felippes Rodrigo Adriano, de Souza Milzara Menezes, Barca Guimarães Pedro Varella, Magalhães Viana Dianne, Braga de Oliveira Lara Christina, de Sales Duarte Franco David Bevilaqua, Chagas Carla Maria , Cavalcante , Erekobot alfa project: design and construction of a modular robot prototype , ABCM Symposium Series in Mechatronics - Vol. 5 , pp 1219 – 1228, 2012.spa
dc.relation.referencesShin Jiwon, Rusakov Andrey , Meyer Bertrand, SmartWalker: an intelligent robotic Walker , Journal of Ambient Intelligence and Smart Environments , Vol 1, pp 1–5, 2016.spa
dc.relation.referencesLiu Xinyu, Zang Xizhe, Zhu Yanhe, Liu Yixiang , Zhao Jie , System overview and walking dynamics of a passive dynamic walking robot with flat feet , Advances in Mechanical Engineering ,Vol. 7, pp 1–10, 2015.spa
dc.relation.referencesLi Ruiqin, Meng Hongwei , Bai Shaoping , Yao Yinyin , Zhang Jianwei , Stability and Gait Planning of 3-UPU Hexapod Walking Robot , Revista Robotics , pp 1- 17 , 2018.spa
dc.relation.referencesKumar Arun, Shivraj Palivela, Shivraj Yeole,. (2017). Design of a quadruped robot and its inverse kinematics. International Journal of Mechanical and Production Engineering Research and Development. Vol 7, pp 241-251, 2017.spa
dc.relation.referencesGonzález Gómez Juan. Robótica modular y locomoción: aplicación a robots ápodos. Tesis para optar al título de doctor. Universidad Autónoma de Madrid, 2008.spa
dc.relation.referencesGarcía Armada Elena. Optimización de la estabilidad y la velocidad de robots caminantes, Tesis para optar al título de doctor, Universidad Politécnica de Madrid, 2002.spa
dc.relation.referencesCappelletto, Jose and Estevez, Pablo and Medina, Wilfredis and Fermin, Leonardo and Bogado, Juan and Grieco, Juan and Fernandez-Lopez, Gerardo. Gait Synthesis and Modulation for Quadruped Robot Locomotion Using a Simple Feed-Forward Network. .In Artificial Intelligence and Soft Computing – ICAISC 2006 vol 4029 , p.731--739,2006.spa
dc.relation.referencesJingtao Lei, Feng Wang, Huangying Yu, Tianmiao Wang, Peijiang Yuan. Energy Efficiency Analysis of Quadruped Robot with Trot Gait and Combined Cycloid Foot Trajectory , Chinese Journal Of Mechanical Engineering, Vol. 27, No. 1, 2014. [60] Dicke E, Byde A, Cliff D y Layzell P ,A. J. Ispeert, M. Murata y N. Wakamiya. Proceedings of Biologically Inspired Approaches to Advanced Information Technology: First International Workshop, BioADIT 2004 LNCS 3141. pp. 364-379, 2004.spa
dc.relation.referencesVanegas A.Juan C. , Landinez P. Nancy S. , Garzón A. Diego A. , Solución computacional de modelos biológicos de formación de patrones espacio-temporales , Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 2, pp. 182-194, 2009.spa
dc.relation.referencesOgata Kasuhiko. Ingeniería de Control Moderna, Prentice Hall , pp 1 – 44 , 1998.spa
dc.relation.referencesGrillner Sten. Neural Networks for vertebrate locomotion. Journal Scientific American , pp 64 – 69, 1996.spa
dc.relation.referencesSánchez-Martín FM, Jiménez Schlegl P*, Millán Rodríguez F, Salvador-Bayarri J, Monllau Font V, Palou Redorta J, Villavicencio Mavrich H., Historia de la robótica: de Arquitas de Tarento al Robot da Vinci , actas urológicas españolas, vol 31 Num 3, pp185-196, 2007.spa
dc.relation.referencesGomez Urias Manuel Emilio. Diseño de controladores con compensacion adaptable de gravedad para robots manipuladores, tesis para optar al titulo de Maestro en ciencias. Instituto Politecnico Nacional, Mexico , 2005.spa
dc.relation.referencesKELLY Rafael , Santibáñez Victor , Control de Movimiento de robots Manipuladores. Prentice Hall, 2003.spa
dc.relation.referencesFu K S, González R C, Lee C S G. Robótica : Control, detección , visión e inteligencia. Mc Graw Hill, p 599,1988.spa
dc.relation.referencesPeña Miguel Edgardo, Control de estructura variable con técnicas de lógica borrosa, Tesis para optar al título de Maestría en Ingeniería de Sistemas de Control, Universidad Nacional de San Juan, Argentina, 1998.spa
dc.relation.references[69] Al-Hadithi Basil M., Suardíaz Muro Juan. Implementación de un controlador robusto de estructura variable mediante FPGA. Revista de Ciencia, Tecnología y Medio Ambiente, Volumen II , 2004.spa
dc.relation.references[70] Miller, Rex, Fundamentals of Industrial Robots and Robotics, Editorial PWS KENT Pub. Co., USA , 288 p 1988.spa
dc.relation.references[71] Parra Plazas Jaime Alberto. Nuevas tecnologías de control aplicadas a la robótica. Revista AVANCES Investigación en Ingeniería No. 5, pp 14 – 20, 2006.spa
dc.relation.references[72] Gomez Martinez Jorge Alberto , Mendoza Avendaño German , Aplicación del control adaptativo a procesos industriales tipo SISO , Monografía para optar al título de especialista en instrumentación y control industrial. Universidad Pontificia Bolivariana , 2009.spa
dc.relation.referencesRodriguez F, Lopez M. Control Adaptativo y Robusto. Editorial Universidad de Sevilla , España, 368 p ,1996.spa
dc.relation.referencesT. Yamakawa. Fuzzy controller hardware system. In Proceedings of 2nd IFSA Congress, pp. 827–830, 1987.spa
dc.relation.referencesKohonen, T. An Introduction to Neural Computing. Revista Neural Networks, Vol. 1, No. 1, pp. 3-16, 1988.spa
dc.relation.referencesJacques Duysens, Henry W.A.A. Van de Crommert. Neural control of locomotion; Part 1: The central pattern generator from cats to humans, Revista Gait and Posture, vol 7, pp 131–141, 1998.spa
dc.relation.referencesGrillner S., Wallna P., Saitoha K., Kozlova A., Robertsona B., Neural bases of goaldirected locomotion in vertebrates: an overview, Brain Research Reviews vol 57 , pp 2–12, 2008.spa
dc.relation.referencesSi Zhang, Junyao Gao, Xingguang Duan, Hui Li, Zhangguo Yu, Xuechao Chen, Jing Li, Huaxin Liu, Xin LI, Yi Liu , Zhe Xu, Trot Pattern Generation for Quadruped Robot Based on the ZMP Stability Margin , Proceedings of 2013 ICME International Conference on Complex Medical Engineering , pp 608 – 613 , 2013.spa
dc.relation.referencesGrillner S. Zangger P., On the Central Generation of Locomotion in the Low Spinal Cat, Experimenta Brain Research , vol 34, pp 241-261, 1979.spa
dc.relation.referencesTan, Y.G., Li, Z., Chen, Y.H., Wang, H, Bionic mechanism and kinetic characteristic for quadruped robot dog , 5th Asia International Symposium on Mechatronics , pp 118 – 123, 2015.spa
dc.relation.referencesR. Cingolani , Bioinspired Approaches for Human-Centric Technologies Cap 5 “Mechanism and Structures: Humanoids and Quadrupeds” , Springer International Publishing Switzerland , pp 133 – 153, 2014.spa
dc.relation.referencesAoi, S.,Katayama, D.,Fujiki, S., Tomita, N., Funato, T., Yamashita, T.,Senda, K.,Tsuchiya, K. , A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion, Journal of the Royal Society Interface , Vol 10 , pp 1 -12 , 2013.spa
dc.relation.referencesCamilo Caceres, Juan Puerta, Robinson Jiménez, Diego Rojas , Design of a Bio-Inspired Equine Robot Prototype , International Review of Mechanical Engineering , vol 10 , 2016.spa
dc.relation.referencesLei, J., Yu, H., Wang, T., Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot , Chinese Journal of Mechanical Engineering , vol 29 , pp 11 – 20, 2016.spa
dc.relation.referencesNavarro Narvaez Nadia Pamela , Modelado cinemático y dinámico de un manipulador de 5 grados de libertad articulado verticalmente , Tesis para optar al título de Ingeniero Mecánico , Pontificia Universidad Catolica del Peru, Peru, 2011.spa
dc.relation.referencesByl Katie, Shkolnik Alec, Prentice Sam, Roy Nick, Tedrake Russ ,Reliable Dynamic Motions for a Stiff Quadruped, Springer Tracts in Advanced Robotics, Vol 54 , pp 319-328 , 2009.spa
dc.relation.referencesBetancourt Herrera J. L., Diseño de mecanismos de palancas asistido por Computadora, Revista Ingeniería Mecánica , Habana , Vol 4, No 3 , pp 35-39 , 2001. [88] Hermoso Prieto Eva, Caracterización mecánica de la madera estructural de Pinus sylvestris L, Tesis para optar al título de Doctor en Ingeniería, Escuela Técnica Superior de Ingenieros de Montes, pp 1 – 277, 2001.spa
dc.relation.referencesSerón María Marta, Sistemas no lineales, Notas de clase. Universidad Nacional de Rosario, Lab. de Sistemas Dinámicos y Procesamiento de Señales, pp 1-161, 2000.spa
dc.relation.referencesRamírez Moreno David Fernando, Modelo computacional de la modulación de la transformación sensorial motora, tesis para optar título de doctor presentada a la Universidad del Valle. 2006.spa
dc.relation.referencesConsolini Luca, Lini Gabriele. A Gauss–Newton Method for the Synthesis of Periodic Outputs with Central Pattern Generators. IEEE transactions on neural networks and learning systems, Vol. 25, No 7, 2014.spa
dc.relation.referencesSzczecinski Nicholas S · Alexander, Hunt · J. Roger, Quinn D. Design process and tools for dynamic neuromechanical models and robot controllers. Biol Cybern (2017) 111:105–127, 2017.spa
dc.relation.referencesChunrui Zhang, Zhenzhang Sui, Hongpeng Li. Equivariant bifurcation in a coupled complex-valued neural network rings. Chaos, Solitons and Fractals 98 (2017) 22–30 , 2017.spa
dc.relation.referencesWenlu Li, Weihai Chen, Xingming Wu,Jianhua Wang , Parameter Tuning of CPGs for Hexapod Gaits Based on Genetic Algorithm , 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) , pp 45 – 50 , 2015.spa
dc.relation.references[95] Balarezo Gallardo Francisco, Hernández-Riveros Jesús-Antonio, Evolutionary parameter estimation of coupled non-linear oscillators. Advances in Computing. A. Solano and H. Ordoñez (Eds.): CCC 2017, CCIS 735, pp. 1–15, 2017.Springer International Publishing AG 2017. DOI: 10.1007/978-3-319-66562-7_33.spa
dc.relation.references[96] Cappelletto Fuentes, José de la Cruz, Generador de modos de caminado para robot cuadrúpedo basado en principios neurofisiológicos. Tesis para optar título de maestría presentada a la universidad Simón Bolívar, 2006.spa
dc.relation.references[97] Cappelletto J., Estevez P., Grieco J. C., Medina – Melendez W., Fernandez – Lopez G., Gait synthesis in legged robot locomotion using a CPG based model. Revista Bioinspiraction and robotics: walking and climbing robots, Viena , pp 227-246,2007.spa
dc.relation.referencesBower James M., Beeman David, The book of genesis, Editorial Springer – Verlag, Capítulo 8, 2003.spa
dc.relation.references[99] Mayor Tomillo Daniel, Diseño de filtros digitales FIR mediante técnicas de computación evolutiva y estudio de su aplicación al procesado de señales biomédicas. Tesis para optar título de Tecnologías de Telecomunicación presentada a la universidad de Valladolid, 2016.spa
dc.relation.referencesPérez C Marco., Cuevas Erik, Zaldivar Daniel, Segmentación difusa, e-Gnosis [online] Vol. 6, PP 1- 26, 2008.spa
dc.relation.referencesSanz Delgado José Antonio, Sistemas de clasificación basados en reglas difusas lingüísticas utilizando conjuntos difusos intervalo-valorados y ajuste de la ignorancia. Tesis para optar título de doctor presentada a la Universidad Pública de Navarra, 2011.spa
dc.relation.referencesRico E.M., Hernandez J.A. , Analysis and Application of a Displacement CPG-Based Method on Articulated Frames, Advances in Computing. Solano A., Ordoñez H. (eds): CCC 2017. CCIS vol 735, pp 495-510, 2017. Springer International Publishing AG 2017. DOI: 10.1007/978-3-319-66562-7_33.spa
dc.relation.referencesRico E.M., Hernandez J.A. , Modulation of Central Pattern Generators (CPG) for the Locomotion Planning of an Articulated Robot, Advances in Computing. Florez H., Diaz C., Chavarriaga J. (eds): ICAI 2018. CCIS vol 942, pp 321-334, 2017. Springer International Publishing AG 2018. DOI: 10.1007/978-3-030-01535-0_24.spa
dc.relation.references[104] Marder Eve, Bucher Dirk, Central pattern generators and the control of rhythmic movements, Current Biology Vol 11 No 23, pp 986 – 996, 2001.spa
dc.relation.referencesS Grillner Sten, Wallen P., Central pattern generators for locomotion, with special reference to vertebrates. Annual review of neuroscience, vol 8, pp 233-261, 1985.spa
dc.relation.referencesBower James M., Beeman David, The Book of Genesis, Editorial Springer-Verlag, chapter 8, 2003.spa
dc.relation.referencesAbe, M., Iwama, K., Takato, M., Saito, K., Uchikoba, F., Hardware neural network models of CPG and PWM for controlling servomotor system in quadruped robot (2017) Artificial Life and Robotics, 22 (3), pp. 391-397., 2017.spa
dc.relation.referencesLuchena, I., Gonzalez-Rodriguez, A.G., Gonzalez-Rodriguez, A., Adame-Sanchez, C., Castillo-Garcia, F.J., A new algorithm to maintain lateral stabilization during the running gait of a quadruped robot, Robotics and Autonomous Systems, 83, pp. 57-72, 2016.spa
dc.relation.references[109] Li, X., Wang, W., Yi, J., Gait transition based on CPG modulation for quadruped locomotion, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2015-August, art. no. 7222583, pp. 500-505, 2015.spa
dc.relation.referencesR Harischandra N., Krause, A.F., Dürr, V., Stable phase-shift despite quasi-rhythmic movements: A CPG-driven dynamic model of active tactile exploration in an insect, Frontiers in Computational Neuroscience, 9 (AUGUST), Nbr. 107, 16 p, 2015.spa
dc.relation.referencesTran, D.T., Koo, I.M., Lee, Y.H., Moon, H., Park, S., Koo, J.C., Choi, H.R., Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network, Robotics and Autonomous Systems, 62 (10), pp. 1497-1516, 2014.spa
dc.relation.referencesShahbazi, H., Parandeh, R., Jamshidi, K., Implementation of Imitation Learning using Natural Learner Central Pattern Generator Neural Networks, Neural Networks, 83, pp. 94-108, 2016.spa
dc.relation.referencesGabrielle J. Gutierrez and Eve Marder, Modulation of a Single Neuron Has State- Dependent Actions on Circuit Dynamics, eNeuro, Vol. 1, pp 1 – 12, 2014.spa
dc.relation.referencesNachstedt T, Tetzlaff C. and Manoonpong P., Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control. Front. Neurorobot. Vol. 11, pp 1-14, 2017.spa
dc.relation.referencesYasuhiro Fukuoka, Yasushi Habu, Takahiro Fukui, Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation, Biological Cybernetics, Vol 107, pp 695–710, 2013spa
dc.relation.referencesDimitar Ralev, José Cappelletto, Juan C Grieco, Novel Certad, María E Cabrera, Analysis of oscillators for the generation of rhythmic patterns in legged robot locomotion, IEEE Latin American Robotics Symposium, pp 125 - 128, 2013.spa
dc.relation.referencesR. Rojas: Neural Networks, Springer-Verlag, Berlin, 509 p, 1996.spa
dc.relation.referencesRico E. M. and Hernández-Riveros J. A., Analysis and application of a displacement CPG – based method on articulated frames, Communications in computing and information sciences: Advances in Computing, Ed Springer, 735 p, pp 495 – 510, 2017.spa
dc.relation.referencesCappelletto J., Estévez P., Grieco J. C., Medina-Meléndez W., Fernández-López G., Gait Synthesis in Legged Robot Locomotion using a CPG-Based Model, Journa Bioinspiration and Robotics: Walking and Climbing Robots, Vienna, pp 227 – 246, 2007.spa
dc.relation.referencesG. E. Goslow., H. J. Seeherman, C. R. Taylor, M. N. McCutchln, N. C. Heglund , Electrical activity and relative length changes of dog limb muscles as a function of speed and gait, Journal. Exp. Biol. Vol 94, pp 15-42, 1981.spa
dc.relation.referencesLidia Lukasiak , Andrzej Jakubowski , History of semiconductor , Journal of Telecomunications and Information Technology, pp 3 – 8 , 2010.spa
dc.relation.referencesYang Gao , Steve Chien, Review on space robotics: Toward top-level science through space exploration , Science Robotics , pp 1-11 , 2017.spa
dc.relation.referencesJonathan Wood , The top ten advances in materials science, Materials Today , pp 40 – 45 , 2008.spa
dc.relation.referencesFred Delcomyn , Biologically Inspired Robots , Bioinspiration and Robotics: Walking and Climbing Robots , pp 279 – 300 , 2007.spa
dc.relation.referencesDario Floeano , Auke Jan Ijspeert , Stefan Schaal, Robotics and Neuroscience , Current Biology , pp 910 – 920 , 2014.spa
dc.relation.referencesFukuhara, A.,Owaki, D.,Kano, T.,Kobayashi, R.Ishiguro, A. , Spontaneous gait transition to high-speed galloping by reconciliation between body support and propulsion, Journal Advanced Robotics , pp 794 – 808 , 2018.spa
dc.relation.referencesJia, W. , Huang, Z., Sun, Y.,Pu, H., Toward a novel deformable robot mechanism to transition between spherical rolling and quadruped walking, IEEE International Conference on Robotics and Biomimetics (ROBIO) , pp 1539-1544 , 2017.spa
dc.relation.referencesJia, W. , Huang, Z., Sun, Y.,Pu, H., Toward a novel deformable robot mechanism to transition between spherical rolling and quadruped walking, IEEE International Conference on Robotics and Biomimetics (ROBIO) , pp 1539-1544 , 2017.spa
dc.relation.referencesVasconcelos, R.,Hauser, S.,Dzeladini, F.,Mutlu, M.,Horvat, T.,Melo, K.,Oliveira, P.,Ijspeert, A.,Active stabilization of a stiff quadruped robot using local feedback, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) , pp. 4903-4910 , 2017.spa
dc.relation.referencesLiu, H. , Jia, W., Bi, L. , Hopf oscillator based adaptive locomotion control for a bionic quadruped robot, IEEE International Conference on Mechatronics and Automation (ICMA) , pp. 949-954 , 2017.spa
dc.relation.referencesLi, H. ,Shi, A.,Dai, Z.,A trajectory planning method for sprawling robot inspired by a trotting animal , Journal of Mechanical Science and Technology , pp 327–334 , 2017.spa
dc.relation.referencesOwaki, D.,Ishiguro, A. ,A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping, Scientific Reports , pp 1-10 , 2017.spa
dc.relation.referencesSuzuki, S.,Owaki, D.,Fukuhara, A.,Ishiguro, A.,Quadruped gait transition from walk to pace to rotary gallop by exploiting head movement, Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science , pp 532-539 , 2016.spa
dc.relation.referencesLi, X.,Wang, W.,Yi, J. Gait transition based on CPG modulation for quadruped locomotion , IEEE International Conference on Advanced Intelligent Mechatronics (AIM) , pp. 500-505 , 2015.spa
dc.relation.referencesKoo, I.M.,Trong, T.D.,Lee, Y.H.,Moon, H.,Koo, J.,Park, S.,Choi, H.R. , Biologically inspired gait transition control for a quadruped walking robot , Autonomous Robots , pp 169–182 , 2015.spa
dc.relation.referencesKoco, E.,Mutka, A.,Kovacic, Z., New parameterized foot trajectory shape for multi-gait quadruped locomotion with state machine-based approach for executing gait transitions , IEEE 22nd Mediterranean Conference on Control and Automation , pp. 1533-1539 , 2014.spa
dc.relation.referencesMcGhee RB and Frank A. On the stability properties of quadruped creeping gaits. Math Biosci, Vol 3, pp 331–351,1968.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcInteligencia Artificialspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.proposalSistemas de ecuaciones diferenciales de primer ordenspa
dc.subject.proposalFirst-order differential equation systemseng
dc.subject.proposalRedes Neuronales Recurrentesspa
dc.subject.proposalRecurring Neural Networkseng
dc.subject.proposalQuadruped Roboteng
dc.subject.proposalRobot Cuadrúpedospa
dc.subject.proposalAlgoritmos evolutivosspa
dc.subject.proposalEvolutionary Algorithmseng
dc.subject.proposalLógica Difusaspa
dc.subject.proposalDiffuse Logiceng
dc.subject.proposalCPGspa
dc.subject.proposalCPGeng
dc.titleTransición entre tipos de locomoción de un robot cuadrúpedo articuladospa
dc.title.alternativeTransition between locomotion types of an articulated quadruped robotspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71752252.2019.pdf
Tamaño:
3.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: