Mitigación de desbalances de tensión en redes eléctricas de distribución usando sincro-convertidores como suministro de potencia de la generación distribuida

dc.contributor.advisorCandelo Becerra, John Edwin
dc.contributor.advisorPosada Contreras, Johnny
dc.contributor.authorQuintero Durán, Michell Josep
dc.contributor.cvlacQuintero Durán, Michell Josep [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001500105]spa
dc.contributor.googlescholarQuintero Durán, Michell Josep [https://scholar.google.com/citations?user=I7zEo64AAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidQuintero Durán, Michell Josep [0000-0003-1406-9888]spa
dc.contributor.researchgateQuintero Durán, Michell Josep [https://www.researchgate.net/profile/Michell-Quintero-Duran]spa
dc.contributor.researchgroupProcesamiento Digital de Señales Para Sistemas en Tiempo Realspa
dc.contributor.scopusQuintero Durán, Michell Josep [https://www.scopus.com/authid/detail.uri?authorId=57191275502]spa
dc.date.accessioned2023-03-16T13:51:39Z
dc.date.available2023-03-16T13:51:39Z
dc.date.issued2022-10-07
dc.descriptionilustraciones, diagramasspa
dc.description.abstractMediante esta tesis se desarrolla un método de control en cascada para la integración de generación distribuida a redes eléctricas, cuya tensión se encuentra desequilibrada. Estas redes son comunes en sistemas de distribución ya que, se suele encontrar desequilibrios de tensión causados por la presencia de cargas monofásicas y bifásicas, o generación monofásica fotovoltaica que, desequilibran el consumo de potencia en la red. Se propone un modelo modificado de Synchronverter (Sincro-convertidor) capaz de sincronizarse a una red desbalanceada, con el fin de entregar potencia activa y reactiva a la red, y dar soporte de tensión y frecuencia. Pasada la etapa de conexión del sincro-convertidor, se disminuye el porcentaje de desequilibrio por presencia de secuencia negativa en el punto común de conexión (PCC). Lo anterior se logra utilizando la descomposición en componentes simétricas en función del tiempo, con especial atención a las secuencias positiva y negativa. El control propuesto se enfoca en un control flexible de secuencias positiva y negativa, y entrega potencia en ambas secuencias con la finalidad de reducir la componente negativa en la tensión del PCC. Con esto se logra reducir el porcentaje de desequilibrio de tensión calculado a partir del estándar técnico IEEE 1159-2019. Las simulaciones se llevan a cabo en el Toolbox Simulink® de Matlab® versión 2022a [1], con un modelo de generador distribuido único conectado a una carga local y una red desbalanceada, representada por una fuente de tensión trifásica con diferentes valores de tensión en cada una de sus fases. Los resultados son satisfactorios, ya que se logra una disminución en el porcentaje de desbalance en el PCC. (Texto tomado de la fuente)spa
dc.description.abstractThrough this thesis, a cascaded control method is developed for the integration of distributed generation to electrical networks, where the voltage is unbalanced. These networks are common in distribution systems since voltage imbalances are usually found caused by the presence of single-phase and two-phase loads, single-phase photovoltaic generation, that unbalance the power consumption in the network. A modified model of the Synchronverter capable of synchronizing to an unbalanced network is proposed, to deliver active and reactive power to the network and provide voltage and frequency support. After the connection stage of the synchronverter, the unbalance percentage is reduced due to the presence of a negative sequence in the common connection point (PCC). This is achieved using time-symmetric component decomposition, with special attention to positive and negative sequences. The proposed control focuses on a flexible control of positive and negative sequences and delivers power in both sequences to reduce the negative component in the PCC voltage. With this, it is possible to reduce the percentage of voltage unbalance calculated from the technical standard IEEE 1159-2019. The simulations are carried out in the Matlab® Simulink® version 2022a [1] Toolbox with a single distributed generator model connected to a local load and an unbalanced network, represented by a three-phase voltage source with different voltage values in each of its phases. The results are satisfactory, since a decrease in the percentage of imbalance in the PCC is achieved.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaEnergías Alternativas y Desarrollo de Nuevos Procesosspa
dc.format.extentx, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83626
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.references“MathWorks anuncia la versión 2022a de MATLAB y Simulink - MATLAB & Simulink.” https://la.mathworks.com/company/newsroom/mathworks-introduces-release-2022a-of-matlab-and-simulink.html (accessed Mar. 12, 2023).spa
dc.relation.referencesNaciones Unidas, “El Acuerdo de París.” https://www.un.org/es/climatechange/paris-agreement (accessed Nov. 19, 2021).spa
dc.relation.referencesM. B. Mazari, A. H. Boudinar, and B. Mazari, “Effect of Open Circuit Fault on PMSM Drive Controlled by Sliding Mode Control and Feedback Linearization Using Time and Frequency Analysis,” International Review on Modelling and Simulations (IREMOS), vol. 11, no. 4, p. 235, Aug. 2018, doi: 10.15866/iremos.v11i4.14109.spa
dc.relation.referencesS. Farhat, R. Alaoui, A. Kahaji, and L. Bouhouch, “Wind Turbine MPPT Strategy with DFIG Vector Control,” International Review on Modelling and Simulations (IREMOS), vol. 11, no. 6, p. 406, Dec. 2018, doi: 10.15866/iremos.v11i6.16156.spa
dc.relation.referencesBloomberg, “La energía solar y eólica alcanzó el 67% de la capacidad nueva de energía eléctrica agregada a nivel mundial en 2019,” Bloomberg, 2020. https://www.bloomberg.com/latam/blog/la-energia-solar-y-eolica-alcanzo-el-67-de-la-capacidad-nueva-de-energia-electrica-agregada-a-nivel-mundial-en-2019/ (accessed Nov. 18, 2021).spa
dc.relation.referencesA. Yılmaz, A. Küçüker, G. Bayrak, D. Ertekin, M. Shafie-Khah, and J. M. Guerrero, “An improved automated PQD classification method for distributed generators with hybrid SVM-based approach using un-decimated wavelet transform,” International Journal of Electrical Power & Energy Systems, vol. 136, p. 107763, Mar. 2022, doi: 10.1016/j.ijepes.2021.107763.spa
dc.relation.referencesH. Yang, J. M. Guerrero, R. Zhao, and Z. Zeng, “Multi-functional distributed generation unit for power quality enhancement,” IET Power Electronics, vol. 8, no. 3, pp. 467–476, Mar. 2015, doi: 10.1049/iet-pel.2013.0954.spa
dc.relation.referencesJ. Caicedo, A. R. de Castro, B. Franca, and M. Aredes, “Resonant harmonic compensation for synchronverter, integrating wind and photovoltaic power generation into an electrical grid, case study: Nonlinear and unbalanced load,” in 2017 Brazilian Power Electronics Conference (COBEP), Nov. 2017, vol. 2018-Janua, pp. 1–6. doi: 10.1109/COBEP.2017.8257275.spa
dc.relation.referencesE. Molina, J. E. Candelo-Becerra, and F. E. Hoyos, “Control Strategy to Regulate Voltage and Share Reactive Power Using Variable Virtual Impedance for a Microgrid,” Applied Sciences, vol. 9, no. 22, p. 4876, Nov. 2019, doi: 10.3390/app9224876.spa
dc.relation.referencesY. A. Garces-Gomez, F. E. Hoyos, and J. E. Candelo-Becerra, “Classic Discrete Control Technique and 3D-SVPWM Applied to a Dual Unified Power Quality Conditioner,” Applied Sciences, vol. 9, no. 23, p. 5087, Nov. 2019, doi: 10.3390/app9235087.spa
dc.relation.referencesS. A. Pizarro Pérez, J. E. Candelo-Becerra, and F. E. Hoyos Velasco, “Optimal parameters of inverter-based microgrid to improve transient response,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, p. 637, Feb. 2020, doi: 10.11591/ijece.v10i1.pp637-650.spa
dc.relation.referencesV. P. Suppioni, A. P. Grilo, and J. C. Teixeira, “Improving network voltage unbalance levels by controlling DFIG wind turbine using a dynamic voltage restorer,” International Journal of Electrical Power & Energy Systems, vol. 96, no. October 2017, pp. 185–193, Mar. 2018, doi: 10.1016/j.ijepes.2017.10.002.spa
dc.relation.referencesA. Ranjbaran and M. Ebadian, “A power sharing scheme for voltage unbalance and harmonics compensation in an islanded microgrid,” Electric Power Systems Research, vol. 155, pp. 153–163, Feb. 2018, doi: 10.1016/j.epsr.2017.09.026.spa
dc.relation.referencesD. Pullaguram, S. Mishra, and N. Senroy, “Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2100, p. 20160308, Aug. 2017, doi: 10.1098/rsta.2016.0308.spa
dc.relation.referencesV. M. Mykhalskyi, V. M. Sobolev, V. V. Chopyk, S. Y. Polishchuk, and I. A. Shapoval, “Reduction of the input current harmonic content in matrix converters under unbalance of the input voltages and the load,” in 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), Apr. 2017, pp. 485–489. doi: 10.1109/ELNANO.2017.7939807.spa
dc.relation.referencesQ.-C. Zhong and G. Weiss, “Synchronverters: Inverters That Mimic Synchronous Generators,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259–1267, Apr. 2011, doi: 10.1109/TIE.2010.2048839.spa
dc.relation.referencesH. Bevrani, T. Ise, and Y. Miura, “Virtual synchronous generators: A survey and new perspectives,” International Journal of Electrical Power & Energy Systems, vol. 54, pp. 244–254, Jan. 2014, doi: 10.1016/j.ijepes.2013.07.009.spa
dc.relation.referencesL. Xiong et al., “Static Synchronous Generator Model: A New Perspective to Investigate Dynamic Characteristics and Stability Issues of Grid-Tied PWM Inverter,” IEEE Trans Power Electron, vol. 31, no. 9, pp. 6264–6280, Sep. 2016, doi: 10.1109/TPEL.2015.2498933.spa
dc.relation.referencesQ.-C. Zhong, “Virtual Synchronous Machines: A unified interface for grid integration,” IEEE Power Electronics Magazine, vol. 3, no. 4, pp. 18–27, Dec. 2016, doi: 10.1109/MPEL.2016.2614906.spa
dc.relation.referencesB. W. Franca, A. R. de Castro, and M. Aredes, “Wind and photovoltaic power generation integrated to power grid through dc link and synchronverter,” in 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Nov. 2015, pp. 1–6. doi: 10.1109/COBEP.2015.7420216.spa
dc.relation.referencesP. Piya and M. Karimi-Ghartemani, “A stability analysis and efficiency improvement of synchronverter,” in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2016, no. 1, pp. 3165–3171. doi: 10.1109/APEC.2016.7468317.spa
dc.relation.referencesS. Peyghami, P. Davari, H. Mokhtari, P. C. Loh, and F. Blaabjerg, “Synchronverter-Enabled DC Power Sharing Approach for LVDC Microgrids,” IEEE Trans Power Electron, vol. 32, no. 10, pp. 8089–8099, Oct. 2017, doi: 10.1109/TPEL.2016.2632441.spa
dc.relation.referencesW. Wu et al., “A Virtual Inertia Control Strategy for DC Microgrids Analogized With Virtual Synchronous Machines,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 6005–6016, Jul. 2017, doi: 10.1109/TIE.2016.2645898.spa
dc.relation.referencesQ. Zhong, Z. Ma, and Phi-Long Nguyen, “PWM-controlled rectifiers without the need of an extra synchronisation unit,” in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, Oct. 2012, pp. 691–695. doi: 10.1109/IECON.2012.6388668.spa
dc.relation.referencesQ.-C. Zhong and G. Weiss, “Synchronverters: Inverters That Mimic Synchronous Generators,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259–1267, Apr. 2011, doi: 10.1109/TIE.2010.2048839.spa
dc.relation.referencesT. Zheng, L. Chen, Y. Guo, and S. Mei, “Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions,” IET Generation, Transmission & Distribution, vol. 12, no. 7, pp. 1621–1630, Apr. 2018, doi: 10.1049/iet-gtd.2017.0523.spa
dc.relation.referencesF. Li, G. Liu, K. Zhu, and W. Wang, “An Improved Control Strategy of Virtual Synchronous Generator under Unbalanced Conditions,” in 2018 IEEE 4th Southern Power Electronics Conference (SPEC), Dec. 2018, pp. 1–6. doi: 10.1109/SPEC.2018.8636005.spa
dc.relation.referencesIEEE Std 1159-2019, “IEEE Recommended Practice for Monitoring Electric Power Quality,” 2019.spa
dc.relation.referencesM. Campbell and G. Arce, “Effect of Motor Voltage Unbalance on Motor Vibration: Test and Evaluation,” IEEE Trans Ind Appl, vol. 54, no. 1, pp. 905–911, Jan. 2018, doi: 10.1109/TIA.2017.2759085.spa
dc.relation.referencesN. Kelsey and J. Meckling, “Who wins in renewable energy? Evidence from Europe and the United States,” Energy Res Soc Sci, vol. 37, no. April 2017, pp. 65–73, Mar. 2018, doi: 10.1016/j.erss.2017.08.003.spa
dc.relation.referencesJ. J. Jamian, H. Mokhlis, M. W. Mustafa, M. N. Abdullah, and M. A. Baharudin, “Comparative learning global particle swarm optimization for optimal distributed generations’ output,” TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, vol. 22, no. 5, pp. 1323–1337, 2014, doi: 10.3906/elk-1212-173.spa
dc.relation.referencesH. R. Esmaeilian and R. Fadaeinedjad, “Energy Loss Minimization in Distribution Systems Utilizing an Enhanced Reconfiguration Method Integrating Distributed Generation,” IEEE Syst J, vol. 9, no. 4, pp. 1430–1439, Dec. 2015, doi: 10.1109/JSYST.2014.2341579.spa
dc.relation.referencesE. N. Azadani, S. Member, C. Canizares, and K. Bhattacharya, “Modeling and Stability Analysis of Distributed Generation,” IEEE PES General Meeting, no. July, pp. 1–8, 2012.spa
dc.relation.referencesV. C. do Nascimento, G. Lambert-Torres, C. I. de A. Costa, and L. E. Borges da Silva, “Control model for distributed generation and network automation for microgrids operation,” Electric Power Systems Research, vol. 127, pp. 151–159, Oct. 2015, doi: 10.1016/j.epsr.2015.05.025.spa
dc.relation.referencesG. Benysek, M. Kazmierkowski, J. Popczyk, and R. Strzelecki, “Power electronic systems as a crucial part of Smart Grid infrastructure - a survey,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 59, no. 4, Jan. 2011, doi: 10.2478/v10175-011-0058-2.spa
dc.relation.referencesQ. Zhong, “Power-Electronics-Enabled Autonomous Power Systems: Architecture and Technical Routes,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5907–5918, Jul. 2017, doi: 10.1109/TIE.2017.2677339.spa
dc.relation.referencesM. J. Quintero-Duran, J. E. Candelo-Becerra, and J. Posada, “Synchronizing a synchronverter to an unbalanced power grid using sequence component decomposition,” Nonlinear Engineering, vol. 11, no. 1, pp. 395–410, Aug. 2022, doi: 10.1515/nleng-2022-0043.spa
dc.relation.referencesG. C. Kryonidis, K.-N. D. Malamaki, J. M. Mauricio, and C. S. Demoulias, “A new perspective on the synchronverter model,” International Journal of Electrical Power & Energy Systems, vol. 140, no. January, p. 108072, Sep. 2022, doi: 10.1016/j.ijepes.2022.108072.spa
dc.relation.referencesK. Y. Yap, C. M. Beh, and C. R. Sarimuthu, “Fuzzy logic controller-based synchronverter in grid-connected solar power system with adaptive damping factor,” Chinese Journal of Electrical Engineering, vol. 7, no. 2, pp. 37–49, Jun. 2021, doi: 10.23919/CJEE.2021.000014.spa
dc.relation.referencesW. Gil-González, O. D. Montoya, A. Escobar-Mejía, and J. C. Hernández, “LQR-Based Adaptive Virtual Inertia for Grid Integration of Wind Energy Conversion System Based on Synchronverter Model,” Electronics (Basel), vol. 10, no. 9, p. 1022, Apr. 2021, doi: 10.3390/electronics10091022.spa
dc.relation.referencesS. Saadatmand, P. Shamsi, and M. Ferdowsi, “Adaptive critic design-based reinforcement learning approach in controlling virtual inertia-based grid-connected inverters,” International Journal of Electrical Power & Energy Systems, vol. 127, no. December 2020, p. 106657, May 2021, doi: 10.1016/j.ijepes.2020.106657.spa
dc.relation.referencesS. Saadatmand, P. Shamsi, and M. Ferdowsi, “Power and Frequency Regulation of Synchronverters Using a Model Free Neural Network-Based Predictive Controller,” IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 3662–3671, May 2021, doi: 10.1109/TIE.2020.2984419.spa
dc.relation.referencesK. Gunther and C. Sourkounis, “Active Damping Control for Variable-Speed Wind Turbines with VSM as Grid-Side Control,” in 2021 22nd IEEE International Conference on Industrial Technology (ICIT), Mar. 2021, vol. 2021-March, pp. 304–309. doi: 10.1109/ICIT46573.2021.9453518.spa
dc.relation.referencesK. Y. Yap, C. R. Sarimuthu, and J. M.-Y. Lim, “An Adaptive Synchronverter for Ensuring Fault Ride Through Capability of Grid-Connected Solar Power System,” J Phys Conf Ser, vol. 1828, no. 1, p. 012054, Feb. 2021, doi: 10.1088/1742-6596/1828/1/012054.spa
dc.relation.referencesA. Moulichon et al., “Observer-Based Current Controller for Virtual Synchronous Generator in Presence of Unknown and Unpredictable Loads,” IEEE Trans Power Electron, vol. 36, no. 2, pp. 1708–1716, Feb. 2021, doi: 10.1109/TPEL.2020.3010085.spa
dc.relation.referencesM. Phattanakorn and Y. Kumsuwan, “Multi-Function Algorithm of Virtual Synchronous Generator,” in 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Oct. 2021, pp. 824–829. doi: 10.23919/ICEMS52562.2021.9634334.spa
dc.relation.referencesF. Gonzalez-Longatt, J. L. Rueda, P. Palensky, H. R. Chamorro, and V. Sood, “Frequency Support provided by Inverted Based-Generation using Grid-Forming Controllers: A Comparison during Islanded Operation,” in 2021 IEEE Electrical Power and Energy Conference (EPEC), Oct. 2021, pp. 113–118. doi: 10.1109/EPEC52095.2021.9621418.spa
dc.relation.referencesS. Gadgune and P. M. Joshi, “Performance Improvement of 3 Phase Inverter Operated as Virtual Synchronous Generator with Closed Loop Active Power Control,” in 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Feb. 2021, pp. 1–5. doi: 10.1109/ICAECT49130.2021.9392597.spa
dc.relation.referencesL. Vetoshkin and Z. Muller, “A supervisory MPC for synchronverter,” in 2020 21st International Scientific Conference on Electric Power Engineering (EPE), Oct. 2020, no. 2, pp. 1–6. doi: 10.1109/EPE51172.2020.9269232.spa
dc.relation.referencesA. Moulichon et al., “State observer to improve the VSG control stability,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2020, vol. 2020-Octob, pp. 1698–1703. doi: 10.1109/IECON43393.2020.9254788.spa
dc.relation.referencesJ. M. Ramirez, E. T. Montalvo, and C. I. Nuño, “Modelling, synchronisation, and implementation of the virtual synchronous generator: a study of its reactive power handling,” Electrical Engineering, vol. 102, no. 3, pp. 1605–1619, Sep. 2020, doi: 10.1007/s00202-020-00980-1.spa
dc.relation.referencesA. Eisapour-Moarref, M. Kalantar, and M. Esmaili, “Control strategy resilient to unbalanced faults for interlinking converters in hybrid microgrids,” International Journal of Electrical Power & Energy Systems, vol. 119, no. September 2019, p. 105927, Jul. 2020, doi: 10.1016/j.ijepes.2020.105927.spa
dc.relation.referencesR. K. Panda, A. Mohapatra, and S. C. Srivastava, “Enhancing inertia of solar photovoltaic‐based microgrid through notch filter‐based PLL in SRF control,” IET Generation, Transmission & Distribution, vol. 14, no. 3, pp. 379–388, Feb. 2020, doi: 10.1049/iet-gtd.2018.7058.spa
dc.relation.referencesX. Hou, Y. Sun, X. Zhang, J. Lu, P. Wang, and J. M. Guerrero, “Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia,” IEEE Trans Power Electron, vol. 35, no. 2, pp. 1589–1602, Feb. 2020, doi: 10.1109/TPEL.2019.2923734.spa
dc.relation.referencesK. R. Vasudevan, V. K. Ramachandaramurthy, T. S. Babu, and A. Pouryekta, “Synchronverter: A Comprehensive Review of Modifications, Stability Assessment, Applications and Future Perspectives,” IEEE Access, vol. 8, pp. 131565–131589, 2020, doi: 10.1109/ACCESS.2020.3010001.spa
dc.relation.referencesK. Y. Yap, C. R. Sarimuthu, and J. M.-Y. Lim, “Grid Integration of Solar Photovoltaic System Using Machine Learning-Based Virtual Inertia Synthetization in Synchronverter,” IEEE Access, vol. 8, pp. 49961–49976, 2020, doi: 10.1109/ACCESS.2020.2980187.spa
dc.relation.referencesM. Ramezani, S. Li, F. Musavi, and S. Golestan, “Seamless Transition of Synchronous Inverters Using Synchronizing Virtual Torque and Flux Linkage,” IEEE Transactions on Industrial Electronics, vol. 67, no. 1, pp. 319–328, Jan. 2020, doi: 10.1109/TIE.2019.2892697.spa
dc.relation.referencesK. Y. Yap, C. R. Sarimuthu, and J. M.-Y. Lim, “Virtual Inertia-Based Inverters for Mitigating Frequency Instability in Grid-Connected Renewable Energy System: A Review,” Applied Sciences, vol. 9, no. 24, p. 5300, Dec. 2019, doi: 10.3390/app9245300.spa
dc.relation.referencesS. Shivratri, Z. Kustanovich, G. Weiss, and B. Shani, “Virtual synchronous machines with fast current loop,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 12422–12428, 2020, doi: 10.1016/j.ifacol.2020.12.1304.spa
dc.relation.referencesK. S. Raja Shekhar and M. A. Chaudhari, “Operation and control of Synchronverter technique in grid connected and intentional islanding modes for AC micro grids,” in 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Jan. 2020, pp. 426–431. doi: 10.1109/ICPC2T48082.2020.9071518.spa
dc.relation.referencesJ. Palacios and J. Posada, “Voltage Converters in Parallel Working as Virtual Synchronous Generators,” in 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), Dec. 2019, pp. 1–6. doi: 10.1109/FISECIGRE48012.2019.8984990.spa
dc.relation.referencesR. Rosso, S. Engelken, and M. Liserre, “Robust Stability Analysis of Synchronverters Operating in Parallel,” IEEE Trans Power Electron, vol. 34, no. 11, pp. 11309–11319, Nov. 2019, doi: 10.1109/TPEL.2019.2896707.spa
dc.relation.referencesJ. Roldan-Perez, A. Rodriguez-Cabero, and M. Prodanovic, “Design and Analysis of Virtual Synchronous Machines in Inductive and Resistive Weak Grids,” IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 1818–1828, Dec. 2019, doi: 10.1109/TEC.2019.2930643.spa
dc.relation.referencesL. He, Z. Shuai, X. Zhang, X. Liu, Z. Li, and Z. J. Shen, “Transient Characteristics of Synchronverters Subjected to Asymmetric Faults,” IEEE Transactions on Power Delivery, vol. 34, no. 3, pp. 1171–1183, Jun. 2019, doi: 10.1109/TPWRD.2019.2906766.spa
dc.relation.referencesQ.-C. Zhong, G. C. Konstantopoulos, B. Ren, and M. Krstic, “Improved Synchronverters with Bounded Frequency and Voltage for Smart Grid Integration,” IEEE Trans Smart Grid, vol. 9, no. 2, pp. 786–796, Mar. 2018, doi: 10.1109/TSG.2016.2565663.spa
dc.relation.referencesA. Moulichon, L. Garbuio, V. Debusschere, M. A. Rahmani, and N. Hadj-Said, “A Simplified Synchronous Machine Model for Virtual Synchronous Generator Implementation,” in 2019 IEEE Power & Energy Society General Meeting (PESGM), Aug. 2019, vol. 2019-Augus, pp. 1–5. doi: 10.1109/PESGM40551.2019.8973392.spa
dc.relation.referencesZ. Liu and Z. Zhang, “Probabilistic-Based Transient Stability Assessment of Power Systems with Virtual Synchronous Machines,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Jun. 2019, vol. 2019-June, no. 978, pp. 2117–2122. doi: 10.1109/ISIE.2019.8781299.spa
dc.relation.referencesS. Wang, R. Qi, and Y. Li, “Fuzzy Control Scheme of Virtual Inertia for Synchronverter in Micro-Grid,” in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Oct. 2018, pp. 2028–2032. doi: 10.23919/ICEMS.2018.8549309.spa
dc.relation.referencesY. Li, R. Qi, and S. Wang, “New Control Schemes of Output Power Decoupling Based on Synchronverter,” in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Oct. 2018, pp. 1980–1985. doi: 10.23919/ICEMS.2018.8549241.spa
dc.relation.referencesA. Sonawane and A. Umarikar, “Small-Signal Stability Analysis of PV-Based Synchronverter Including PV Operating Modes and DC-Link Voltage Controller,” IEEE Transactions on Industrial Electronics, vol. 69, no. 8, pp. 8028–8039, Aug. 2022, doi: 10.1109/TIE.2021.3109506.spa
dc.relation.referencesA. J. Sonawane and A. C. Umarikar, “Three-Phase Single-Stage Photovoltaic System With Synchronverter Control: Power System Simulation Studies,” IEEE Access, vol. 10, pp. 23408–23424, 2022, doi: 10.1109/ACCESS.2022.3153505.spa
dc.relation.referencesK. Y. Yap, J. M.-Y. Lim, and C. R. Sarimuthu, “A novel adaptive virtual inertia control strategy under varying irradiance and temperature in grid-connected solar power system,” International Journal of Electrical Power & Energy Systems, vol. 132, no. March, p. 107180, Nov. 2021, doi: 10.1016/j.ijepes.2021.107180.spa
dc.relation.referencesE. T. Montalvo, V. M. Sanchez, and J. M. Ramirez, “Synchronverter assessment for the frequency regulation of control areas encompassing Renewable Distributed Generation,” Int J Hydrogen Energy, vol. 46, no. 51, pp. 26138–26151, Jul. 2021, doi: 10.1016/j.ijhydene.2021.03.196.spa
dc.relation.referencesW. Schulze, M. Zajadatz, M. Suriyah, and T. Leibfried, “Emulation of grid-forming inverters using real-time PC and 4-quadrant voltage amplifier,” Forsch Ingenieurwes, vol. 85, no. 2, pp. 425–430, Jun. 2021, doi: 10.1007/s10010-021-00484-9.spa
dc.relation.referencesY. Zhang, Q. Sun, J. Zhou, L. Li, P. Wang, and J. M. Guerrero, “Coordinated Control of Networked AC/DC Microgrids With Adaptive Virtual Inertia and Governor-Gain for Stability Enhancement,” IEEE Transactions on Energy Conversion, vol. 36, no. 1, pp. 95–110, Mar. 2021, doi: 10.1109/TEC.2020.3011223.spa
dc.relation.referencesH. R and M. K. Mishra, “Analysis and design of gradient descent based pre‐synchronization control for synchronverter,” IET Renewable Power Generation, vol. 15, no. 2, pp. 297–312, Feb. 2021, doi: 10.1049/rpg2.12024.spa
dc.relation.referencesP. R. v Marthi, S. Debnath, and M. L. Crow, “Synchronverter-based Control of Multi-Port Autonomous Reconfigurable Solar Plants (MARS),” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Oct. 2020, pp. 5019–5026. doi: 10.1109/ECCE44975.2020.9236019.spa
dc.relation.referencesM. Dokus and A. Mertens, “Sequence Impedance Characteristics of Grid-Feeding Converters,” in 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nov. 2020, no. 359921210, pp. 1216–1223. doi: 10.1109/IPEMC-ECCEAsia48364.2020.9367825.spa
dc.relation.referencesS. Li, S. Wu, S. Xiang, Y. Zhang, J. M. Guerrero, and J. C. Vasquez, “Research on Synchronverter-Based Regenerative Braking Energy Feedback System of Urban Rail Transit,” Energies (Basel), vol. 13, no. 17, p. 4418, Aug. 2020, doi: 10.3390/en13174418.spa
dc.relation.referencesR. Rosso, S. Engelken, and M. Liserre, “Robust Stability Investigation of the Interactions Among Grid-Forming and Grid-Following Converters,” IEEE J Emerg Sel Top Power Electron, vol. 8, no. 2, pp. 991–1003, Jun. 2020, doi: 10.1109/JESTPE.2019.2951091.spa
dc.relation.referencesZ. Shuai, W. Huang, Z. J. Shen, A. Luo, and Z. Tian, “Active Power Oscillation and Suppression Techniques Between Two Parallel Synchronverters During Load Fluctuations,” IEEE Trans Power Electron, vol. 35, no. 4, pp. 4127–4142, Apr. 2020, doi: 10.1109/TPEL.2019.2933628.spa
dc.relation.referencesM. J. Y. Liaw and C. R. Sarimuthu, “Development of a synchronverter for a grid connected photovoltaic system,” IOP Conf Ser Mater Sci Eng, vol. 767, no. 1, p. 012046, Feb. 2020, doi: 10.1088/1757-899X/767/1/012046.spa
dc.relation.referencesS. Dong, J. Jiang, and Y. C. Chen, “Analysis of Synchronverter Self-Synchronization Dynamics to Facilitate Parameter Tuning,” IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 11–23, Mar. 2020, doi: 10.1109/TEC.2019.2945958.spa
dc.relation.referencesA. Rodriguez-Cabero, J. Roldan-Perez, and M. Prodanovic, “Virtual Impedance Design Considerations for Virtual Synchronous Machines in Weak Grids,” IEEE J Emerg Sel Top Power Electron, vol. 8, no. 2, pp. 1477–1489, Jun. 2020, doi: 10.1109/JESTPE.2019.2912071.spa
dc.relation.referencesR. K. Sarojini, K. Palanisamy, P. Sanjeevikumar, and J. B. Nielsen, “Inertia emulation control technique based frequency control of grid‐connected single‐phase rooftop photovoltaic system with battery and supercapacitor,” IET Renewable Power Generation, vol. 14, no. 7, pp. 1156–1163, May 2020, doi: 10.1049/iet-rpg.2019.0873.spa
dc.relation.referencesR. Ghosh, N. R. Tummuru, B. S. Rajpurohit, and A. Monti, “Virtual Inertia from Renewable Energy Sources: Mathematical Representation and Control Strategy,” in 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Jan. 2020, pp. 1–6. doi: 10.1109/PESGRE45664.2020.9070733.spa
dc.relation.referencesR. v. Ferreira, S. M. Silva, H. M. A. Antunes, and G. Venkataramanan, “Dynamic Analysis of Grid-Connected Droop-Controlled Converters and Synchronverters,” Journal of Control, Automation and Electrical Systems, vol. 30, no. 5, pp. 741–753, Oct. 2019, doi: 10.1007/s40313-019-00482-x.spa
dc.relation.referencesR. Rosso, S. Engelken, and M. Liserre, “Analysis of the Parallel Operation Between Synchronverters and PLL-Based Converters,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2019, pp. 2583–2590. doi: 10.1109/ECCE.2019.8912996.spa
dc.relation.referencesH. Li, X. Zhang, T. Shao, and T. Q. Zheng, “Flexible Inertia Optimization for Single-Phase Voltage Source Inverter Based on Hold Filter,” IEEE J Emerg Sel Top Power Electron, vol. 7, no. 2, pp. 1300–1310, Jun. 2019, doi: 10.1109/JESTPE.2018.2865214.spa
dc.relation.referencesJ. Roldan-Perez, A. Rodriguez-Cabero, and M. Prodanovic, “Harmonic Virtual Impedance Design for Parallel-Connected Grid-Tied Synchronverters,” IEEE J Emerg Sel Top Power Electron, vol. 7, no. 1, pp. 493–503, Mar. 2019, doi: 10.1109/JESTPE.2018.2828338.spa
dc.relation.referencesT. Younis, M. Ismeil, E. K. Hussain, and M. Orabi, “Improved single‐phase self‐synchronised synchronverter with enhanced dynamics and current limitation capability,” IET Power Electronics, vol. 12, no. 2, pp. 337–344, Feb. 2019, doi: 10.1049/iet-pel.2018.5582.spa
dc.relation.referencesT. Shao, T. Q. Zheng, H. Li, and X. Zhang, “Parameter design and hot seamless transfer of single-phase synchronverter,” Electric Power Systems Research, vol. 160, pp. 63–70, Jul. 2018, doi: 10.1016/j.epsr.2018.02.006.spa
dc.relation.referencesV. Natarajan and G. Weiss, “Almost global asymptotic stability of a grid-connected synchronous generator,” Mathematics of Control, Signals, and Systems, vol. 30, no. 2, p. 10, Jun. 2018, doi: 10.1007/s00498-018-0216-2.spa
dc.relation.referencesA. R. Brahma, S. Kumaravel, V. Thomas, and S. Ashok, “Impact of System Parameters on the Performance of Synchronverter,” in 2019 IEEE Region 10 Symposium (TENSYMP), Jun. 2019, vol. 7, pp. 120–125. doi: 10.1109/TENSYMP46218.2019.8971384.spa
dc.relation.referencesY. Zhang, S. Wu, P. Yang, S. Xiang, S. Li, and S. He, “Research on Parallel Operation of Virtual Synchronous Generators in Microgrid,” in 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Jun. 2019, pp. 1659–1664. doi: 10.1109/ICIEA.2019.8833673.spa
dc.relation.referencesL. He, W. Huang, Z. Shuai, and Z. J. Shen, “An asymmetrical fault current calculation method of synchronverter,” in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2019, vol. 2019-March, no. 2, pp. 1805–1809. doi: 10.1109/APEC.2019.8721858.spa
dc.relation.referencesM. D. Trujillo, S. Mendez, G. Ramos, J. Camarillo-Penaranda, and E. Jurado, “Real-time Simulation of Synchronverter Connected to the Main Grid,” in 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), May 2019, pp. 1–7. doi: 10.1109/PEPQA.2019.8851569.spa
dc.relation.referencesZ. Kustanovich and G. Weiss, “Synchronverter based photovoltaic inverter,” in 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE), Dec. 2018, pp. 1–5. doi: 10.1109/ICSEE.2018.8646184.spa
dc.relation.referencesS. Kumaravel, V. Thomas, T. Vijay Kumar, and S. Ashok, “Development of the synchronverter for green energy integration,” in Distributed Energy Resources in Microgrids, Elsevier, 2019, pp. 343–356. doi: 10.1016/B978-0-12-817774-7.00013-2.spa
dc.relation.referencesA. Chowdhury, M. S. Alam, S. Dey, and A. Ayman, “Design of a Compact 600VA Sinusoidal Inverter with Battery Storage System,” in 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), Oct. 2018, no. October, pp. 13–18. doi: 10.1109/ICISET.2018.8745604.spa
dc.relation.referencesD. Barbosa, J. Ramos, J. Rodrigues, A. Lopes, and R. Esteves Araujo, “A Practical Comparison of Two Algorithms for Inverter Control with Virtual Inertia Emulation,” in 2018 Power Systems Computation Conference (PSCC), Jun. 2018, pp. 1–7. doi: 10.23919/PSCC.2018.8450585.spa
dc.relation.referencesJ. Roldan-Perez, M. Prodanovic, A. Rodriguez-Cabero, J. M. Guerrero, and A. Garcia-Cerrada, “Finite-gain-current repetitive controller for synchronverters with harmonic-sharing capabilities,” in 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), May 2018, vol. 2018-May, pp. 1–6. doi: 10.1109/ICHQP.2018.8378881.spa
dc.relation.referencesT. Younis, M. Ismeil, M. Orabi, and E. K. Hussain, “A single-phase self-synchronized synchronverter with bounded droop characteristics,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2018, vol. 2018-March, pp. 1624–1629. doi: 10.1109/APEC.2018.8341234.spa
dc.relation.referencesT. V. Kumar, V. Thomas, S. Kumaravel, and S. Ashok, “Performance of virtual synchronous machine in autonomous mode of operation,” in 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), Feb. 2018, vol. 2018-Janua, pp. 310–314. doi: 10.1109/ICREGA.2018.8337612.spa
dc.relation.referencesK. R. Vasudevan, V. K. Ramachandaramurthy, G. Venugopal, J. M. Guerrero, J. B. Ekanayake, and S. K. Tiong, “Variable-Speed PICO Hydel Energy Storage With Synchronverter Control to Emulate Virtual Inertia in Autonomous Microgrids,” IEEE Syst J, vol. 16, no. 1, pp. 452–463, Mar. 2022, doi: 10.1109/JSYST.2021.3053358.spa
dc.relation.referencesK. R. Vasudevan, V. K. Ramachandaramurthy, G. Venugopal, and J. M. Guerrero, “Hybridization of battery with pico hydel for frequency regulation of microgrids using synchronverter control,” IET Renewable Power Generation, vol. 16, no. 2, pp. 274–286, Feb. 2022, doi: 10.1049/rpg2.12300.spa
dc.relation.referencesG. P. da Silva Junior, L. S. Barros, and C. M. V. Barros, “Synchronverter coupled to a lithium-ion bank for grid frequency and voltage supports and controlled charge-discharge,” Electric Power Systems Research, vol. 197, p. 107352, Aug. 2021, doi: 10.1016/j.epsr.2021.107352.spa
dc.relation.referencesJ. Chen, M. Liu, R. Guo, N. Zhao, F. Milano, and T. O’Donnell, “Co-ordinated grid forming control of AC-side-connected energy storage systems for converter-interfaced generation,” International Journal of Electrical Power & Energy Systems, vol. 133, no. May, p. 107201, Dec. 2021, doi: 10.1016/j.ijepes.2021.107201.spa
dc.relation.referencesS. Yari and M. Khatibi, “Damping Improvement of Inter-Area Oscillations Using Large-Scale Wind Farms,” in 7th Iran Wind Energy Conference (IWEC2021), May 2021, pp. 1–5. doi: 10.1109/IWEC52400.2021.9467027.spa
dc.relation.referencesH. Høstmark and M. Amin, “Small‐signal modeling and tuning of Synchronverter‐based wind energy conversion systems,” International Transactions on Electrical Energy Systems, vol. 31, no. 5, pp. 1–21, May 2021, doi: 10.1002/2050-7038.12848.spa
dc.relation.referencesP. R. v Marthi, S. Debnath, Q. Xia, and M. L. Crow, “Model Based Predictive Control for Frequency Support in Multi-port Autonomous Reconfigurable Solar Plants,” in 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Feb. 2021, pp. 1–5. doi: 10.1109/ISGT49243.2021.9372172.spa
dc.relation.referencesM. A. Kanakkayil, K. S. P. Kiranmai, and H. Shareef, “Synchronous Machine Emulation of VSC for Interconnection of Renewable Energy Sources through HVDC Transmission,” in 2021 6th International Conference on Renewable Energy: Generation and Applications (ICREGA), Feb. 2021, pp. 131–136. doi: 10.1109/ICREGA50506.2021.9388276.spa
dc.relation.referencesN. Sharma, O. N. Buwa, and M. P. Thakre, “Dynamic Phasor Modeling of Single Phase Roof Top PV with Synchronverter Control,” in 2020 Third International Conference on Advances in Electronics, Computers and Communications (ICAECC), Dec. 2020, no. 1, pp. 1–6. doi: 10.1109/ICAECC50550.2020.9339528.spa
dc.relation.referencesN. Sharma, O. N. Buwa, and M. P. Thakre, “Transient Response Analysis of a Single Phase Roof Top PV With Synchronverter Control,” in 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Dec. 2020, pp. 1–6. doi: 10.1109/ICPECTS49113.2020.9337010.spa
dc.relation.referencesR. Perveen, A. Hassan, and M. Awais, “A synchronverter‐based static synchronous compensator approach to compensate nonlinear loads in wind integrated power system,” International Transactions on Electrical Energy Systems, vol. 30, no. 9, pp. 1–15, Sep. 2020, doi: 10.1002/2050-7038.12504.spa
dc.relation.referencesW. Yan, L. Cheng, S. Yan, W. Gao, and D. W. Gao, “Enabling and Evaluation of Inertial Control for PMSG-WTG Using Synchronverter With Multiple Virtual Rotating Masses in Microgrid,” IEEE Trans Sustain Energy, vol. 11, no. 2, pp. 1078–1088, Apr. 2020, doi: 10.1109/TSTE.2019.2918744.spa
dc.relation.referencesK. Gunther and C. Sourkounis, “Investigation of Virtual Synchronous Machine Control for the Grid-Side Converter of Wind Turbines with Permanently Excited Synchronous Generator,” in IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2019, vol. 2019-Octob, pp. 2395–2401. doi: 10.1109/IECON.2019.8926648.spa
dc.relation.referencesI. Karray, K. ben Kilani, and M. Elleuch, “Advanced Controls for Wind Power Plant Ancillary Services,” in Lecture Notes in Electrical Engineering, vol. 522, Springer International Publishing, 2019, pp. 277–292. doi: 10.1007/978-3-319-97816-1_21.spa
dc.relation.referencesN. R. Nair and Dr. P. Kanakasabapathy, “A Three Phase Grid Connected SPV System using Synchronverter,” in 2018 8th IEEE India International Conference on Power Electronics (IICPE), Dec. 2018, vol. 2018-Decem, pp. 1–6. doi: 10.1109/IICPE.2018.8709501.spa
dc.relation.referencesH. Ebrahimi, A. Yazdaninejadi, and S. Golshannavaz, “Transient stability enhancement in multiple‐microgrid networks by cloud energy storage system alongside considering protection system limitations,” IET Generation, Transmission & Distribution, no. April, pp. 1–11, Jul. 2022, doi: 10.1049/gtd2.12539.spa
dc.relation.referencesP. Lorenzetti, Z. Kustanovich, S. Shivratri, and G. Weiss, “The Equilibrium Points and Stability of Grid-Connected Synchronverters,” IEEE Transactions on Power Systems, vol. 37, no. 2, pp. 1184–1197, Mar. 2022, doi: 10.1109/TPWRS.2021.3097954.spa
dc.relation.referencesB. W. Franca, M. Aredes, L. F. da Silva, G. F. Gontijo, T. C. Tricarico, and J. Posada, “An Enhanced Shunt Active Filter Based on Synchronverter Concept,” IEEE J Emerg Sel Top Power Electron, vol. 10, no. 1, pp. 494–505, Feb. 2022, doi: 10.1109/JESTPE.2021.3103836.spa
dc.relation.referencesF. Gonzalez-Longatt, J. L. Rueda, P. Palensky, H. R. Chamorro, and K. Abdellah, “Comparative Performance of Inverted-Based Generation using Synchonverter during Transient Stability Conditions,” in 2022 5th International Conference on Power Electronics and their Applications (ICPEA), Mar. 2022, no. March, pp. 1–7. doi: 10.1109/ICPEA51060.2022.9791140.spa
dc.relation.referencesR. Xu, S. Wu, S. Xiang, Y. Zhou, B. Xiang, and K. Huang, “An Optimization Method of Virtual Synchronous Generators Parameter Design Based on Power Equivalent Model,” in 2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), Apr. 2022, pp. 663–669. doi: 10.1109/CEEPE55110.2022.9783419.spa
dc.relation.referencesC. A. Busada, S. Gomez Jorge, and J. A. Solsona, “Feedback Linearization of a grid-tied Synchronverter,” IEEE Transactions on Industrial Electronics, vol. 0046, no. c, pp. 1–1, 2022, doi: 10.1109/TIE.2022.3148747.spa
dc.relation.referencesP. Lorenzetti and G. Weiss, “Saturating PI control of stable nonlinear systems using singular perturbations,” IEEE Trans Automat Contr, vol. XX, no. XX, pp. 1–1, 2022, doi: 10.1109/TAC.2022.3147167.spa
dc.relation.referencesK. R. Kim, S. Lee, J.-P. Lee, and J. Kang, “An Enhanced Control Strategy for Mitigation of State-Transition Oscillation Phenomena in Grid-Forming Self-Synchronized Converter System with Islanded Power System,” Energies (Basel), vol. 14, no. 24, p. 8453, Dec. 2021, doi: 10.3390/en14248453.spa
dc.relation.referencesJ. B. B. Hansen, S. T. Osterfelt, and P. J. Randewijk, “The Use of Synchronverters for Fast Frequency Response and Automatic Voltage Regulation in Low Inertia Islanded Power Networks,” in 2021 56th International Universities Power Engineering Conference (UPEC), Aug. 2021, pp. 1–6. doi: 10.1109/UPEC50034.2021.9548221.spa
dc.relation.referencesL. Vetoshkin and Z. Müller, “A comparative analysis of a power system stability with virtual inertia,” Energies (Basel), vol. 14, no. 11, 2021, doi: 10.3390/en14113277.spa
dc.relation.referencesK. S. Skinder, T. Kerdphol, Y. Mitani, and Di. Turschner, “Frequency Stability Assessment of Multiple Virtual Synchronous Generators for Interconnected Power System,” IEEE Trans Ind Appl, vol. 58, no. 1, pp. 91–101, Jan. 2022, doi: 10.1109/TIA.2021.3121219.spa
dc.relation.referencesJ. Liu, Y. Miura, H. Bevrani, and T. Ise, “A Unified Modeling Method of Virtual Synchronous Generator for Multi-Operation-Mode Analyses,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 2, pp. 2394–2409, Apr. 2021, doi: 10.1109/JESTPE.2020.2970025.spa
dc.relation.referencesR. Hariharan and M. K. Mishra, “Analysis of Synchronverter Control with Virtual Impedance During Grid Voltage Variations,” in 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control (STPEC), Dec. 2021, pp. 1–6. doi: 10.1109/STPEC52385.2021.9718633.spa
dc.relation.referencesQ. Zheng and F. Gao, “An Enhanced Control Strategy of Bidirectional Interlinking Converters in a Hybrid AC/DC Microgrid,” in 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Oct. 2021, pp. 1087–1094. doi: 10.1109/ECCE47101.2021.9595550.spa
dc.relation.referencesZ. Kustanovich, F. Reissner, S. Shivratri, and G. Weiss, “The Sensitivity of Grid-Connected Synchronverters With Respect to Measurement Errors,” IEEE Access, vol. 9, pp. 118985–118995, 2021, doi: 10.1109/ACCESS.2021.3107345.spa
dc.relation.referencesL. Vetoshkin and Z. Muller, “Dynamic Stability Improvement of Power System by Means of STATCOM With Virtual Inertia,” IEEE Access, vol. 9, pp. 116105–116114, 2021, doi: 10.1109/ACCESS.2021.3106236.spa
dc.relation.referencesL. Vetoshkin and Z. Muller, “A comparative study of synchronverter stability,” in 2020 21st International Scientific Conference on Electric Power Engineering (EPE), Oct. 2020, pp. 1–6. doi: 10.1109/EPE51172.2020.9269194.spa
dc.relation.referencesM. A. Elshenawy, S. M. Abdelkader, A. A. Amin, and S. A. Farghal, “Improved plug–play SV with virtual inertia for enhancing the stability of high RES‐penetrated grids,” IET Smart Grid, vol. 2, no. 4, pp. 571–580, Dec. 2019, doi: 10.1049/iet-stg.2018.0214.spa
dc.relation.referencesE. Unamuno, J. A. Suul, M. Molinas, and J. A. Barrena, “Comparative Eigenvalue Analysis of Synchronous Machine Emulations and Synchronous Machines,” in IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2019, vol. 2019-Octob, pp. 3863–3870. doi: 10.1109/IECON.2019.8927826.spa
dc.relation.referencesR. Rosso, J. Cassoli, G. Buticchi, S. Engelken, and M. Liserre, “Robust Stability Analysis of LCL Filter Based Synchronverter Under Different Grid Conditions,” IEEE Trans Power Electron, vol. 34, no. 6, pp. 5842–5853, Jun. 2019, doi: 10.1109/TPEL.2018.2867040.spa
dc.relation.referencesS. Dong and Y. C. Chen, “A Method to Directly Compute Synchronverter Parameters for Desired Dynamic Response,” IEEE Transactions on Energy Conversion, vol. 33, no. 2, pp. 814–825, Jun. 2018, doi: 10.1109/TEC.2017.2771401.spa
dc.relation.referencesD. Deepak, D. Raisz, A. Musa, F. Ponci, and A. Monti, “Inertial Control Applied to Synchronverters to Achieve Linear Swing Dynamics,” in 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM), Jun. 2019, no. 727481, pp. 1–6. doi: 10.1109/PQ.2019.8818273.spa
dc.relation.referencesR. Rosso, S. Engelken, and M. Liserre, “Analysis of the Behavior of Synchronverters Operating in Parallel by Means of Component Connection Method (CCM),” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Sep. 2018, no. Ccm, pp. 2228–2235. doi: 10.1109/ECCE.2018.8558426.spa
dc.relation.referencesP. T. Lewis and B. M. Grainger, “Electro-Thermal Transient Performance Assessment of SiC Based Distributed Generation Inverters when Governed by Virtual Synchronous Machine Control or Conventional dq Control,” in 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Jun. 2018, pp. 1–6. doi: 10.1109/PEDG.2018.8447575.spa
dc.relation.referencesM. Blau and G. Weiss, “Synchronverters used for damping inter-area oscillations in two-area power systems,” Renewable Energy and Power Quality Journal, vol. 1, no. 16, pp. 45–50, Apr. 2018, doi: 10.24084/repqj16.209.spa
dc.relation.referencesS. Dong and C. Chen, “Analysis of Feasible Synchronverter Pole-Placement Region to Facilitate Parameter Tuning,” IEEE Transactions on Energy Conversion, vol. 36, no. 4, pp. 2782–2793, Dec. 2021, doi: 10.1109/TEC.2021.3068758.spa
dc.relation.referencesV. R. Chowdhury and D. Divan, “Lyapunov energy function based direct power control of synchronverters under unbalanced grid voltage conditions,” in 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Oct. 2021, pp. 992–999. doi: 10.1109/ECCE47101.2021.9595371.spa
dc.relation.referencesA. Moulichon, V. Debusschere, L. Garbuio, M. A. Rahmani, M. Alamir, and N. Hadjsaid, “Standardization tests for the industrialization of grid-friendly Virtual Synchronous Generators,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 68, no. 4, pp. 679–688, 2020, doi: 10.24425/bpasts.2020.134181.spa
dc.relation.referencesI. Karray, R. Aouini, K. ben Kilani, M. Elleuch, and T. Tran Quoc, “Advanced Controls of HVDC Interconnection for Ancillary Services Support,” in 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), Jul. 2020, pp. 59–64. doi: 10.1109/SSD49366.2020.9364170.spa
dc.relation.referencesC. A. Busada, S. G. Jorge, and J. A. Solsona, “Output Admittance Synthesizer for Synchronverters,” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4320–4328, May 2022, doi: 10.1109/TIE.2021.3082069.spa
dc.relation.referencesR. Hariharan and M. K. Mishra, “An Improved Synchronverter Control for DERs Under Grid Voltage Variations,” in 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control (STPEC), Dec. 2021, pp. 1–6. doi: 10.1109/STPEC52385.2021.9718650.spa
dc.relation.referencesA. TEBIB and M. BOUDOUR, “Optimal Design of Synchronverter Virtual Capacitor to Achieve Capacitive Output Impedance,” in 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Oct. 2018, no. 1, pp. 1–4. doi: 10.1109/CISTEM.2018.8613418.spa
dc.relation.referencesS. Dong and Y. C. Chen, “A Fast Self-synchronizing Synchronverter Design with Easily Tuneable Parameters,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), Aug. 2018, vol. 2018-Augus, pp. 1–5. doi: 10.1109/PESGM.2018.8586305.spa
dc.relation.referencesL. D. N. Gomes, A. J. G. Abrantes-Ferreira, R. F. D. S. Dias, and L. G. B. Rolim, “Synchronverter-Based STATCOM With Voltage Imbalance Compensation Functionality,” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4836–4844, May 2022, doi: 10.1109/TIE.2021.3080215.spa
dc.relation.referencesC. S. Rajan and M. Ebenezer, “Voltage Profile Improvement of a Multi Microgrid Interconnection Scheme using Synchronverters,” in 2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Mar. 2022, pp. 217–222. doi: 10.1109/SPICES52834.2022.9774161.spa
dc.relation.referencesR. v. Ferreira, S. M. Silva, and D. I. Brandao, “Positive–Negative Sequence Synchronverter for Unbalanced Voltage in AC Grids,” Journal of Control, Automation and Electrical Systems, vol. 32, no. 3, pp. 711–720, Jun. 2021, doi: 10.1007/s40313-021-00690-4.spa
dc.relation.referencesH. R and M. Mishra, “An Integrated Control of Enhanced-PLL and Synchronverter for Unbalanced Grid,” IEEE Trans Ind Appl, vol. 58, no. 2, pp. 2206–2216, Mar. 2022, doi: 10.1109/TIA.2021.3139580.spa
dc.relation.referencesG. P. da Silva Junior and L. S. Barros, “Using Synchronverter in Distributed Generation for Frequency and Voltage Grid Support,” in 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Dec. 2019, pp. 1–6. doi: 10.1109/COBEP/SPEC44138.2019.9065482.spa
dc.relation.referencesG. P. da Silva Junior and L. S. Barros, “Synchronverter Operation in Active and Reactive Support Mode,” in 2019 Workshop on Communication Networks and Power Systems (WCNPS), Oct. 2019, no. Wcnps, pp. 1–5. doi: 10.1109/WCNPS.2019.8896239.spa
dc.relation.referencesX. Wang, L. Chen, D. Sun, L. Zhang, and H. Nian, “A Modified Self-Synchronized Synchronverter in Unbalanced Power Grids with Balanced Currents and Restrained Power Ripples,” Energies (Basel), vol. 12, no. 5, p. 923, Mar. 2019, doi: 10.3390/en12050923.spa
dc.relation.referencesS. S. Pore. and P. R. Jadhav., “Filters for Grid Connected Self-Synchronized Synchronverter,” in 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), May 2019, pp. 551–555. doi: 10.1109/RTEICT46194.2019.9016821.spa
dc.relation.referencesM. Wang, H. Li, and L. Li, “Fault Through Technique of Synchronverter Based on Voltage Feedforward Compensation,” in 2018 International Conference on Power System Technology (POWERCON), Nov. 2018, no. 201805200000002, pp. 2056–2061. doi: 10.1109/POWERCON.2018.8601984.spa
dc.relation.referencesM. Naeem, M. Ashraf, and U. A. Khan, “A robust auto-synchronizer for synchronverter,” Computers & Electrical Engineering, vol. 98, no. June 2020, p. 107661, Mar. 2022, doi: 10.1016/j.compeleceng.2021.107661.spa
dc.relation.referencesH. R and M. Mishra, “An Integrated Control of Enhanced-PLL and Synchronverter for Unbalanced Grid,” IEEE Trans Ind Appl, vol. 58, no. 2, pp. 2206–2216, Mar. 2022, doi: 10.1109/TIA.2021.3139580.spa
dc.relation.referencesY. Tan, X. Shen, and M. Xu, “Pre-Synchronization Control Strategy for Grid Connection of Synchronverter Cluster,” in 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), May 2021, pp. 1–6. doi: 10.1109/CIEEC50170.2021.9510391.spa
dc.relation.referencesP. Chandrakar, S. Saha, P. Das, A. Singh, and S. Debbarma, “Grid Integration of PV System Using Synchronverter,” in 2018 Internat2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)ional conference on computation of power, energy, Information and Communication (ICCPEIC), Mar. 2018, pp. 237–242. doi: 10.1109/ICCPEIC.2018.8525194.spa
dc.relation.referencesR. Hariharan and M. K. Mishra, “An Inbuilt Synchronization Controller for Three-Phase Synchronverters,” in 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Dec. 2018, pp. 1–6. doi: 10.1109/PEDES.2018.8707639.spa
dc.relation.referencesS. Manoj, S. Pradeep Kumar, and N. Ashok Babu, “Automatic Synchronverter: Inverter Lacking a Devoted Synchronization Unit,” International Journal of Engineering & Technology, vol. 7, no. 2.25, p. 20, May 2018, doi: 10.14419/ijet.v7i2.25.12359.spa
dc.relation.referencesK. S. Sharmini, “A Simplified Pulse Generation Control Algorithm Based upon the Concept of Synchronverter,” in Advances in Intelligent Systems and Computing, vol. 846, Springer Singapore, 2019, pp. 261–269. doi: 10.1007/978-981-13-2182-5_25.spa
dc.relation.referencesS. M. Furqan, A. Nasir, A. Ashraf, T. A. Shami, and N. Khalid, “Design And Implementation of Virtual Synchronous Machine,” in 2018 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Nov. 2018, pp. 1–6. doi: 10.1109/ICECUBE.2018.8610985.spa
dc.relation.referencesJ. Chen, C. Deng, W. Lin, Q. Qi, S. Liu, and X. Sun, “Calculation of Three-phase Fault Current in Synchronverters Considering Fault ride-through Strategies,” in 2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), Apr. 2022, pp. 442–446. doi: 10.1109/CEEPE55110.2022.9783328.spa
dc.relation.referencesM. A. Azzouz, H. H. Zeineldin, and E. F. El-Saadany, “Selective Phase Tripping for Microgrids Powered by Synchronverter-Interfaced Renewable Energy Sources,” IEEE Transactions on Power Delivery, vol. 36, no. 6, pp. 3506–3518, Dec. 2021, doi: 10.1109/TPWRD.2020.3044013.spa
dc.relation.referencesM. Habibullah, F. Gonzalez-Longatt, M. N. Acosta Montalvo, H. R. Chamorro, J. L. Rueda, and P. Palensky, “On Short Circuit of Grid-Forming Converters Controllers: A glance of the Dynamic Behaviour,” in 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Sep. 2021, pp. 1–5. doi: 10.1109/ISGTLatinAmerica52371.2021.9543017.spa
dc.relation.referencesM. Jayachandran, C. R. Reddy, S. Padmanaban, and A. H. Milyani, “Operational planning steps in smart electric power delivery system,” Sci Rep, vol. 11, no. 1, p. 17250, Dec. 2021, doi: 10.1038/s41598-021-96769-8.spa
dc.relation.referencesT. Yang and W. Hu, “Research on Variable Inertia Control Strategy of Electric Vehicle Based on Synchronverter,” in 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), May 2021, pp. 1–6. doi: 10.1109/CIEEC50170.2021.9510586.spa
dc.relation.referencesD. Liu, X. Zeng, and G. Liu, “Control method for EV charging and discharging in V2G/V2H scenario based on the synchronvter technology and H ∞ repetitive control,” The Journal of Engineering, vol. 2019, no. 16, pp. 1350–1355, Mar. 2019, doi: 10.1049/joe.2018.8799.spa
dc.relation.referencesD. Liu, Q. Zhong, Y. Wang, and G. Liu, “Modeling and control of a V2G charging station based on synchronverter technology,” CSEE Journal of Power and Energy Systems, vol. 4, no. 3, pp. 326–338, Sep. 2018, doi: 10.17775/CSEEJPES.2016.01430.spa
dc.relation.referencesJ. Zakis, E. Makovenko, H. Zeng, O. Husev, and L. Kutt, “qZS Inverter as Synchronverter in Small-Scale Micro-Grid,” Elektronika ir Elektrotechnika, vol. 24, no. 2, pp. 58–62, Apr. 2018, doi: 10.5755/j01.eie.24.2.20636.spa
dc.relation.referencesM. Gutierrez, P. Zuniga, F. Uribe, E. Barocio, and D. del Puerto-Flores, “Analysis of Synchronverters and Droop Control Scheme During Microgrid Operation: A Performance Comparison Approach,” in 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Nov. 2018, no. Ropec, pp. 1–6. doi: 10.1109/ROPEC.2018.8661466.spa
dc.relation.referencesJ. Wei, S. Wu, Y. Zhou, P. Yang, and Q. Kong, “Research on Power Electronic Transformers Based on Virtual Synchronous Machine Control,” in 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Nov. 2020, pp. 669–674. doi: 10.1109/ICIEA48937.2020.9248368.spa
dc.relation.referencesR. Wu, L. Ran, G. Weiss, and J. Yu, “Control of a synchronverter‐based soft open point in a distribution network,” The Journal of Engineering, vol. 2019, no. 16, pp. 720–727, Mar. 2019, doi: 10.1049/joe.2018.8382.spa
dc.relation.referencesM. Oñate, J. Posada, J. López, J. Quintero, and M. Aredes, “Control of a back‐to‐back converter as a power transfer system using synchronverter approach,” IET Generation, Transmission & Distribution, vol. 12, no. 9, pp. 1998–2005, May 2018, doi: 10.1049/iet-gtd.2017.0093.spa
dc.relation.referencesA. P.B and K. N. Chandra Bose, “Synchronverter Based HVDC Transmission For Stability Improvement,” in 2019 International Conference on Intelligent Computing and Control Systems (ICCS), May 2019, no. Iciccs, pp. 1312–1316. doi: 10.1109/ICCS45141.2019.9065513.spa
dc.relation.referencesA. TEBIB and M. BOUDOUR, “An Improved Synchronverter based HVDC System Considering Damper Windings Effect,” in 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Oct. 2018, pp. 1–5. doi: 10.1109/CISTEM.2018.8613381.spa
dc.relation.referencesG. P. da Silva Junior, L. S. Barros, and C. M. V. Barros, “Synchronverter coupled to a lithium-ion bank for grid frequency and voltage supports and controlled charge-discharge,” Electric Power Systems Research, vol. 197, p. 107352, Aug. 2021, doi: 10.1016/j.epsr.2021.107352.spa
dc.relation.referencesK. Y. Yap, J. M. Y. Lim, and C. R. Sarimuthu, “A novel adaptive virtual inertia control strategy under varying irradiance and temperature in grid-connected solar power system,” International Journal of Electrical Power & Energy Systems, vol. 132, p. 107180, Nov. 2021, doi: 10.1016/J.IJEPES.2021.107180.spa
dc.relation.referencesL. Vetoshkin and Z. Müller, “A Comparative Analysis of a Power System Stability with Virtual Inertia,” Energies (Basel), vol. 14, no. 11, p. 3277, Jun. 2021, doi: 10.3390/en14113277.spa
dc.relation.referencesW. Schulze, M. Zajadatz, M. Suriyah, and T. Leibfried, “Emulation of grid-forming inverters using real-time PC and 4-quadrant voltage amplifier,” Forsch Ingenieurwes, vol. 85, no. 2, pp. 425–430, Jun. 2021, doi: 10.1007/s10010-021-00484-9.spa
dc.relation.referencesQing-Chang Zhong, Phi-Long Nguyen, Zhenyu Ma, and Wanxing Sheng, “Self-Synchronized Synchronverters: Inverters Without a Dedicated Synchronization Unit,” IEEE Trans Power Electron, vol. 29, no. 2, pp. 617–630, Feb. 2014, doi: 10.1109/TPEL.2013.2258684.spa
dc.relation.referencesPhi-Long Nguyen, Q. Zhong, F. Blaabjerg, and J. M. Guerrero, “Synchronverter-based operation of STATCOM to Mimic Synchronous Condensers,” in 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Jul. 2012, no. 2, pp. 942–947. doi: 10.1109/ICIEA.2012.6360859.spa
dc.relation.referencesArani and El-Saadany, “Implementing Virtual Inertia in DFIG-Based Wind Power Generation,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1373–1384, May 2013, doi: 10.1109/TPWRS.2012.2207972.spa
dc.relation.referencesZ. Ma, Q.-C. Zhong, and J. D. Yan, “Synchronverter-based control strategies for three-phase PWM rectifiers,” in 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Jul. 2012, pp. 225–230. doi: 10.1109/ICIEA.2012.6360727.spa
dc.relation.referencesW. Ming and Q. Zhong, “Synchronverter-based transformerless PV inverters,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2014, pp. 4396–4401. doi: 10.1109/IECON.2014.7049164.spa
dc.relation.referencesS. D’Arco, J. A. Suul, and O. B. Fosso, “Small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation,” International Journal of Electrical Power & Energy Systems, vol. 72, pp. 3–15, Nov. 2015, doi: 10.1016/j.ijepes.2015.02.005.spa
dc.relation.referencesR. Aouini, B. Marinescu, K. Ben Kilani, and M. Elleuch, “Improvement of transient stability in an AC/DC system with synchronverter based HVDC,” in 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), Mar. 2015, pp. 1–6. doi: 10.1109/SSD.2015.7348137.spa
dc.relation.referencesE. Brown and G. Weiss, “Using synchronverters for power grid stabilization,” in 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI), Dec. 2014, pp. 1–5. doi: 10.1109/EEEI.2014.7005736.spa
dc.relation.referencesR. Aouini, K. Ben Kilani, B. Marinescu, and M. Elleuch, “Virtual synchronous generators dynamic performances,” in 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Nov. 2014, pp. 1–6. doi: 10.1109/CISTEM.2014.7077025.spa
dc.relation.referencesJin-Song Meng et al., “An Improved Synchronverter Model and its Dynamic Behaviour Comparison with Synchronous Generator,” in 2nd IET Renewable Power Generation Conference (RPG 2013), 2013, pp. 4.13-4.13. doi: 10.1049/cp.2013.1879.spa
dc.relation.referencesZ. Shuai, Y. Hu, Y. Peng, C. Tu, and Z. J. Shen, “Dynamic Stability Analysis of Synchronverter-Dominated Microgrid Based on Bifurcation Theory,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7467–7477, Sep. 2017, doi: 10.1109/TIE.2017.2652387.spa
dc.relation.referencesS. Luo, W. Wu, E. Koutroulis, H. S. H. Chung, and F. Blaabjerg, “A New Virtual Oscillator Control without Third-Harmonics Injection for DC/AC Inverter,” IEEE Trans Power Electron, vol. 36, no. 9, pp. 10879–10888, Sep. 2021, doi: 10.1109/TPEL.2021.3066162.spa
dc.relation.referencesF. Sevilmiş and H. Karaca, “An advanced hybrid pre-filtering/in-loop-filtering based PLL under adverse grid conditions,” Engineering Science and Technology, an International Journal, vol. 24, no. 5, pp. 1144–1152, Oct. 2021, doi: 10.1016/J.JESTCH.2021.02.011.spa
dc.relation.referencesS. Ahmad, S. Mekhilef, and H. Mokhlis, “An improved power control strategy for grid-connected hybrid microgrid without park transformation and phase-locked loop system,” International Transactions on Electrical Energy Systems, vol. 31, no. 7, p. e12922, Jul. 2021, doi: 10.1002/2050-7038.12922.spa
dc.relation.referencesR. Rajan, F. M. Fernandez, and Y. Yang, “Primary frequency control techniques for large-scale PV-integrated power systems: A review,” Renewable and Sustainable Energy Reviews, vol. 144, p. 110998, Jul. 2021, doi: 10.1016/J.RSER.2021.110998.spa
dc.relation.referencesS. Phoeurn and S. Somkun, “A study of a single phase grid connected pv inverter performance under a weak grid conditions and distorted grid voltage for Cambodia,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 2, pp. 1055–1068, Jun. 2021, doi: 10.11591/IJPEDS.V12.I2.PP1055-1068.spa
dc.relation.referencesM. Li et al., “The Control Strategy for the Grid-Connected Inverter through Impedance Reshaping in q-Axis and its Stability Analysis under a Weak Grid,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 3, pp. 3229–3242, Jun. 2021, doi: 10.1109/JESTPE.2020.3024863.spa
dc.relation.referencesG. V. Madhav, C. Nagamani, and B. N. Rao, “Adaptive control techniques integrated to grid-connected RES with harmonic filter capabilities,” International Journal of Engineering Trends and Technology, vol. 69, no. 2, pp. 201–206, Jun. 2021, doi: 10.14445/22315381/IJETT-V69I2P228.spa
dc.relation.referencesS. Rong et al., “Steady-State Stability Analysis of Synchronization Loops in Weak-Grid-Connected Microgrid,” IOP Conf Ser Earth Environ Sci, vol. 742, no. 1, p. 012006, Apr. 2021, doi: 10.1088/1755-1315/742/1/012006.spa
dc.relation.referencesS. Nirmal, K. N. Sivarajan, and E. A. Jasmin, “Phase shift control and controller area network assisted proportional resonant control for grid integration of single phase voltage source inverters,” IET Power Electronics, vol. 14, no. 7, pp. 1371–1383, May 2021, doi: 10.1049/PEL2.12134.spa
dc.relation.referencesY. Gupta, N. Parganiha, A. K. Rathore, and S. Doolla, “An Improved Reactive Power Sharing Method for an Islanded Microgrid,” IEEE Trans Ind Appl, vol. 57, no. 3, pp. 2954–2963, May 2021, doi: 10.1109/TIA.2021.3064528.spa
dc.relation.referencesM. E. Elkhatib, W. Du, and R. H. Lasseter, “Evaluation of Inverter-based Grid Frequency Support using Frequency-Watt and Grid-Forming PV Inverters,” IEEE Power and Energy Society General Meeting, vol. 2018-Augus, Dec. 2018, doi: 10.1109/PESGM.2018.8585958.spa
dc.relation.referencesQ.-C. Zhong and G. Weiss, “Synchronverters: Inverters That Mimic Synchronous Generators,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259–1267, Apr. 2011, doi: 10.1109/TIE.2010.2048839.spa
dc.relation.referencesQing-Chang Zhong, Phi-Long Nguyen, Zhenyu Ma, and Wanxing Sheng, “Self-Synchronized Synchronverters: Inverters Without a Dedicated Synchronization Unit,” IEEE Trans Power Electron, vol. 29, no. 2, pp. 617–630, Feb. 2014, doi: 10.1109/TPEL.2013.2258684.spa
dc.relation.referencesZ. M. Abed, T. K. Hassan, and K. R. Hameed, “Analysis and design of photovoltaic three-phase grid-connected inverter using passivity-based control,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 13, no. 1, p. 167, Mar. 2022, doi: 10.11591/ijpeds.v13.i1.pp167-177.spa
dc.relation.referencesQing-Chang Zhong, Phi-Long Nguyen, Zhenyu Ma, and Wanxing Sheng, “Self-Synchronized Synchronverters: Inverters Without a Dedicated Synchronization Unit,” IEEE Trans Power Electron, vol. 29, no. 2, pp. 617–630, Feb. 2014, doi: 10.1109/TPEL.2013.2258684.spa
dc.relation.referencesJ. J. Grainger and W. D. Stevenson Jr, Análisis de Sistemas de Potencia, 1st ed. Mexico: McGraw Hil Interamericana, 2002.spa
dc.relation.referencesC. L. Fortescue, “Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks,” Transactions of the American Institute of Electrical Engineers, vol. 37, no. 2, pp. 1027–1140, Jul. 1918, doi: 10.1109/T-AIEE.1918.4765570.spa
dc.relation.referencesW. V. Lyon, Application of the Method of Symmetrical Components. New York: McGraw-Hill, 1937.spa
dc.relation.referencesM. R. Iravani and M. Karimi-Ghartemani, “Online estimation of steady state and instantaneous symmetrical components,” IEE Proceedings - Generation, Transmission and Distribution, vol. 150, no. 5, pp. 616–622, 2003, doi: 10.1049/ip-gtd:20030779.spa
dc.relation.referencesR. Teodorescu, M. Liserre, and P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems. West Sussex: John Wiley & Sons, Ltd., 2011.spa
dc.relation.referencesS. Kewat and B. Singh, “Grid Synchronization of WEC-PV-BES Based Distributed Generation System using Robust Control Strategy,” in 2019 IEEE Industry Applications Society Annual Meeting, Sep. 2019, pp. 1–8. doi: 10.1109/IAS.2019.8912332.spa
dc.relation.referencesJ. Chen, M. Liu, T. O’Donnell, and F. Milano, “Impact of Current Transients on the Synchronization Stability Assessment of Grid-Feeding Converters,” IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 4131–4134, Sep. 2020, doi: 10.1109/TPWRS.2020.3009858.spa
dc.relation.referencesIEEE Std 1159-2019, “IEEE Recommended Practice for Monitoring Electric Power Quality,” 2019.spa
dc.relation.referencesCódigo Eléctrico Colombiano NTC 2050 Segunda actualización. 2020. [Online]. Available: www.nfpa.org.spa
dc.relation.references“Reglamento Técnico de Instalaciones Eléctricas,” 2013.spa
dc.relation.referencesIEEE, IEEE Recommended Practice for Monitoring Electric Power Quality, vol. 1159–2009, no. June. 2009. doi: 10.1109/IEEESTD.2009.5154067.spa
dc.relation.referencesH. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. doi: 10.1002/9781119307181.spa
dc.relation.referencesP. Rioual, H. Pouliquen, and J.-P. Louis, “Regulation of a PWM rectifier in the unbalanced network state using a generalized model,” IEEE Trans Power Electron, vol. 11, no. 3, pp. 495–502, May 1996, doi: 10.1109/63.491644.spa
dc.relation.referencesHong-Seok Song and Kwanghee Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Transactions on Industrial Electronics, vol. 46, no. 5, pp. 953–959, 1999, doi: 10.1109/41.793344.spa
dc.relation.referencesR. H. Park, “Two-reaction theory of synchronous machines generalized method of analysis-part I,” Transactions of the American Institute of Electrical Engineers, vol. 48, no. 3, pp. 716–727, Jul. 1929, doi: 10.1109/T-AIEE.1929.5055275.spa
dc.relation.referencesYongsug Suh and T. A. Lipo, “Control scheme in hybrid synchronous stationary frame for PWM AC/DC converter under generalized unbalanced operating conditions,” IEEE Trans Ind Appl, vol. 42, no. 3, pp. 825–835, May 2006, doi: 10.1109/TIA.2006.873673.spa
dc.relation.referencesI. Etxeberria-Otadui, U. Viscarret, M. Caballero, A. Rufer, and S. Bacha, “New optimized PWM VSC control structures and strategies under unbalanced voltage transients,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2902–2914, 2007, doi: 10.1109/TIE.2007.901373.spa
dc.relation.referencesBo Yin, R. Oruganti, S. K. Panda, and A. K. S. Bhat, “An Output-Power-Control Strategy for a Three-Phase PWM Rectifier Under Unbalanced Supply Conditions,” IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 2140–2151, May 2008, doi: 10.1109/TIE.2008.918643.spa
dc.relation.referencesL. Xu, B. R. Andersen, and P. Cartwright, “VSC Transmission Operating Under Unbalanced AC Conditions—Analysis and Control Design,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 427–434, Jan. 2005, doi: 10.1109/TPWRD.2004.835032.spa
dc.relation.referencesP. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Independent PQ Control for Distributed Power Generation Systems under Grid Faults,” in IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, Nov. 2006, pp. 5185–5190. doi: 10.1109/IECON.2006.347654.spa
dc.relation.referencesP. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Flexible Active Power Control of Distributed Power Generation Systems During Grid Faults,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2583–2592, Oct. 2007, doi: 10.1109/TIE.2007.899914.spa
dc.relation.referencesP. RodrÍguez, A. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, “Reactive Power Control for Improving Wind Turbine System Behavior Under Grid Faults,” IEEE Trans Power Electron, vol. 24, no. 7, pp. 1798–1801, Jul. 2009, doi: 10.1109/TPEL.2009.2014650.spa
dc.relation.referencesF. Wang, J. L. Duarte, and M. A. M. Hendrix, “Active power control strategies for inverter-based distributed power generation adapted to grid-fault ride-through requirements,” 2009 13th European Conference on Power Electronics and Applications, EPE ’09, 2009.spa
dc.relation.referencesFei Wang, J. L. Duarte, and M. Hendrix, “Active and reactive power control schemes for distributed generation systems under voltage dips,” in 2009 IEEE Energy Conversion Congress and Exposition, Sep. 2009, pp. 3564–3571. doi: 10.1109/ECCE.2009.5316564.spa
dc.relation.referencesD. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans Power Electron, vol. 18, no. 3, pp. 814–822, May 2003, doi: 10.1109/TPEL.2003.810852.spa
dc.relation.referencesN. S. Rathod and J. Kumar, “Islanding Detection in Grid Based System Using Clarke Transformation,” in 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Jul. 2022, pp. 1–5. doi: 10.1109/ICICCSP53532.2022.9862391.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembDistribución de energía eléctricaspa
dc.subject.lembRedes eléctricasspa
dc.subject.lembElectric power distributioneng
dc.subject.lembElectric networkseng
dc.subject.proposalComponentes simétricasspa
dc.subject.proposalControl Droopspa
dc.subject.proposalControl flexible de secuencias positiva y negativaspa
dc.subject.proposalGeneración distribuidaspa
dc.subject.proposalGenerador virtual síncronospa
dc.subject.proposalSynchronverterspa
dc.subject.proposalSymmetrical componentseng
dc.subject.proposalDroop controleng
dc.subject.proposalFlexible Positive- and Negative-Sequence Controleng
dc.subject.proposalDistributed generationeng
dc.subject.proposalVirtual synchronous generatoreng
dc.subject.proposalSynchronvertereng
dc.titleMitigación de desbalances de tensión en redes eléctricas de distribución usando sincro-convertidores como suministro de potencia de la generación distribuidaspa
dc.title.translatedVoltage imbalances mitigation in electrical distribution networks using synchronverters as power supply for distributed generationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1143129853.2023.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: