Desarrollo y evaluación de un módulo acoplado a un Potenciostato/Galvanostato para la realización de medidas de impedancia en películas delgadas de ZnO:Co

dc.contributor.advisorDussan Cuenca, Andersonspa
dc.contributor.authorMontero Ramos, Harley Davidspa
dc.contributor.researchgroupMateriales Nanoestructurados y Sus Aplicacionesspa
dc.date.accessioned2025-07-04T13:04:07Z
dc.date.available2025-07-04T13:04:07Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEn este trabajo se diseñó y fabricó un módulo para la medición de impedancia en películas delgadas de ZnO y ZnO:Co, el cual se acopla a un Potenciostato/Galvanostato de uso comercial facilitando la caracterización eléctrica de las muestras mediante espectroscopía de impedancia con mediciones confiables, precisas y reproducibles. Las películas delgadas fueron sintetizadas mediante la técnica de pulverización catódica asistida por campo magnético de corriente directa (“DC magnetron sputtering”) cambiando la potencia del blanco de Co para cambiar la concentración del dopaje en la matriz del ZnO. Además, se realizaron estudios morfológicos mediante microscopía electrónica de barrido (SEM, por sus siglas en inglés) , y análisis composicional mediante espectroscopía de fluorescencia de rayos X (XRF, por sus siglas en inglés) , este último confirmó la incorporación del cobalto en la matriz del ZnO en función de la potencia de deposición, mientras que las micrografías de SEM evidenciaron una formación no uniforme en la superficie del material, tipo escamas. Las mediciones de impedancia permitieron analizar los efectos del dopaje sobre la respuesta dieléctrica y la movilidad de carga en la muestra de ZnO; se encontró que la incorporación de Co a potencias de trabajo entre 5 W y 25 W mejora la conductividad eléctrica de la muestra, lo que indica una mayor movilidad de los portadores de carga, pero dopajes a 50 W afectan la respuesta eléctrica del material. Este estudio proporciona una metodología práctica para la caracterización de materiales semiconductores mediante espectroscopía de impedancia, los resultados obtenidos servirán como referencia para la optimización del proceso de deposición y el análisis de los mecanismos de transporte de carga en películas delgadas semiconductoras dopadas (Texto tomado de la fuente).spa
dc.description.abstractIn this thesis, a module for impedance measurement in ZnO and ZnO:Co thin films was designed and fabricated. This module is coupled to a commercial Potentiostat/Galvanostat, facilitating the electrical characterization of the samples through impedance spectroscopy with reliable, precise, and reproducible measurements. The thin films were synthesized using the DC magnetron sputtering technique, varying the Co target power to modify the doping concentration in the ZnO matrix. Additionally, morphological studies were performed using scanning electron microscopy (SEM), and compositional analysis was performed using X-ray fluorescence spectroscopy (XRF). The XRF analysis confirmed the incorporation of cobalt into the ZnO matrix as a function of deposition power. Meanwhile, SEM micrographs revealed a non-uniform, flake-like surface formation. Impedance measurements were used to examine the effects of doping on the dielectric response and charge carrier mobility in the ZnO sample. The results showed that incorporating cobalt (Co) at working powers between 5 W and 25 W improved the electrical conductivity of the sample, suggesting an increase in charge carrier mobility. However, doping the material at 50 W had a detrimental effect on its electrical response. This study provides a practical methodology for semiconductor material characterization via impedance spectroscopy. The results obtained will serve as a reference for optimizing the deposition process and analyzing charge transport mechanisms in doped semiconductor thin films.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias – Físicaspa
dc.description.researchareaSÍNTESIS DE MATERIALES CON PROPIEDADES OPTO-ELECTRÓNICASspa
dc.format.extent75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88291
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesJ. R. Macdonald and W. B. Johnson, “Fundamentals of Impedance Spectroscopy,” in Impedance Spectroscopy Theory, Experiment, and Applications, 2nd ed., Hoboken, New Jersey: John Wiley & Sons, Inc, 2005, ch. 1, pp. 1–26spa
dc.relation.referencesA. Lasia, Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer, 2014. doi: 10.1007/978-1-4614-8933-7spa
dc.relation.referencesO. Heaviside, Electrical Papers, vol. II, no. 1. 1894spa
dc.relation.referencesW. Nernst, “Methode zur Bestimmung von Dielektrizitätskonstanten,” Zeitschrift für Phys. Chemie, vol. 14U, no. 1, pp. 622–663, 1894, doi: 10.1515/zpch-1894-1445spa
dc.relation.referencesP. H. Smith, “A transmission line calculator,” Electronics, vol. 12, pp. 29–31, 1939spa
dc.relation.referencesJ. R. Macdonald, “Impedance Spectroscopy,” Ann. Biomed. Eng., vol. 20, no. 9, pp. 289–305, 1992, doi: 10.1007/BF02368532spa
dc.relation.referencesM. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy. 2008spa
dc.relation.references"Application Note AC-1: Basics of Electrochemical Impedance Spectroscopy,” Princet. Apllied Res., 1995spa
dc.relation.referencesV. F. Lvovich, IMPEDANCE SPECTROSCOPY Applications to Electrochemical and Dielectric Phenomena. John Wiley & Sons, Inc, 2012spa
dc.relation.referencesGamry Instruments, “The Basics of Electrochemical Impedance Spectroscopy”, [Online]. Available: https://www.gamry.com/application-notes/EIS/basics-of electrochemical-impedance-spectroscopy/spa
dc.relation.referencesZ. Tang et al., “Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance,” J. Power Sources, vol. 468, no. May, 2020, doi: 10.1016/j.jpowsour.2020.228361.spa
dc.relation.referencesI. Ben Elkamel, N. Hamdaoui, A. Mezni, and R. Ajjel, “Enhancement of dielectric properties of Ni and Co doped ZnO due to the oxygen vacancies for UV photosensors application,” Phys. E Low-dimensional Syst. Nanostructures, vol. 119, no. February, p. 114031, May 2020, doi: 10.1016/j.physe.2020.114031spa
dc.relation.referencesA. Timoumi et al., “Electrical impedance spectroscopy study of unsubstituted palladium (II) phthalocyanine,” Synth. Met., vol. 272, no. August 2020, p. 116659, 2021, doi: 10.1016/j.synthmet.2020.116659spa
dc.relation.referencesA. A. Kolchugin, A. N. Meshcherskikh, and L. A. Dunyushkina, “Across-plane electrical conductivity of ytterbium-doped HfO2 film using impedance spectroscopy and DRT analysis,” Electrochim. Acta, vol. 356, 2020, doi: 10.1016/j.electacta.2020.136834spa
dc.relation.referencesJ. Fang, W. Shen, S. H. S. Cheng, S. Ghashghaie, H. K. Shahzad, and C. Y. Chung, “Four-electrode symmetric setup for electrochemical impedance spectroscopy study of Lithium–Sulfur batteries,” J. Power Sources, vol. 441, no. August, 2019, doi: 10.1016/j.jpowsour.2019.227202spa
dc.relation.referencesPrinceton Apllied Research, “Application Note AC-1 Subject : Basics of Electrochemical Impedance Spectroscopy,” Princet. Apllied Res., pp. 1–13, 1987spa
dc.relation.referencesJ. R. Macdonald and W. B. Johnson, “Applications of Impedance Spectroscopy,” in Impedance Spectroscopy Theory, Experiment, and Applications, Second., Hoboken, N.J.: John Wiley & Sons, Inc, 2005, pp. 205–538spa
dc.relation.referencesJ. Cuervo, “Propiedades estructurales y espectroscopía de impedancia del estanato tipo perovskita (Ba,Sr)SnO3,” Universidad Nacional de Colombia, 2011spa
dc.relation.referencesÇ. Oruç, A. Erkol, and A. Altındal, “Characterization of metal (Ag,Au)/phthalocyanine thin film/semiconductor structures by impedance spectroscopy technique,” Thin Solid Films, vol. 636, pp. 765–772, 2017, doi: 10.1016/j.tsf.2017.03.058spa
dc.relation.referencesR. Schmidt, “Impedance Spectroscopy: Impedance Spectroscopy of Nanomaterials,” CRC Concise Encycl. Nanotechnol., no. February, pp. 391–409, 2018, doi: 10.1201/b19457-36spa
dc.relation.referencesS. Karmakar, “Impedance Spectroscopy for Electroceramics and Electrochemical System,” Adv. Energy Convers. Mater., vol. 6, no. 1, 2024, doi: 10.37256/aecm.6120255567spa
dc.relation.referencesP. Vyroubal and T. Kazda, “Equivalent circuit model parameters extraction for lithium ion batteries using electrochemical impedance spectroscopy,” J. Energy Storage, vol. 15, pp. 23–31, 2018, doi: 10.1016/j.est.2017.10.019spa
dc.relation.referencesF. Schipani, D. R. Miller, M. A. Ponce, C. M. Aldao, S. A. Akbar, and P. A. Morris, “Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review,” Rev. Adv. Sci. Eng., vol. 5, no. 1, pp. 86–105, 2016, doi: 10.1166/rase.2016.1109spa
dc.relation.referencesA. C. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy - A Tutorial,” ACS Meas. Sci. Au, vol. 3, pp. 162–193, 2023, doi: 10.1021/acsmeasuresciau.2c00070spa
dc.relation.referencesR. Schmidt, “Ceramic materials research trends,” 2007, Nova Science Publishersspa
dc.relation.referencesL. Zhang, Y. Pu, and M. Chen, “Complex impedance spectroscopy for capacitive energy-storage ceramics: a review and prospects,” Mater. Today Chem., vol. 28, p. 101353, 2023, doi: 10.1016/j.mtchem.2022.101353spa
dc.relation.referencesJ. L. Lyons, A. Janotti, and C. G. Van de Walle, “Oxide Semiconductors,” in Semiconductors and Semimetals, First edit., vol. 88, B. G. Svensson, S. J. Pearton, and C. Jagadish, Eds., Elsevier, 2013, ch. Theory and, pp. 1–37. doi: https://doi.org/10.1016/B978-0-12-396489-2.00001-1spa
dc.relation.referencesA. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, no. 11, pp. 6595–6663, 2010, doi: 10.1021/cr900356pspa
dc.relation.referencesB. Sharmila, M. K. Singha, and P. Dwivedi, “Impact of annealing on structural and optical properties of ZnO thin films,” Microelectronics J., vol. 135, no. 105759, May 2023, doi: 10.1016/j.mejo.2023.105759spa
dc.relation.referencesF. Paraguay-Delgado, J. E. Morales-Mendoza, G. M. Herrera-Pérez, L. Fuentes Cobas, L. A. Hermida-Montero, and N. Pariona, “Synthesis, Structural and Optical Properties of Cu Doped Zno and Cuo-Zno Composites Nanoparticles,” Nano Structures & Nano-Objects, vol. 34, 2023, doi: 10.2139/ssrn.4310646spa
dc.relation.referencesE. Sener, O. Bayram, U. C. Hasar, and O. Simsek, “Structural and optical properties of RF sputtered ZnO thin films: Annealing effect,” Phys. B Condens. Matter, vol. 605, no. July 2020, p. 412421, 2021, doi: 10.1016/j.physb.2020.412421spa
dc.relation.referencesK. B. Sundaram and A. Khan, “Characterization and optimization of zinc oxide films by r.f. magnetron sputtering,” Thin Solid Films, vol. 295, no. 1–2, pp. 87–91, 1997, doi: 10.1016/S0040-6090(96)09274-7spa
dc.relation.referencesC. L. Terán, J. A. Calderón, H. P. Quiroz, and A. Dussan, “Optical properties and bipolar resistive switching of ZnO thin films deposited via DC magnetron sputtering,” Chinese J. Phys., vol. 74, no. September, pp. 1–8, 2021, doi: 10.1016/j.cjph.2021.09.009spa
dc.relation.referencesN. Tjitra Salim, K. C. Aw, W. Gao, and B. E. Wright, “ZnO as dielectric for optically transparent non-volatile memory,” Thin Solid Films, vol. 518, no. 1, pp. 362–365, 2009, doi: 10.1016/j.tsf.2009.06.033spa
dc.relation.referencesJ. P. Mathew, G. Varghese, and J. Mathew, “Effect of annealing on the optical properties of transition metal doped ZnO thin films,” IOP Conf. Ser. Mater. Sci. Eng., vol. 73, no. 1, 2015, doi: 10.1088/1757-899X/73/1/012065spa
dc.relation.referencesT. Kamiya and M. Kawasaki, “ZnO-based semiconductors as building blocks for active devices,” MRS Bull., vol. 33, no. 11, pp. 1061–1066, 2008, doi: 10.1557/mrs2008.226spa
dc.relation.referencesP. R. Bueno, J. A. Varela, and E. Longo, “SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature,” J. Eur. Ceram. Soc., vol. 28, no. 3, pp. 505–529, 2008, doi: 10.1016/j.jeurceramsoc.2007.06.011spa
dc.relation.referencesH. Yang and S. Nie, “Preparation and characterization of Co-doped ZnO nanomaterials,” Mater. Chem. Phys., vol. 114, no. 1, pp. 279–282, 2009, doi: 10.1016/j.matchemphys.2008.09.017spa
dc.relation.referencesM. A. Majeed Khan, R. Siwach, S. Kumar, M. Ahmed, and J. Ahmed, “Investigations on microstructure, optical, magnetic, photocatalytic, and dielectric behaviours of pure and Co-doped ZnO NPs,” J. Mater. Sci. Mater. Electron., vol. 31, no. 8, pp. 6360– 6371, 2020, doi: 10.1007/s10854-020-03192-2spa
dc.relation.referencesS. A. Ansari, A. Nisar, B. Fatma, W. Khan, and A. H. Naqvi, “Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 177, no. 5, pp. 428–435, 2012, doi: 10.1016/j.mseb.2012.01.022spa
dc.relation.referencesN. Goswami and R. K. Jha, “Structural , thermal and dielectric studies of cobalt doped ZnO nanoparticles prepared by chemical precipitation method,” vol. 1326, no. November 2024, 2025spa
dc.relation.referencesH. Muhammad et al., “Materials Science in Semiconductor Processing Tuning the dielectric behavior and energy storage properties of Mn / Co co-doped ZnO,” Mater. Sci. Semicond. Process., vol. 134, no. February, p. 105977, 2021, doi: 10.1016/j.mssp.2021.105977spa
dc.relation.referencesM. Arshad, A. S. Ahmed, A. Azam, and A. H. Naqvi, “Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy,” vol. 577, pp. 469–474, 2013spa
dc.relation.referencesA. Zia, S. Ahmed, N. A. Shah, M. Anis-ur-rehman, E. U. Khan, and M. Basit, “Consequence of cobalt on structural , optical and dielectric properties in ZnO nanostructures,” Phys. B Phys. Condens. Matter, vol. 473, pp. 42–47, 2015, doi: 10.1016/j.physb.2015.05.024spa
dc.relation.referencesS. Rossnagel, “Sputtering and Sputter Deposition,” in Handbook of Thin Film Deposition Techniques Principles, Methods, Equipment and Applications, Second., 2020, pp. 347–376. doi: 10.1201/9781482269680-18spa
dc.relation.referencesF. Shi, “Basic Theory of Magnetron Sputtering 1. Principle of magnetron sputtering,” in Magnetron Sputtering, 2018, pp. 1–5spa
dc.relation.referencesP. Vašina, “Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition,” 2005. doi: 10.1016/S1079-4050(99)80005-2spa
dc.relation.referencesY. Pan, J. Wang, Z. Lu, R. Wang, and Z. Xu, “A review on the application of magnetron sputtering technologies for solid oxide fuel cell in reduction of the operating temperature,” Int. J. Hydrogen Energy, vol. 50, no. 9, pp. 1179–1193, 2024, doi: 10.1016/j.ijhydene.2023.10.143spa
dc.relation.referencesY. Yang, Y. Zhang, and M. Yan, “A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology,” Sep. Purif. Technol., vol. 298, no. July, 2022, doi: 10.1016/j.seppur.2022.121627spa
dc.relation.referencesA. Dussán Cuenca, H. P. Quiroz Gaitán, and J. A. Calderón Cómbita, Nanomateriales que revolucionan la tecnología: perspectivas y aplicaciones en espintrónica. 2020. doi: 10.36385/fcbog-7-0spa
dc.relation.referencesM. A. S. Khan, M. A. Khan, S. M. Ramay, M. A. Shar, and S. Atiq, “Band gap tunability in DC sputtered Ni-doped ZnO thin films for wide usage in optoelectronic gadgets,” Phys. B Condens. Matter, vol. 686, no. February, p. 416076, 2024, doi: 10.1016/j.physb.2024.416076spa
dc.relation.referencesS. Henning and R. Adhikari, Scanning Electron Microscopy, ESEM, and X-ray Microanalysis. Elsevier Inc., 2017. doi: 10.1016/B978-0-323-46141-2.00001-8spa
dc.relation.referencesW. Zhou, R. Apkarian, Z. L. Wang, and D. Joy, “Fundamentals of scanning electron microscopy (SEM),” Scanning Microsc. Nanotechnol. Tech. Appl., pp. 1–40, 2007, doi: 10.1007/978-0-387-39620-0_1spa
dc.relation.referencesA. Ali, N. Zhang, and R. M. Santos, “Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions,” Appl. Sci., vol. 13, no. 23, 2023, doi: 10.3390/app132312600spa
dc.relation.referencesE. Marguí, I. Queralt, and E. de Almeida, “X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends,” Chemosphere, vol. 303, no. January, 2022, doi: 10.1016/j.chemosphere.2022.135006spa
dc.relation.referencesM. Klenk, O. Schenker, U. Probst, and E. Bucher, “X-ray fluorescence measurements of thin film chalcopyrite solar cells,” Sol. Energy Mater. Sol. Cells, vol. 58, no. 3, pp. 299–319, 1999, doi: 10.1016/S0927-0248(99)00014-8spa
dc.relation.referencesP. Acquafredda, “XRF technique,” Phys. Sci. Rev., vol. 4, no. 8, pp. 1–20, 2019, doi: 10.1515/psr-2018-0171spa
dc.relation.referencesP. Brouwer, Theory of XRF: Getting acquainted with the principles, 3rd ed. PANalytical B.V., 2010spa
dc.relation.referencesB. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, and H. Wolff, Handbook of Practical X-Ray Fluorescence Analysis. Berlin, Alemania: Springer, 2006. doi: 10.1007/978-3-540-36722-2spa
dc.relation.referencesD. M. Alsebaie, W. Shirbeeny, A. Alshahrie, and M. S. Abdel-Wahab, “Ellipsometric study of optical properties of Sm-doped ZnO thin films Co-deposited by RF Magnetron sputtering,” Optik (Stuttg)., vol. 148, pp. 172–180, 2017, doi: 10.1016/j.ijleo.2017.08.041spa
dc.relation.referencesA. Büyükbas, “Physica B : Physics of Condensed Matter Impedance spectroscopy of Au / TiO 2 / n-Si metal-insulator-semiconductor ( MIS ) capacitor,” vol. 580, no. September 2019, 2020spa
dc.relation.referencesM. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy. ECS-The Electrochemical Society, 2008spa
dc.relation.referencesS. Wang, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nat. Rev. Methods Prim., vol. 1, 2021spa
dc.relation.referencesGamry Instruments, “Understanding the Specifications of your Potentiostat,” 2016. [Online]. Available: http://www.gamry.com/application notes/instrumentation/understanding-specs-of-potentiostat/spa
dc.relation.referencesE. Alfonso, J. Olaya, and G. Cubillos, “Thin Film Growth Through Sputtering Technique and Its Applications,” in Crystallization - Science and Technology, 2012, pp. 397–432spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembIMPEDANCIA (ELECTRICIDAD)spa
dc.subject.lembImpedance (Electricity)eng
dc.subject.lembIMPEDANCIA DE TRANSFERENCIAspa
dc.subject.lembTransfer impedanceeng
dc.subject.lembOXIDO DE CINCspa
dc.subject.lembZinc oxideeng
dc.subject.lembANALISIS ELECTROQUIMICOspa
dc.subject.lembElectrochemical analysiseng
dc.subject.proposalEspectroscopía de impedanciaspa
dc.subject.proposalRespuesta en frecuenciaspa
dc.subject.proposalCircuito equivalentespa
dc.subject.proposalZnOspa
dc.subject.proposalProcesos de relajaciónspa
dc.subject.proposalTransporte de cargaspa
dc.subject.proposalImpedance spectroscopyeng
dc.subject.proposalFrequency responseeng
dc.subject.proposalEquivalent circuiteng
dc.subject.proposalZnOeng
dc.subject.proposalRelaxation processeseng
dc.subject.proposalCharge transporteng
dc.titleDesarrollo y evaluación de un módulo acoplado a un Potenciostato/Galvanostato para la realización de medidas de impedancia en películas delgadas de ZnO:Cospa
dc.title.translatedDevelopment and evaluation of a Potentiostat/Galvanostat coupled module for impedance measurements on ZnO:Co thin filmseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1063962699.2025.pdf
Tamaño:
3.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias -Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: