Evaluación del efecto directo de la Doxorrubicina en cardiomiocitos ventriculares aislados de cobayo (Cavia porcellus) sobre la expresión del canal de potasio sensible a ATP (KATP) y de miRNAs que se asocien con su regulación

dc.contributor.advisorGomez Grosso, Luis Albertospa
dc.contributor.authorDomínguez Romero , Leidy Yohanaspa
dc.contributor.researchgroupGrupo de Fisiología Molecularspa
dc.date.accessioned2025-09-09T19:03:46Z
dc.date.available2025-09-09T19:03:46Z
dc.date.issued2025-09-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa doxorrubicina (DOX) es un quimioterapéutico ampliamente utilizado cuyo principal efecto adverso es la cardiotoxicidad, lo que limita su aplicación clínica. Sin embargo, los mecanismos moleculares subyacentes a este efecto, especialmente en relación con la regulación mediada por microRNAs (miRNAs) y los sistemas endógenos de cardioprotección, no han sido completamente dilucidados. El objetivo de este estudio fue evaluar la expresión del canal de potasio sensible al ATP (KATP) y ciertos miRNAs específicos relacionados con su regulación en cardiomiocitos ventriculares de cobayos expuestos a DOX. Los cardiomiocitos fueron aislados mediante perfusión retrógrada y expuestos a 10 μM de DOX, observándose una disminución significativa del acortamiento celular y del ATP intracelular, junto con un aumento de especies reactivas de oxígeno (ROS), calcio citosólico (Ca²⁺) y despolarización mitocondrial. El perfil de expresión de miRNAs se determinó mediante Secuenciación de Nueva Generación (NGS), y se validó la expresión diferencial de miR-27a-5p, miR-99b-5p, miR-133a, miR-181a-5p y miR-34a-5p por stem loop RT-qPCR. Asimismo, se detectaron alteraciones en la expresión de las subunidades del canal KATP (ABCC9, KCNJ8, KCNJ11) y de genes asociados a cardioprotección como FoxO1, SIRT1 y GSK3β, tanto a nivel de RNA como de proteína mediante RT-qPCR y Western Blot respectivamente. Los análisis de correlación y redes reguladoras sugieren que algunos miRNAs se asocian positiva o negativamente con la expresión de KATP y proteínas cardioprotectoras como FOXO1, SIRT1 y GSK3β, evidenciando que la DOX altera mecanismos endógenos de protección cardíaca. Estos hallazgos contribuyen a una mejor comprensión de la fisiopatología de la Cardiotoxicidad Inducida por Doxorrubicina (CID) y abren nuevas perspectivas para el desarrollo de estrategias terapéuticas y la evaluación de estos miRNAs como candidatos a biomarcadores de detección temprana que permitan prevenir o mitigar el daño cardíaco asociado a este fármaco. (Texto tomado de la fuente).spa
dc.description.abstractDoxorubicin (DOX) is a widely used chemotherapeutic agent whose main adverse effect is cardiotoxicity, limiting its clinical application. However, the underlying molecular mechanisms of this effect, particularly those related to microRNA (miRNA)-mediated regulation and endogenous cardioprotective systems, have not been fully elucidated. The aim of this study was to evaluate the expression of the ATP-sensitive potassium channel (KATP) and specific miRNAs related to its regulation in ventricular cardiomyocytes from guinea pigs exposed to DOX. Cardiomyocytes were isolated by retrograde perfusion and exposed to 10 µM DOX, resulting in a significant decrease in cell shortening and intracellular ATP, along with increased Reactive Oxygen Species (ROS), cytosolic calcium, and mitochondrial depolarization. The miRNA expression profile was determined by NextGeneration Sequencing (NGS), and the differential expression of miR-27a-5p, miR-99b-5p, miR-133a, miR-181a-5p, and miR-34a-5p was validated by stem-loop RT-qPCR. In addition, alterations were detected in the expression of KATP channel subunits (ABCC9, KCNJ8, KCNJ11) and cardioprotective genes such as FoxO1, SIRT1, and GSK3β, both at the RNA and protein levels, using RT-qPCR and Western blot, respectively. Correlation and regulatory network analyses suggest that some miRNAs are positively or negatively associated with the expression of KATP and cardioprotective proteins such as FoxO1, SIRT1, and GSK3β, indicating that DOX disrupts endogenous cardiac protection mechanisms. These findings contribute to a better understanding of the pathophysiology of doxorubicin-induced cardiotoxicity and open new perspectives for the development of therapeutic strategies and the evaluation of these miRNAs as potential early detection biomarkers to prevent or mitigate the cardiac damage associated with this drug.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.methodsEsta es una investigación biomédica experimental in vitro basada en el uso de cardiomiocitos ventriculares aislados de corazones de cobayos Hartley, Cavia porcellus . Este modelo es muy útil en la investigación de la fisiología celular y molecular cardiaca permitiendo evaluar el efecto de diferentes agentes cardiotóxicos o cardioprotectores de manera directaspa
dc.description.researchareaMecanismos celulares y moleculares de cardioprotecciónspa
dc.format.extent158 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88675
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedBiremespa
dc.relation.references1. World health organization. Cardiovascular disease [Internet]. 2017 [cited 2019 Apr 15]. Available from: http://www.who.int/en/
dc.relation.references2. World health organization. Cancer [Internet]. 2018 [cited 2019 Apr 15]. Available from: http://www.who.int/mediacentre/factsheets/fs297/es/
dc.relation.references3. World Heart Federation. Cardiovascular disease mortality statistics. [Internet]. 2024 [cited 2024 Jul 13]. Available from: https://world-heart-federation.org/
dc.relation.references4. International Agency for Research on Cancer. Global cancer statistics [Internet]. 2024 [cited 2024 Jul 13]. Available from: https://gco.iarc.who.int/en
dc.relation.references5. Monsuez JJ, Charniot JC, Vignat N, Artigou JY. Cardiac side-effects of cancer chemotherapy. Int J Cardiol. 2018 Feb 4;144(1):3–15.
dc.relation.references6. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015 Jun 2;131(22):1981–8.
dc.relation.references7. Curry HL, Parkes SE, Powell JE, Mann JR. Caring for survivors of childhood cancers: the size of the problem. Eur J Cancer. 2006;42(4):501–8.
dc.relation.references8. Bhakta N, Liu Q, Yeo F, Baassiri M, Ehrhardt MJ, Srivastava DK, et al. Cumulative burden of cardiovascular morbidity in paediatric, adolescent, and young adult survivors of Hodgkin’s lymphoma: an analysis from the St Jude Lifetime Cohort Study. Lancet Oncol. 2016 Sep 1;17(9):1325–34.
dc.relation.references9. Global market insights. Tamaño y participación del mercado de doxorrubicina, análisis de crecimiento 2024-2032 [Internet]. 2024 [cited 2025 Apr 13]. Available from: https://www.gminsights.com/es/industry-analysis/doxorubicin-market
dc.relation.references10. EMR ACLAIGHT. Mercado de Doxorrubicina Liposomal, Informe 2025-2034 | Cuota, Tamano [Internet]. [cited 2025 Apr 13]. Available from: https://www.informesdeexpertos.com/informes/mercado-de-doxorrubicina-liposomal
dc.relation.references11. Bryant J, Picot J, Baxter L, Levitt G, Sullivan I, Clegg A. Clinical and cost-effectiveness of cardioprotection against the toxic effects of anthracyclines given to children with cancer: A systematic review. Vol. 96, British Journal of Cancer. 2007. p. 226–30.
dc.relation.references12. Van Boxtel W, Bulten BF, Mavinkurve-Groothuis AMC, Bellersen L, Mandigers CMPW, Joosten LAB, et al. New biomarkers for early detection of cardiotoxicity after treatment with docetaxel, doxorubicin and cyclophosphamide. Biomarkers. 2015;20(2):143–8.
dc.relation.references13. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.
dc.relation.references14. Pérez del Villar C, Yotti R, Bermejo J. Imaging Techniques in Acute Heart Failure. Revista Española de Cardiología (English Edition). 2015 Jul 1;68(7):612–23.
dc.relation.references15. Troughton RW, Richards AM. B-Type Natriuretic Peptides and Echocardiographic Measures of Cardiac Structure and Function. Vol. 2, JACC: Cardiovascular Imaging. 2009. p. 216–25.
dc.relation.references16. Kalivendi S V., Kotamraju S, Zhao H, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase: Effect of antiapoptotic antioxidants and calcium. Journal of Biological Chemistry. 2001;276(50):47266–76.
dc.relation.references17. Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. Journal of Biological Chemistry. 2000;275(43):33585–92.
dc.relation.references18. Dulf PL, Mocan M, Coadă CA, Dulf DV, Moldovan R, Baldea I, et al. Doxorubicin-induced acute cardiotoxicity is associated with increased oxidative stress, autophagy, and inflammation in a murine model. Naunyn Schmiedebergs Arch Pharmacol. 2023 Jun 1;396(6):1105.
dc.relation.references19. Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 2001;61(2):771–7.
dc.relation.references20. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.
dc.relation.references21. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Vol. 115, Cardiology. 2010. p. 155–62.
dc.relation.references22. Sun X, Zhou Z, Kang YJ. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res. 2001;61(8):3382–7.
dc.relation.references23. Temma K, Akera T, Chugun A, Ohashi M, Yabuki M, Kondo H. Doxorubicin: an antagonist of muscarinic receptors in guinea pig heart. Eur J Pharmacol. 1992 Sep 10;220(1):63–9.
dc.relation.references24. Monti E, Bossa R, Galatulas I, Favalli L, Villani F, Piccinini F. Interaction between Doxorubicin and Mitomycin C on Mortality and Myocardial Contractility in Guinea PIG. Tumori Journal. 1983;69(2):113–6.
dc.relation.references25. Wang YX, Korth M. Effects of doxorubicin on excitation-contractioncoupling in guinea pig ventricular myocardium. Circ Res. 1995 Apr 1;76(4):645–53.
dc.relation.references26. Sasaki T, Ueno S, Hara Y, Uchide T, Temma K. Antimuscarinic action of doxorubicin does not involve free-radical formation in isolated guinea pig hearts. https://doi.org/101139/Y09-093. 2010 Jan;88(1):77–81.
dc.relation.references27. Asayama J, Yamahara Y, Tatsumi T, Miyazaki H, Inoue M, Omori I, et al. Acute effects of doxorubicin on skinned cardiac muscle fibres of guinea pigs. Cardiovasc Res. 1992 Apr 1;26(4):371–5.
dc.relation.references28. Perkins WE, Schroeder RL, Carrano RA, Imondi AR. Effect of ICRF-187 on doxorubicin-induced myocardial effects in the mouse and guinea pig. British Journal of Cancer 1982 46:4. 1982;46(4):662–7.
dc.relation.references29. Chugun A, Uchide T, Tsurimaki C, Nagasawa H, Sasaki T, Ueno S, et al. Mechanisms Responsible for Reduced Cardiotoxicity of Mitoxantrone Compared to Doxorubicin Examined in Isolated Guinea-Pig Heart Preparations. Journal of Veterinary Medical Science. 2008 Mar;70(3):255–64.
dc.relation.references30. Stark G, Stark U, Samonigg H, Kasparek K, Lueger A, Nagl S, et al. Comparison of acute effects of anthracyclines on cardiac electrophysiological parameters of isolated guinea-pig hearts. Cancer Chemother Pharmacol. 1990 Sep;26(6):415–8.
dc.relation.references31. Bartakova A, Novakova M, Stracina T. Anesthetized Guinea Pig as a Model for Drug Testing. Physiol Res. 2022;71(6 Suppl 2):S211.
dc.relation.references32. Horackova M, Byczko Z. Differences in the structural characteristics of adult guinea pig and rat cardiomyocytes during their adaptation and maintenance in long-term cultures: confocal microscopy study. Exp Cell Res. 1997 Nov 25;237(1):158–75.
dc.relation.references33. Pecoraro M, Sorrentino R, Franceschelli S, Del Pizzo M, Pinto A, Popolo A. Doxorubicin-Mediated Cardiotoxicity: Role of Mitochondrial Connexin 43. Cardiovasc Toxicol. 2015;15(4):366–76.
dc.relation.references34. Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol [Internet]. 2014 Jan 10;171(1):12–23. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874693/
dc.relation.references35. Ruggeri C, Gioffré S, Achilli F, Colombo GI, D’Alessandra Y. Role of microRNAs in doxorubicin-induced cardiotoxicity: an overview of preclinical models and cancer patients. Heart Fail Rev. 2017
dc.relation.references36. Desai VG, C. Kwekel J, Vijay V, Moland CL, Herman EH, Lee T, et al. Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol Appl Pharmacol. 2014;281(2):221–9.
dc.relation.references37. Chaudhari U, Nemade H, Gaspar JA, Hescheler J, Hengstler JG, Sachinidis A. MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol. 2016;90(12):3087–98.
dc.relation.references38. Li SS, Wu Y, Jin X, Jiang C. The SUR2B subunit of rat vascular KATP channel is targeted by miR-9a-3p induced by prolonged exposure to methylglyoxal. Am J Physiol Cell Physiol. 2015;308(2):C139-45.
dc.relation.references39. Gomez LA, Alekseev AE, Aleksandrova LA, Brady PA, Terzic A. Use of the MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of adenosine and potassium on cellular survival. J Mol Cell Cardiol. 1997;29(4):1255–66.
dc.relation.references40. Gómez G, Gomez L. Evaluación del efecto de la Adenosina y el 2,4-dinitrofenol sobre el acortamiento y viabilidad de cardiomiocitos ventriculares de cobayo. Universidad Nacional de Colombia; 2002.
dc.relation.references41. Gomez LA, Alekseev AE, Aleksandrova LA, Brady PA, Terzic A. Use of the MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of adenosine and potassium on cellular survival. J Mol Cell Cardiol. 1997;29(4):1255–66.
dc.relation.references42. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305(5930):147–8.
dc.relation.references43. Shiotani M, Harada T, Abe J, Hamada Y, Horii I. Aging-related changes of QT and RR intervals in conscious guinea pigs. J Pharmacol Toxicol Methods. 2008;57(1):23–9.
dc.relation.references44. Luis Alberto Gómez-Grosso. Preacondicionamiento isquémico en cardiomiocitos ventriculares aislados. Identificación y expresión de algunos microRNAs asociados. Rev Acad Colomb Cienc Exactas Fis Nat. 2013;37(145).
dc.relation.references45. Gómez-Grosso LA. Preacondicionamiento isquémico en cardiomiocitos ventriculares aislados. Identificación y expresión de algunos microRNAs asociados. Rev Acad Colomb Cienc Exactas Fis Nat. 2013;37(145).
dc.relation.references46. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
dc.relation.references47. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.
dc.relation.references48. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661–3
dc.relation.references50. Gómez G, Gomez L. Evaluación del efecto de la Adenosina y el 2,4-dinitrofenol sobre el acortamiento y viabilidad de cardiomiocitos ventriculares de cobayo. Universidad Nacional de Colombia; 2002.
dc.relation.references51. M.L.Gunturiz y L.A. Gomez. identificación y expresión diferencial del factor de transcripción asociado a microftalmia en corazón y cardiomiocitos aislados de cobayo: su posible papel en la hipertrofia y la viabilidad. 2014.
dc.relation.references52. Breckenridge R. Heart failure and mouse models. DMM Disease Models and Mechanisms. 2010.
dc.relation.references53. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiological Reviews. 1986.
dc.relation.references54. Lomovskaya N, Otten SL, Doi-Katayama Y, Fonstein L, Liu XC, Takatsu T, et al. Doxorubicin Overproduction in Streptomyces peucetius: Cloning and Characterization of the dnrU Ketoreductase and dnrV Genes and the doxA Cytochrome P-450 Hydroxylase Gene. J Bacteriol. 1999;181(1):305.
dc.relation.references55. Singal, P. K., & Iliskovic N. Doxorubicin-induced cardiomyopathy. New England Journal of Medicine. 1998;339(13):900–5.
dc.relation.references56. Minotti G. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229.
dc.relation.references57. Belger C, Abrahams C, Imamdin A, Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. Int J Cardiol Heart Vasc. 2024 Feb 1;50:101332.
dc.relation.references58. Wang GX, Wang YX, Zhou XB, Korth M. Effects of doxorubicinol on excitation-contraction coupling in guinea pig ventricular myocytes. Eur J Pharmacol. 2001
dc.relation.references59. Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology. 2006.
dc.relation.references60. Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, et al. Doxorubicin—An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023, Vol 12, Page 659. 2023 Feb 19;12(4):659
dc.relation.references61. Linders AN, Dias IB, López Fernández T, Tocchetti CG, Bomer N, Van der Meer P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging 2024 10:1. 2024 Jan 23;10(1):1–9.
dc.relation.references62. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999
dc.relation.references63. Forrest RA, Swift LP, Rephaeli A, Nudelman A, Kimura KI, Phillips DR, et al. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol. 2012;83(12):1602–12.
dc.relation.references64. Dunkern TR, Wedemeyer I, Baumgärtner M, Fritz G, Kaina B. Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair (Amst). 2003;2(1):49–60
dc.relation.references65. Botlagunta M, Kollapalli B, Kakarla L, Gajarla SP, Gade SP, Dadi CL, et al. In vitro anti-cancer activity of doxorubicin against human RNA helicase, DDX3. Bioinformation. 2016 Oct 12;12(7):347.
dc.relation.references66. Tsang WP, Chau SPY, Kong SK, Fung KP, Kwok TT. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003;73(16):2047–58.
dc.relation.references67. Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005;76(13):1439–53.
dc.relation.references68. Guven C, Sevgiler Y, Taskin E. Mitochondrial Dysfunction Associated with Doxorubicin. In: Mitochondrial Diseases. 2018.
dc.relation.references69. Kim SJSY, Kim SJSY, Kim BJ, Rah SY, Sung MC, Im MJ, et al. Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp Mol Med. 2006;38(5):535–45.
dc.relation.references70. Müller I, Jenner A, Bruchelt G, Niethammer D, Halliwell B. Effect of concentration on the cytotoxic mechanism of doxorubicin-apoptosis and oxidative DNA damage. Biochem Biophys Res Commun. 1997;230(2):254–7.
dc.relation.references71. Middleman E, Luce J, Frei E. Clinical trials with adriamycin. Cancer. 1971;28(4):844–50
dc.relation.references72. Abdullah CS, Alam S, Aishwarya R, Miriyala S, Bhuiyan MAN, Panchatcharam M, et al. Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Sci Rep. 2019;
dc.relation.references73. Carvalho C, Santos R, Cardoso S, Correia S, Oliveira P, Santos M, et al. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr Med Chem. 2009;16(25):3267–85.
dc.relation.references74. Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Vol. 10, IJC Heart and Vasculature. 2016. p. 17–24.
dc.relation.references75. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Vol. 52, Journal of Molecular and Cellular Cardiology. 2012. p. 1213–25.
dc.relation.references76. Ma J, Wang Y, Zheng D, Wei M, Xu H, Peng T. Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res. 2013;97(1):77–87.
dc.relation.references77. Gao S, Li H, Feng X jun, Li M, Liu Z ping, Cai Y, et al. α-Enolase plays a catalytically independent role in doxorubicin-induced cardiomyocyte apoptosis and mitochondrial dysfunction. J Mol Cell Cardiol. 2015;79:92–103.
dc.relation.references78. Asensio-López MC, Soler F, Sánchez-Más J, Pascual-Figal D, Fernández-Belda F, Lax A. Early oxidative damage induced by doxorubicin: Source of production, protection by GKT137831 and effect on Ca2+transporters in HL-1 cardiomyocytes. Arch Biochem Biophys. 2016;594:26–36
dc.relation.references79. Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, et al. Anthracyclines Induce Calpain-dependent Titin Proteolysis and Necrosis in Cardiomyocytes. Journal of Biological Chemistry. 2004;279(9):8290–9.
dc.relation.references80. Tokarska-Schlattner M. Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. AJP: Heart and Circulatory Physiology. 2005;289(1):H37–47.
dc.relation.references81. Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chate V, Schnebelen C, et al. Inhibition of AMPK signalling by doxorubicin: At the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res. 2012;95(3):290–9.
dc.relation.references82. Müller I, Jenner A, Bruchelt G, Niethammer D, Halliwell B. Effect of concentration on the cytotoxic mechanism of doxorubicin-apoptosis and oxidative DNA damage. Biochem Biophys Res Commun. 1997;230(2):254–7
dc.relation.references83. Greene RF, Collins JM, Jenkins JF, Speyer JL, Myers CE. Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Res. 1983;43(7):3417–21.
dc.relation.references84. Luis Alberto Gómez-Grosso. Preacondicionamiento isquémico en cardiomiocitos ventriculares aislados. Identificación y expresión de algunos microRNAs asociados. Rev Acad Colomb Cienc Exactas Fis Nat. 2013;37(145).
dc.relation.references85. Strober W. Trypan Blue Exclusion Test of Cell Viability. Current protocols in immunology / edited by John E Coligan . [et al]. 2015;111:1–3.
dc.relation.references86. Wojtala A, Bonora M, Malinska D, Pinton P, Duszynski J, Wieckowski MR. Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol. 2014;542:243–62.
dc.relation.references87. Yang HY, Firth JM, Francis AJ, Alvarez-Laviada A, MacLeod KT. Effect of ovariectomy on intracellular Ca 2+ regulation in guinea pig cardiomyocytes . American Journal of Physiology-Heart and Circulatory Physiology. 2017;
dc.relation.references88. Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism 2022 4:6. 2022 Jun 27;4(6):651–62.
dc.relation.references89. Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, et al. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Vol. 129, Free Radical Biology and Medicine. 2018. p. 1–24.
dc.relation.references90. Pandey V, Xie LH, Qu Z, Song Z. Mitochondrial depolarization promotes calcium alternans: Mechanistic insights from a ventricular myocyte model. PLoS Comput Biol. 2021 Jan 25;17(1):e1008624
dc.relation.references91. Sivandzade F, Bhalerao A, Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dyeas a Sensitive Fluorescent Probe. Bio Protoc. 2019;9(1):e3128.
dc.relation.references92. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2017 Jul 1;552:50.
dc.relation.references93. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, et al. The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta Bioenerg. 1998;1366(1–2):177–96.
dc.relation.references94. Sarvazyan N. Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. Am J Physiol Heart Circ Physiol. 1996;
dc.relation.references95. Maillet A, Tan K, Chai X, Sadananda SN, Mehta A, Ooi J, et al. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes. Sci Rep. 2016;6
dc.relation.references96. Jawad B, Poudel L, Podgornik R, Steinmetz NF, Ching WY. Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Physical Chemistry Chemical Physics. 2019 Feb 13;21(7):3877–93.
dc.relation.references97. Goormaghtigh E, Chatelain P, Caspers J, Ruysschaert JM. Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. Biochem Pharmacol. 1980;29(21):3003–10.
dc.relation.references98. Fox CA, Romenskaia I, Dagda RK, Ryan RO. Cardiolipin nanodisks confer protection against doxorubicin-induced mitochondrial dysfunction. 2022;
dc.relation.references99. Parker MA, King V, Howard KP. Nuclear magnetic resonance study of doxorubicin binding to cardiolipin containing magnetically oriented phospholipid bilayers. Biochim Biophys Acta Biomembr. 2001 Oct 1;1514(2):206–16.
dc.relation.references100. Hanna AD, Lam A, Tham S, Dulhunty AF, Beard NA. Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A. Mol Pharmacol. 2014;
dc.relation.references101. Osataphan N, Phrommintikul A, Chattipakorn SC. Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. J Cell Mol Med. 2020;
dc.relation.references102. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad S V., et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014 Feb 3;124(2):617–30.
dc.relation.references103. Xia P, Chen J, Liu Y, Fletcher M, Jensen BC, Cheng Z. Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2-mediated activation of forkhead box O1. J Biol Chem. 2020 Mar 27;295(13):4265–76.
dc.relation.references104. April C. Childs; Sharon L. Phaneuf; Amie J. Dirks; Tracey Phillips; Christiaan Leeuwenburgh. Cancer Researh. 2002. p. 4592–8 Doxorubicin Treatment in Vivo Causes Cytochrome c Release and Cardiomyocyte Apoptosis, As Well As Increased Mitochondrial Efficiency, Superoxide Dismutase Activity, and Bcl-2:Bax Ratio1.
dc.relation.references105. Pizarro M, Troncoso R, Martínez GJ, Chiong M, Castro PF, Lavandero S. Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity. Toxicology. 2016 Aug 31;370:41–8.
dc.relation.references106. Panjrath GS, Patel V, Valdiviezo CI, Narula N, Narula J, Jain D. Potentiation of Doxorubicin Cardiotoxicity by Iron Loading in a Rodent Model. J Am Coll Cardiol. 2007 Jun 26;49(25):2457–64.
dc.relation.references107. Piegari E, Cozzolino A, Ciuffreda LP, Cappetta D, De Angelis A, Urbanek K, et al. Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Scientific Reports 2020 10:1. 2020 Jul 23;10(1):1–12
dc.relation.references108. Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023, Vol 13, Page 568. 2023 Mar 20;13(3):568.
dc.relation.references109. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 2006 440:7083. 2006 Mar 22;440(7083):470–6
dc.relation.references110. Small EM, Frost RJA, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Vol. 121, Circulation. 2010. p. 1022–32
dc.relation.references111. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Vol. 14, Nature Reviews Molecular Cell Biology. 2013. p. 475–88.
dc.relation.references112. Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Vol. 39, Nucleic Acids Research. 2011. p. 6845–53.
dc.relation.references113. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science (1979). 2007;315(5815):1137–40.
dc.relation.references114. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Vol. 469, Nature. 2011. p. 336–42.
dc.relation.references115. Holmgren G, Synnergren J, Andersson CX, Lindahl A, Sartipy P. MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicology in Vitro. 2016;34:26–34.
dc.relation.references116. Piegari E, Russo R, Cappetta D, Esposito G, Urbanek K, Dell’Aversana C, et al. MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget. 2016;7(38):62312.
dc.relation.references117. Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M, et al. MiR-21 Protected Cardiomyocytes against Doxorubicin-Induced Apoptosis by Targeting BTG2. Int J Mol Sci. 2015 Jun 26;16(7):14511.
dc.relation.references118. Pan JA, Tang Y, Yu JY, Zhang H, Zhang JF, Wang CQ, et al. miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity. Cell Death & Disease 2019 10:9. 2019 Sep 11;10(9):1–15.
dc.relation.references119. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-Induced Cardiotoxicity: From Bioenergetic Failure and Cell Death to Cardiomyopathy. Med Res Rev. 2014;34(1):106–35.
dc.relation.references120. Sangweni NF, Gabuza K, Huisamen B, Mabasa L, van Vuuren D, Johnson R. Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: a graphical representation. Arch Toxicol. 2022 Jun 1;96(6):1541–50.
dc.relation.references121. Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology. 2006.
dc.relation.references122. Li Z, Ye Z, Ma J, Gu Q, Teng J, Gong X. MicroRNA-133b alleviates doxorubicin-induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2. Int J Mol Med. 2021 Jul 1;48(1):125
dc.relation.references123. Zhang W Bin, Lai X, Guo XF. Activation of Nrf2 by miR-152 Inhibits Doxorubicin-Induced Cardiotoxicity via Attenuation of Oxidative Stress, Inflammation, and Apoptosis. Oxid Med Cell Longev. 2021;2021
dc.relation.references124. Maayah ZH, Takahara S, Dyck JRB. The beneficial effects of reducing NLRP3 inflammasome activation in the cardiotoxicity and the anti-cancer effects of doxorubicin. Arch Toxicol. 2020 Aug 27;95(1):1–9.
dc.relation.references125. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481.
dc.relation.references126. Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, et al. Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest. 2002 Feb 15;109(4):509.
dc.relation.references127. Patton BL, Zhu P, ElSheikh A, Driggers CM, Shyng SL. Dynamic duo: Kir6 and SUR in KATP channel structure and function. Channels. 2024 Dec 31;18(1).
dc.relation.references128. Nichols CG. ATP-sensitive Potassium Currents in Heart Disease and Cardioprotection. Card Electrophysiol Clin. 2016 Jun 1;8(2):323
dc.relation.references129. Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol. 2014 Jan;171(1):12–23
dc.relation.references130. Denysova M V., Strutynska NA, Mys LA, Korkach YP, Sagach VF, Strutynskyi RB. Activation of ATP-sensitive potassium channels prevents doxorubicin-induced mitochondrial dysfunction in the heart and impaired vascular responses in rats. Fiziologichnyi Zhurnal. 2024;70(2):3–11
dc.relation.references131. Hole LD, Larsen TH, Fossan KO, Lim� F, Schj�tt J. Diazoxide protects against doxorubicin-induced cardiotoxicity in the rat. BMC Pharmacol Toxicol. 2014;15(1).
dc.relation.references132. Foster MN, Coetzee WA. K ATP Channels in the Cardiovascular System. Physiol Rev. 2016;96(1):177–252.
dc.relation.references133. Abdel-Raheem IT, Taye A, Abouzied MM. Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic Clin Pharmacol Toxicol. 2013;113(3):158–66.
dc.relation.references134. Gross GJ, Peart JN. K ATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol. 2003;285(3):H921–30
dc.relation.references135. Nichols CG. ATP-sensitive Potassium Currents in Heart Disease and Cardioprotection. Card Electrophysiol Clin [Internet]. 2016 Jun 1 [cited 2025 Jan 3];8(2):323
dc.relation.references136. Oldenburg O, Cohen M V., Yellon DM, Downey JM. Mitochondrial KATP channels: role in cardioprotection. Cardiovasc Res. 2002 Aug 15;55(3):429–37.
dc.relation.references137. Liu ZW, Niu XL, Chen KL, Xing YJ, Wang X, Qiu C, et al. Selenium attenuates adriamycin-induced cardiac dysfunction via restoring expression of ATP-sensitive potassium channels in rats. Biol Trace Elem Res. 2013;153(1–3):220–8.
dc.relation.references138. Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation. 1992;86(4):1310–6.
dc.relation.references139. Storey NM, Stratton RC, Rainbow RD, Standen NB, Lodwick D. Kir6.2 limits Ca2+ overload and mitochondrial oscillations of ventricular myocytes in response to metabolic stress. AJP: Heart and Circulatory Physiology. 2013;305(10):H1508–18
dc.relation.references140. Hole LD, Larsen TH, Fossan KO, Lim� F, Schj�tt J. Diazoxide protects against doxorubicin-induced cardiotoxicity in the rat. BMC Pharmacol Toxicol. 2014;15(1).
dc.relation.references141. Sukhodub A, Jovanović S, Qingyou DU, Budas G, Clelland AK, Shen MEI, et al. AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K+channels. J Cell Physiol. 2007;210(1):224–36.
dc.relation.references142. Denysova M V., Strutynska NA, Mys LA, Korkach YP, Sagach VF, Strutynskyi RB. Activation of ATP-sensitive potassium channels prevents doxorubicin-induced mitochondrial dysfunction in the heart and impaired vascular responses in rats. Fiziologichnyi Zhurnal. 2024;70(2):3–11.
dc.relation.references143. Abdel-Raheem IT, Taye A, Abouzied MM. Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic Clin Pharmacol Toxicol. 2013 Sep;113(3):158–66.
dc.relation.references144. Jin X, Wu Y, Cui N, Jiang C, Li SS. Methylglyoxal-induced miR-223 suppresses rat vascular KATP channel activity by downregulating Kir6.1 mRNA in carbonyl stress. Vascul Pharmacol. 2020 May 1;128–129:106666.
dc.relation.references145. Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A, et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One. 2014
dc.relation.references146. Raeis V, Philip-Couderc P, Roatti A, Habre W, Sierra J, Kalangos A, et al. Central venous hypoxemia is a determinant of human atrial ATP-sensitive potassium channel expression: evidence for a novel hypoxia-inducible factor 1alpha-Forkhead box class O signaling pathway. Hypertension. 2010 May;55(5):1186–92.
dc.relation.references147. Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ. Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res. 2008 Feb 1;102(2).
dc.relation.references148. Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 2011;2011.
dc.relation.references149. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: Current concepts and the novel “gene expression’s C T difference” formula. Vol. 84, Journal of Molecular Medicine. 2006. p. 901–10.
dc.relation.references150. Susana Novoa-Herrán, Luis Alberto Gómez. miR-34 family: Bioinformatic analysis of networks potentially impacted in injury of cardiomyocytes exposed to vesicles derived from Doxorubicin-treated melanoma cells. In: Daniel Alfonso Urrea Montes, editor. Congreso Colombiano de Biología Computacional y Bioinformática - CCBCOL. Ibague, Colombia: Sello editorial de la Universidad del Tolima; 2019. p. 85–85
dc.relation.references151. Huang Y, Hu D, Huang C, Nichols CG. Genetic Discovery of KATP Channels in Cardiovascular Diseases. Circ Arrhythm Electrophysiol. 2019 May 1;12(5):e007322.
dc.relation.references152. Wang Z, Bian W, Yan Y, Zhang DM. Functional Regulation of KATP Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases. Front Pharmacol. 2022 Jun 28;13.
dc.relation.references153. Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol [Internet]. 2015 [cited 2022 Nov 27];309(9):H1375. Available from: /pmc/articles/PMC4666968/
dc.relation.references154. Ronnebaum SM, Patterson C. The FoxO Family in Cardiac Function and Dysfunction. https://doi.org/101146/annurev-physiol-021909-135931. 2010 Feb 11;72:81–94.
dc.relation.references155. Yan D, Cai Y, Luo J, Liu J, Li X, Ying F, et al. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes. J Cell Mol Med. 2020 Jul 1;24(14):7850.
dc.relation.references156. Umbarkar P, Ruiz Ramirez SY, Toro Cora A, Tousif S, Lal H. GSK-3 at the heart of cardiometabolic diseases: Isoform-specific targeting is critical to therapeutic benefit. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2023 Aug 1;1869(6):166724.
dc.relation.references157. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007 May;100(10):1512–21.
dc.relation.references158. Hori YS, Kuno A, Hosoda R, Horio Y. Regulation of FOXOs and p53 by SIRT1 Modulators under Oxidative Stress. PLoS One. 2013;8(9):e73875.
dc.relation.references159. Packer M. Cardioprotective Effects of Sirtuin-1 and Its Downstream Effectors. Circ Heart Fail. 2020 Sep 1;13(9):E007197.
dc.relation.references160. Granchi C, Minutolo F. Activators of Sirtuin-1 and their Involvement in Cardioprotection. Curr Med Chem. 2018 Feb 17;25(34):4432–56.
dc.relation.references161. Ngok-Ngam P, Watcharasit P, Thiantanawat A, Satayavivad J. Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y CELLS. Cell Mol Biol Lett. 2013 Nov 16;18(1):58–74.
dc.relation.references162. Cheng J, Yang S, Shou D, Chen J, Li Y, Huang C, et al. FOXO1 induced fatty acid oxidation in hepatic cells by targeting ALDH1L2. J Gastroenterol Hepatol. 2024 Oct 1;39(10):2197–207.
dc.relation.references163. Duan P, Wang J, Li Y, Wei S, Su F, Zhang S, et al. Opening of mitoKATP improves cardiac function and inhibits apoptosis via the AKT-Foxo1 signaling pathway in diabetic cardiomyopathy. Int J Mol Med. 2018 Nov 1;42(5):2709–19.
dc.relation.references164. Ramasamy S, Velmurugan G, Rajan KS, Ramprasath T, Kalpana K. MiRNAs with Apoptosis Regulating Potential Are Differentially Expressed in Chronic Exercise-Induced Physiologically Hypertrophied Hearts. PLoS One. 2015 Mar 20;10(3).
dc.relation.references165. Amara VR, Surapaneni SK, Tikoo K. Metformin attenuates cardiovascular and renal injury in uninephrectomized rats on DOCA-salt: Involvement of AMPK and miRNAs in cardioprotection. Toxicol Appl Pharmacol. 2019 Jan 1;362:95–104.
dc.relation.references166. Yu Y hui, Zhang Y hong, Ding Y qing, Bi X ying, Yuan J, Zhou H, et al. MicroRNA-99b-3p promotes angiotensin II-induced cardiac fibrosis in mice by targeting GSK-3β. Acta Pharmacol Sin [Internet]. 2021 May 1 [cited 2022 Aug 22];42(5):715–25. Available from: https://pubmed.ncbi.nlm.nih.gov/32814818/
dc.relation.references167. Yang K, Chen Z, Gao J, Shi W, Li L, Jiang S, et al. The Key Roles of GSK-3β in Regulating Mitochondrial Activity. Cell Physiol Biochem [Internet]. 2017 Dec 1 [cited 2022 Aug 23];44(4):1445–59. Available from: https://pubmed.ncbi.nlm.nih.gov/29190615/
dc.relation.references168. Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, et al. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J Biol Chem [Internet]. 2014 Oct 17 [cited 2022 Aug 22];289(42):29285–96
dc.relation.references169. Zhang J, Qiu W, Ma J, Wang Y, Hu Z, Long K, et al. miR-27a-5p Attenuates Hypoxia-induced Rat Cardiomyocyte Injury by Inhibiting Atg7. Int J Mol Sci. 2019 May 16;20(10).
dc.relation.references170. Qin XD, Liu L. Loss of microRNA-27a induces cardiac dysfunction through activating FoxO1. Eur Rev Med Pharmacol Sci. 2019;23(13):5941–8.
dc.relation.references171. Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ. Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res [Internet]. 2008 Feb 1
dc.relation.references172. Crocco P, Montesanto A, Grotta R La, Paparazzo E, Soraci L, Dato S, et al. The Potential Contribution of MyomiRs miR-133a-3p,-133b, and-206 Dysregulation in Cardiovascular Disease Risk. 2024
dc.relation.references173. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;
dc.relation.references174. Lee SY, Lee CY, Ham O, Moon JY, Lee J, Seo HH, et al. microRNA-133a attenuates cardiomyocyte hypertrophy by targeting PKCδ and Gq. Mol Cell Biochem. 2018 Feb 1;439(1–2):105–15
dc.relation.references175. Kuzmin VS, Ivanova AD, Filatova TS, Pustovit KB, Kobylina AA, Atkinson AJ, et al. Micro-RNA 133a-3p induces repolarization abnormalities in atrial myocardium and modulates ventricular electrophysiology affecting ICa,L and Ito currents. Eur J Pharmacol. 2021 Oct 5;908.
dc.relation.references176. Gioffré S, Ricci V, Vavassori C, Ruggeri C, Chiesa M, Alfieri I, et al. Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity. Biomed Pharmacother. 2019 Feb 1;110:1–8.
dc.relation.references177. Desai VG, Vijay V, Lee T, Han T, Moland CL, Phanavanh B, et al. MicroRNA-34a-5p as a promising early circulating preclinical biomarker of doxorubicin-induced chronic cardiotoxicity. J Appl Toxicol. 2022 Sep 1;42(9):1477–90.
dc.relation.references178. Wang X, Xie Y, Wang J. Overexpression of MicroRNA-34a-5p Inhibits Proliferation and Promotes Apoptosis of Human Cervical Cancer Cells by Downregulation of Bcl-2. Oncol Res. 2018;26(6):977
dc.relation.references179. Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei HW, et al. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Scientific Reports 2017 7:1
dc.relation.references180. Lv B, He S, Li P, Jiang S, Li D, Lin J, et al. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. The FASEB Journal. 2024 May 15;38(9):e23635.
dc.relation.references181. Zhou Y, Long MY, Chen ZQ, Huang JW, Qin ZB, Li L. Downregulation of miR-181a-5p alleviates oxidative stress and inflammation in coronary microembolization-induced myocardial damage by directly targeting XIAP. J Geriatr Cardiol. 2021 Jun 1;18(6):426
dc.relation.references182. Li H. Sirtuin 1 (SIRT1) and Oxidative Stress. Systems Biology of Free Radicals and Antioxidants. 2014 May 1;9783642300189:417–35.
dc.relation.references183. Chan SH, Hung CH, Shih JY, Chu PM, Cheng YH, Lin HC, et al. SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease. Redox Biol. 2017 Oct 1;13:301–9.
dc.relation.references184. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013 Oct;25(10):1939–48.
dc.relation.references185. Zhou Y, Wang S, Li Y, Yu S, Zhao Y. SIRT1/PGC-1α Signaling Promotes Mitochondrial Functional Recovery and Reduces Apoptosis after Intracerebral Hemorrhage in Rats. Front Mol Neurosci. 2018 Jan 9;10:443.
dc.relation.references186. Man AWC, Li H, Xia N. The role of sirtuin1 in regulating endothelial function, arterial remodeling and vascular aging. Front Physiol. 2019 Sep 1;10(SEP):476329.
dc.relation.references187. Tuncay E, Gando I, Huo JY, Yepuri G, Sampler N, Turan B, et al. The cardioprotective role of sirtuins is mediated in part by regulating KATP channel surface expression. Am J Physiol Cell Physiol [Internet]. 2023 May 1 [cited 2025 Mar 15];324(5):C1017–27.
dc.relation.references188. Prola A, Da Silva JP, Guilbert A, Lecru L, Piquereau J, Ribeiro M, et al. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death & Differentiation 2017 24:2. 2016 Dec 2;24(2):343–56.
dc.relation.references189. Tuncay E, Gando I, Huo JY, Yepuri G, Sampler N, Turan B, et al. The cardioprotective role of sirtuins is mediated in part by regulating KATP channel surface expression. Am J Physiol Cell Physiol. 2023 May 1;324(5):C1017
dc.relation.references190. Wang L, Li J, Di L jun. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev. 2021 Mar 1;42(2):946.
dc.relation.references191. Nimmo HG, Proud CG, Cohen P. The Phosphorylation of Rabbit Skeletal Muscle Glycogen Synthase by Glycogen Synthase Kinase‐2 and Adenosine‐3′: 5′‐Monophosphate‐Dependent Protein Kinase. Eur J Biochem. 1976;68(1):31–44.
dc.relation.references192. Hermida MA, Dinesh Kumar J, Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul. 2017 Aug 1;65:5–15.
dc.relation.references193. Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, et al. Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol. 2007 Nov;43(5):564–70.
dc.relation.references194. Gross ER, Hsu AK, Gross GJ. GSK3β inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic Res Cardiol. 2007 Jul 23;102(4):341–9.
dc.relation.references195. Terashima Y, Sato T, Yano T, Maas O, Itoh T, Miki T, et al. Roles of phospho-GSK-3β in myocardial protection afforded by activation of the mitochondrial K ATP channel. J Mol Cell Cardiol. 2010 Nov;49(5):762–70.
dc.relation.references196. Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nature Reviews Molecular Cell Biology 2023 25:1. 2023 Sep 14;25(1):46–64.
dc.relation.references197. Xin Z, Ma Z, Jiang S, Wang D, Fan C, Di S, et al. FOXOs in the impaired heart: New therapeutic targets for cardiac diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2017 Feb 1;1863(2):486–98.
dc.relation.references198. Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ. Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res [Internet]. 2008 Feb [cited 2024 Apr 10];102(2).
dc.relation.references199. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010 Dec 10;107(12):1470
dc.relation.references200. Malik AI, Storey KB. Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress. Gene. 2011 Oct 10;485(2):114–9.
dc.relation.references201. Terashima Y, Sato T, Yano T, Maas O, Itoh T, Miki T, et al. Roles of phospho-GSK-3β in myocardial protection afforded by activation of the mitochondrial KATP channel. J Mol Cell Cardiol. 2010 Nov 1;49(5):762–70.
dc.relation.references202. Wu WS, Tu BW, Chen TT, Hou SW, Tseng JT. CSmiRTar: Condition-Specific microRNA targets database. PLoS One. 2017;12(7):e0181231.
dc.relation.references203. Yang K, Chen Z, Gao J, Shi W, Li L, Jiang S, et al. The Key Roles of GSK-3β in Regulating Mitochondrial Activity. Cell Physiol Biochem. 2017 Dec 1;44(4):1445–59.
dc.relation.references204. Van Le TN, Zoungrana LI, Wang H, Fatmi MK, Ren D, Krause-Hauch M, et al. Sirtuin 1 aggravates hypertrophic heart failure caused by pressure overload via shifting energy metabolism. Biochem Biophys Res Commun. 2022 Dec 31;637:170–80.
dc.relation.references205. Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ. Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res. 2008 Feb;102(2).
dc.relation.references206. Tuncay E, Gando I, Huo JY, Yepuri G, Sampler N, Turan B, et al. The cardioprotective role of sirtuins is mediated in part by regulating KATP channel surface expression. Am J Physiol Cell Physiol. 2023 May 1;324(5):C1017–27.
dc.relation.references207. Wang C, Liu H. Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Scientific Reports 2022 12:1. 2022 May 4;12(1):1–11.
dc.relation.references208. Maejima Y, Adachi S, Ito H, Hirao K, Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008 Apr;7(2):125–36
dc.relation.references209. Campisi J, D’Adda Di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol [Internet]. 2007 Sep [cited 2025 Jul 26];8(9):729–40
dc.relation.references210. Mitry MA, Laurent D, Keith BL, Sira E, Eisenberg CA, Eisenberg LM, et al. Accelerated cardiomyocyte senescence contributes to late-onset doxorubicin-induced cardiotoxicity. Am J Physiol Cell Physiol. 2020;318(2):C380.
dc.relation.references211. Bielak-Zmijewska A, Wnuk M, Przybylska D, Grabowska W, Lewinska A, Alster O, et al. A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta. Biogerontology. 2014 Feb;15(1):47–64.
dc.relation.references212. Danowski N, Manthey I, Jakob HG, Siffert W, Peters J, Frey UH. Decreased Expression of miR-133a but Not of miR-1 is Associated with Signs of Heart Failure in Patients Undergoing Coronary Bypass Surgery. Cardiology. 2013;
dc.relation.references213. Wang J, Bai J, Duan P, Wang H, Li Y, Zhu Q. Kir6.1 improves cardiac dysfunction in diabetic cardiomyopathy via the AKT‐FoxO1 signalling pathway. J Cell Mol Med. 2021 Apr 1;25(8):3935
dc.relation.references214. Duan P, Wang J, Li Y, Wei S, Su F, Zhang S, et al. Opening of mitoKATP improves cardiac function and inhibits apoptosis via the AKT-Foxo1 signaling pathway in diabetic cardiomyopathy. Int J Mol Med. 2018 Nov 1;42(5):2709–19.
dc.relation.references215. Piegari E, Cozzolino A, Ciuffreda LP, Cappetta D, De Angelis A, Urbanek K, et al. Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Scientific Reports 2020 10:1 [Internet]. 2020 Jul 23 [cited 2025 Feb 1];10(1):1–12
dc.relation.references216. Mitcheson JS, Hancox JC, Levi AJ. Cultured adult cardiac myocytes: Future applications, culture methods, morphological and electrophysiological properties. Cardiovasc Res. 1998 Aug 1;39(2):280–300.
dc.relation.references217. Jian Z, Chen YJ, Shimkunas R, Jian Y, Jaradeh M, Chavez K, et al. In Vivo Cannulation Methods for Cardiomyocytes Isolation from Heart Disease Models. PLoS One. 2016 Aug 8;11(8):e0160605.
dc.relation.references218. Spannbauer A, Traxler D, Zlabinger K, Gugerell A, Winkler J, Mester-Tonczar J, et al. Large Animal Models of Heart Failure With Reduced Ejection Fraction (HFrEF). Frontiers in Cardiovascular Medicine. 2019
dc.relation.references219. Christiansen S, Autschbach R. Doxorubicin in experimental and clinical heart failure. European Journal of Cardio-Thoracic Surgery. 2006 Oct 1;30(4):611–6.
dc.relation.references220. Engwall MJ, Everds N, Turk JR, Vargas HM. The Effects of Repeat-Dose Doxorubicin on Cardiovascular Functional Endpoints and Biomarkers in the Telemetry-Equipped Cynomolgus Monkey. Front Cardiovasc Med. 2021 Feb 23;8:587149.
dc.relation.references221. Piegari E, Cozzolino A, Ciuffreda LP, Cappetta D, De Angelis A, Urbanek K, et al. Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Scientific Reports 2020 10:1 [Internet]. 2020 Jul 23 [cited 2025 Feb 3];10(1):1–12
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsCanales KATPspa
dc.subject.decsKATP Channelseng
dc.subject.decsCardiotoxicidadspa
dc.subject.decsCardiotoxicityeng
dc.subject.decsMicroARNsspa
dc.subject.decsMicroRNAseng
dc.subject.decsMiocitos Cardíacosspa
dc.subject.decsMyocytes, Cardiaceng
dc.subject.proposalCardiomiocitosspa
dc.subject.proposalMicroRNAsspa
dc.subject.proposalKATPspa
dc.subject.proposalCardiomiocitosspa
dc.subject.proposalCardioprotecciónspa
dc.subject.proposalCardiotoxicidadspa
dc.subject.proposalDoxorubicineng
dc.subject.proposalMicroRNAseng
dc.subject.proposalKATPeng
dc.subject.proposalCardiomyocyteseng
dc.subject.proposalCardioprotectioneng
dc.titleEvaluación del efecto directo de la Doxorrubicina en cardiomiocitos ventriculares aislados de cobayo (Cavia porcellus) sobre la expresión del canal de potasio sensible a ATP (KATP) y de miRNAs que se asocien con su regulaciónspa
dc.title.translatedEvaluation of the direct effect of doxorubicin on isolated ventricular cardiomyocytes from Guinea Pig (Cavia porcellus) on the expression of the ATP-sensitive potassium channel (KATP) and miRNAs ociated with Its Regulationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameInstituto Nacional de Saludspa
oaire.fundernameMinicienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Doctoral YDR Publicada.pdf
Tamaño:
3.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: