Desarrollo y evaluación de un módulo acoplado a un Potenciostato/Galvanostato para la realización de medidas de impedancia en películas delgadas de ZnO:Co
dc.contributor.advisor | Dussan Cuenca, Anderson | spa |
dc.contributor.author | Montero Ramos, Harley David | spa |
dc.contributor.researchgroup | Materiales Nanoestructurados y Sus Aplicaciones | spa |
dc.date.accessioned | 2025-07-04T13:04:07Z | |
dc.date.available | 2025-07-04T13:04:07Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | En este trabajo se diseñó y fabricó un módulo para la medición de impedancia en películas delgadas de ZnO y ZnO:Co, el cual se acopla a un Potenciostato/Galvanostato de uso comercial facilitando la caracterización eléctrica de las muestras mediante espectroscopía de impedancia con mediciones confiables, precisas y reproducibles. Las películas delgadas fueron sintetizadas mediante la técnica de pulverización catódica asistida por campo magnético de corriente directa (“DC magnetron sputtering”) cambiando la potencia del blanco de Co para cambiar la concentración del dopaje en la matriz del ZnO. Además, se realizaron estudios morfológicos mediante microscopía electrónica de barrido (SEM, por sus siglas en inglés) , y análisis composicional mediante espectroscopía de fluorescencia de rayos X (XRF, por sus siglas en inglés) , este último confirmó la incorporación del cobalto en la matriz del ZnO en función de la potencia de deposición, mientras que las micrografías de SEM evidenciaron una formación no uniforme en la superficie del material, tipo escamas. Las mediciones de impedancia permitieron analizar los efectos del dopaje sobre la respuesta dieléctrica y la movilidad de carga en la muestra de ZnO; se encontró que la incorporación de Co a potencias de trabajo entre 5 W y 25 W mejora la conductividad eléctrica de la muestra, lo que indica una mayor movilidad de los portadores de carga, pero dopajes a 50 W afectan la respuesta eléctrica del material. Este estudio proporciona una metodología práctica para la caracterización de materiales semiconductores mediante espectroscopía de impedancia, los resultados obtenidos servirán como referencia para la optimización del proceso de deposición y el análisis de los mecanismos de transporte de carga en películas delgadas semiconductoras dopadas (Texto tomado de la fuente). | spa |
dc.description.abstract | In this thesis, a module for impedance measurement in ZnO and ZnO:Co thin films was designed and fabricated. This module is coupled to a commercial Potentiostat/Galvanostat, facilitating the electrical characterization of the samples through impedance spectroscopy with reliable, precise, and reproducible measurements. The thin films were synthesized using the DC magnetron sputtering technique, varying the Co target power to modify the doping concentration in the ZnO matrix. Additionally, morphological studies were performed using scanning electron microscopy (SEM), and compositional analysis was performed using X-ray fluorescence spectroscopy (XRF). The XRF analysis confirmed the incorporation of cobalt into the ZnO matrix as a function of deposition power. Meanwhile, SEM micrographs revealed a non-uniform, flake-like surface formation. Impedance measurements were used to examine the effects of doping on the dielectric response and charge carrier mobility in the ZnO sample. The results showed that incorporating cobalt (Co) at working powers between 5 W and 25 W improved the electrical conductivity of the sample, suggesting an increase in charge carrier mobility. However, doping the material at 50 W had a detrimental effect on its electrical response. This study provides a practical methodology for semiconductor material characterization via impedance spectroscopy. The results obtained will serve as a reference for optimizing the deposition process and analyzing charge transport mechanisms in doped semiconductor thin films. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias – Física | spa |
dc.description.researcharea | SÍNTESIS DE MATERIALES CON PROPIEDADES OPTO-ELECTRÓNICAS | spa |
dc.format.extent | 75 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88291 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | J. R. Macdonald and W. B. Johnson, “Fundamentals of Impedance Spectroscopy,” in Impedance Spectroscopy Theory, Experiment, and Applications, 2nd ed., Hoboken, New Jersey: John Wiley & Sons, Inc, 2005, ch. 1, pp. 1–26 | spa |
dc.relation.references | A. Lasia, Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer, 2014. doi: 10.1007/978-1-4614-8933-7 | spa |
dc.relation.references | O. Heaviside, Electrical Papers, vol. II, no. 1. 1894 | spa |
dc.relation.references | W. Nernst, “Methode zur Bestimmung von Dielektrizitätskonstanten,” Zeitschrift für Phys. Chemie, vol. 14U, no. 1, pp. 622–663, 1894, doi: 10.1515/zpch-1894-1445 | spa |
dc.relation.references | P. H. Smith, “A transmission line calculator,” Electronics, vol. 12, pp. 29–31, 1939 | spa |
dc.relation.references | J. R. Macdonald, “Impedance Spectroscopy,” Ann. Biomed. Eng., vol. 20, no. 9, pp. 289–305, 1992, doi: 10.1007/BF02368532 | spa |
dc.relation.references | M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy. 2008 | spa |
dc.relation.references | "Application Note AC-1: Basics of Electrochemical Impedance Spectroscopy,” Princet. Apllied Res., 1995 | spa |
dc.relation.references | V. F. Lvovich, IMPEDANCE SPECTROSCOPY Applications to Electrochemical and Dielectric Phenomena. John Wiley & Sons, Inc, 2012 | spa |
dc.relation.references | Gamry Instruments, “The Basics of Electrochemical Impedance Spectroscopy”, [Online]. Available: https://www.gamry.com/application-notes/EIS/basics-of electrochemical-impedance-spectroscopy/ | spa |
dc.relation.references | Z. Tang et al., “Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance,” J. Power Sources, vol. 468, no. May, 2020, doi: 10.1016/j.jpowsour.2020.228361. | spa |
dc.relation.references | I. Ben Elkamel, N. Hamdaoui, A. Mezni, and R. Ajjel, “Enhancement of dielectric properties of Ni and Co doped ZnO due to the oxygen vacancies for UV photosensors application,” Phys. E Low-dimensional Syst. Nanostructures, vol. 119, no. February, p. 114031, May 2020, doi: 10.1016/j.physe.2020.114031 | spa |
dc.relation.references | A. Timoumi et al., “Electrical impedance spectroscopy study of unsubstituted palladium (II) phthalocyanine,” Synth. Met., vol. 272, no. August 2020, p. 116659, 2021, doi: 10.1016/j.synthmet.2020.116659 | spa |
dc.relation.references | A. A. Kolchugin, A. N. Meshcherskikh, and L. A. Dunyushkina, “Across-plane electrical conductivity of ytterbium-doped HfO2 film using impedance spectroscopy and DRT analysis,” Electrochim. Acta, vol. 356, 2020, doi: 10.1016/j.electacta.2020.136834 | spa |
dc.relation.references | J. Fang, W. Shen, S. H. S. Cheng, S. Ghashghaie, H. K. Shahzad, and C. Y. Chung, “Four-electrode symmetric setup for electrochemical impedance spectroscopy study of Lithium–Sulfur batteries,” J. Power Sources, vol. 441, no. August, 2019, doi: 10.1016/j.jpowsour.2019.227202 | spa |
dc.relation.references | Princeton Apllied Research, “Application Note AC-1 Subject : Basics of Electrochemical Impedance Spectroscopy,” Princet. Apllied Res., pp. 1–13, 1987 | spa |
dc.relation.references | J. R. Macdonald and W. B. Johnson, “Applications of Impedance Spectroscopy,” in Impedance Spectroscopy Theory, Experiment, and Applications, Second., Hoboken, N.J.: John Wiley & Sons, Inc, 2005, pp. 205–538 | spa |
dc.relation.references | J. Cuervo, “Propiedades estructurales y espectroscopía de impedancia del estanato tipo perovskita (Ba,Sr)SnO3,” Universidad Nacional de Colombia, 2011 | spa |
dc.relation.references | Ç. Oruç, A. Erkol, and A. Altındal, “Characterization of metal (Ag,Au)/phthalocyanine thin film/semiconductor structures by impedance spectroscopy technique,” Thin Solid Films, vol. 636, pp. 765–772, 2017, doi: 10.1016/j.tsf.2017.03.058 | spa |
dc.relation.references | R. Schmidt, “Impedance Spectroscopy: Impedance Spectroscopy of Nanomaterials,” CRC Concise Encycl. Nanotechnol., no. February, pp. 391–409, 2018, doi: 10.1201/b19457-36 | spa |
dc.relation.references | S. Karmakar, “Impedance Spectroscopy for Electroceramics and Electrochemical System,” Adv. Energy Convers. Mater., vol. 6, no. 1, 2024, doi: 10.37256/aecm.6120255567 | spa |
dc.relation.references | P. Vyroubal and T. Kazda, “Equivalent circuit model parameters extraction for lithium ion batteries using electrochemical impedance spectroscopy,” J. Energy Storage, vol. 15, pp. 23–31, 2018, doi: 10.1016/j.est.2017.10.019 | spa |
dc.relation.references | F. Schipani, D. R. Miller, M. A. Ponce, C. M. Aldao, S. A. Akbar, and P. A. Morris, “Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review,” Rev. Adv. Sci. Eng., vol. 5, no. 1, pp. 86–105, 2016, doi: 10.1166/rase.2016.1109 | spa |
dc.relation.references | A. C. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy - A Tutorial,” ACS Meas. Sci. Au, vol. 3, pp. 162–193, 2023, doi: 10.1021/acsmeasuresciau.2c00070 | spa |
dc.relation.references | R. Schmidt, “Ceramic materials research trends,” 2007, Nova Science Publishers | spa |
dc.relation.references | L. Zhang, Y. Pu, and M. Chen, “Complex impedance spectroscopy for capacitive energy-storage ceramics: a review and prospects,” Mater. Today Chem., vol. 28, p. 101353, 2023, doi: 10.1016/j.mtchem.2022.101353 | spa |
dc.relation.references | J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Oxide Semiconductors,” in Semiconductors and Semimetals, First edit., vol. 88, B. G. Svensson, S. J. Pearton, and C. Jagadish, Eds., Elsevier, 2013, ch. Theory and, pp. 1–37. doi: https://doi.org/10.1016/B978-0-12-396489-2.00001-1 | spa |
dc.relation.references | A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, no. 11, pp. 6595–6663, 2010, doi: 10.1021/cr900356p | spa |
dc.relation.references | B. Sharmila, M. K. Singha, and P. Dwivedi, “Impact of annealing on structural and optical properties of ZnO thin films,” Microelectronics J., vol. 135, no. 105759, May 2023, doi: 10.1016/j.mejo.2023.105759 | spa |
dc.relation.references | F. Paraguay-Delgado, J. E. Morales-Mendoza, G. M. Herrera-Pérez, L. Fuentes Cobas, L. A. Hermida-Montero, and N. Pariona, “Synthesis, Structural and Optical Properties of Cu Doped Zno and Cuo-Zno Composites Nanoparticles,” Nano Structures & Nano-Objects, vol. 34, 2023, doi: 10.2139/ssrn.4310646 | spa |
dc.relation.references | E. Sener, O. Bayram, U. C. Hasar, and O. Simsek, “Structural and optical properties of RF sputtered ZnO thin films: Annealing effect,” Phys. B Condens. Matter, vol. 605, no. July 2020, p. 412421, 2021, doi: 10.1016/j.physb.2020.412421 | spa |
dc.relation.references | K. B. Sundaram and A. Khan, “Characterization and optimization of zinc oxide films by r.f. magnetron sputtering,” Thin Solid Films, vol. 295, no. 1–2, pp. 87–91, 1997, doi: 10.1016/S0040-6090(96)09274-7 | spa |
dc.relation.references | C. L. Terán, J. A. Calderón, H. P. Quiroz, and A. Dussan, “Optical properties and bipolar resistive switching of ZnO thin films deposited via DC magnetron sputtering,” Chinese J. Phys., vol. 74, no. September, pp. 1–8, 2021, doi: 10.1016/j.cjph.2021.09.009 | spa |
dc.relation.references | N. Tjitra Salim, K. C. Aw, W. Gao, and B. E. Wright, “ZnO as dielectric for optically transparent non-volatile memory,” Thin Solid Films, vol. 518, no. 1, pp. 362–365, 2009, doi: 10.1016/j.tsf.2009.06.033 | spa |
dc.relation.references | J. P. Mathew, G. Varghese, and J. Mathew, “Effect of annealing on the optical properties of transition metal doped ZnO thin films,” IOP Conf. Ser. Mater. Sci. Eng., vol. 73, no. 1, 2015, doi: 10.1088/1757-899X/73/1/012065 | spa |
dc.relation.references | T. Kamiya and M. Kawasaki, “ZnO-based semiconductors as building blocks for active devices,” MRS Bull., vol. 33, no. 11, pp. 1061–1066, 2008, doi: 10.1557/mrs2008.226 | spa |
dc.relation.references | P. R. Bueno, J. A. Varela, and E. Longo, “SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature,” J. Eur. Ceram. Soc., vol. 28, no. 3, pp. 505–529, 2008, doi: 10.1016/j.jeurceramsoc.2007.06.011 | spa |
dc.relation.references | H. Yang and S. Nie, “Preparation and characterization of Co-doped ZnO nanomaterials,” Mater. Chem. Phys., vol. 114, no. 1, pp. 279–282, 2009, doi: 10.1016/j.matchemphys.2008.09.017 | spa |
dc.relation.references | M. A. Majeed Khan, R. Siwach, S. Kumar, M. Ahmed, and J. Ahmed, “Investigations on microstructure, optical, magnetic, photocatalytic, and dielectric behaviours of pure and Co-doped ZnO NPs,” J. Mater. Sci. Mater. Electron., vol. 31, no. 8, pp. 6360– 6371, 2020, doi: 10.1007/s10854-020-03192-2 | spa |
dc.relation.references | S. A. Ansari, A. Nisar, B. Fatma, W. Khan, and A. H. Naqvi, “Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 177, no. 5, pp. 428–435, 2012, doi: 10.1016/j.mseb.2012.01.022 | spa |
dc.relation.references | N. Goswami and R. K. Jha, “Structural , thermal and dielectric studies of cobalt doped ZnO nanoparticles prepared by chemical precipitation method,” vol. 1326, no. November 2024, 2025 | spa |
dc.relation.references | H. Muhammad et al., “Materials Science in Semiconductor Processing Tuning the dielectric behavior and energy storage properties of Mn / Co co-doped ZnO,” Mater. Sci. Semicond. Process., vol. 134, no. February, p. 105977, 2021, doi: 10.1016/j.mssp.2021.105977 | spa |
dc.relation.references | M. Arshad, A. S. Ahmed, A. Azam, and A. H. Naqvi, “Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy,” vol. 577, pp. 469–474, 2013 | spa |
dc.relation.references | A. Zia, S. Ahmed, N. A. Shah, M. Anis-ur-rehman, E. U. Khan, and M. Basit, “Consequence of cobalt on structural , optical and dielectric properties in ZnO nanostructures,” Phys. B Phys. Condens. Matter, vol. 473, pp. 42–47, 2015, doi: 10.1016/j.physb.2015.05.024 | spa |
dc.relation.references | S. Rossnagel, “Sputtering and Sputter Deposition,” in Handbook of Thin Film Deposition Techniques Principles, Methods, Equipment and Applications, Second., 2020, pp. 347–376. doi: 10.1201/9781482269680-18 | spa |
dc.relation.references | F. Shi, “Basic Theory of Magnetron Sputtering 1. Principle of magnetron sputtering,” in Magnetron Sputtering, 2018, pp. 1–5 | spa |
dc.relation.references | P. Vašina, “Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition,” 2005. doi: 10.1016/S1079-4050(99)80005-2 | spa |
dc.relation.references | Y. Pan, J. Wang, Z. Lu, R. Wang, and Z. Xu, “A review on the application of magnetron sputtering technologies for solid oxide fuel cell in reduction of the operating temperature,” Int. J. Hydrogen Energy, vol. 50, no. 9, pp. 1179–1193, 2024, doi: 10.1016/j.ijhydene.2023.10.143 | spa |
dc.relation.references | Y. Yang, Y. Zhang, and M. Yan, “A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology,” Sep. Purif. Technol., vol. 298, no. July, 2022, doi: 10.1016/j.seppur.2022.121627 | spa |
dc.relation.references | A. Dussán Cuenca, H. P. Quiroz Gaitán, and J. A. Calderón Cómbita, Nanomateriales que revolucionan la tecnología: perspectivas y aplicaciones en espintrónica. 2020. doi: 10.36385/fcbog-7-0 | spa |
dc.relation.references | M. A. S. Khan, M. A. Khan, S. M. Ramay, M. A. Shar, and S. Atiq, “Band gap tunability in DC sputtered Ni-doped ZnO thin films for wide usage in optoelectronic gadgets,” Phys. B Condens. Matter, vol. 686, no. February, p. 416076, 2024, doi: 10.1016/j.physb.2024.416076 | spa |
dc.relation.references | S. Henning and R. Adhikari, Scanning Electron Microscopy, ESEM, and X-ray Microanalysis. Elsevier Inc., 2017. doi: 10.1016/B978-0-323-46141-2.00001-8 | spa |
dc.relation.references | W. Zhou, R. Apkarian, Z. L. Wang, and D. Joy, “Fundamentals of scanning electron microscopy (SEM),” Scanning Microsc. Nanotechnol. Tech. Appl., pp. 1–40, 2007, doi: 10.1007/978-0-387-39620-0_1 | spa |
dc.relation.references | A. Ali, N. Zhang, and R. M. Santos, “Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions,” Appl. Sci., vol. 13, no. 23, 2023, doi: 10.3390/app132312600 | spa |
dc.relation.references | E. Marguí, I. Queralt, and E. de Almeida, “X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends,” Chemosphere, vol. 303, no. January, 2022, doi: 10.1016/j.chemosphere.2022.135006 | spa |
dc.relation.references | M. Klenk, O. Schenker, U. Probst, and E. Bucher, “X-ray fluorescence measurements of thin film chalcopyrite solar cells,” Sol. Energy Mater. Sol. Cells, vol. 58, no. 3, pp. 299–319, 1999, doi: 10.1016/S0927-0248(99)00014-8 | spa |
dc.relation.references | P. Acquafredda, “XRF technique,” Phys. Sci. Rev., vol. 4, no. 8, pp. 1–20, 2019, doi: 10.1515/psr-2018-0171 | spa |
dc.relation.references | P. Brouwer, Theory of XRF: Getting acquainted with the principles, 3rd ed. PANalytical B.V., 2010 | spa |
dc.relation.references | B. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, and H. Wolff, Handbook of Practical X-Ray Fluorescence Analysis. Berlin, Alemania: Springer, 2006. doi: 10.1007/978-3-540-36722-2 | spa |
dc.relation.references | D. M. Alsebaie, W. Shirbeeny, A. Alshahrie, and M. S. Abdel-Wahab, “Ellipsometric study of optical properties of Sm-doped ZnO thin films Co-deposited by RF Magnetron sputtering,” Optik (Stuttg)., vol. 148, pp. 172–180, 2017, doi: 10.1016/j.ijleo.2017.08.041 | spa |
dc.relation.references | A. Büyükbas, “Physica B : Physics of Condensed Matter Impedance spectroscopy of Au / TiO 2 / n-Si metal-insulator-semiconductor ( MIS ) capacitor,” vol. 580, no. September 2019, 2020 | spa |
dc.relation.references | M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy. ECS-The Electrochemical Society, 2008 | spa |
dc.relation.references | S. Wang, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nat. Rev. Methods Prim., vol. 1, 2021 | spa |
dc.relation.references | Gamry Instruments, “Understanding the Specifications of your Potentiostat,” 2016. [Online]. Available: http://www.gamry.com/application notes/instrumentation/understanding-specs-of-potentiostat/ | spa |
dc.relation.references | E. Alfonso, J. Olaya, and G. Cubillos, “Thin Film Growth Through Sputtering Technique and Its Applications,” in Crystallization - Science and Technology, 2012, pp. 397–432 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.lemb | IMPEDANCIA (ELECTRICIDAD) | spa |
dc.subject.lemb | Impedance (Electricity) | eng |
dc.subject.lemb | IMPEDANCIA DE TRANSFERENCIA | spa |
dc.subject.lemb | Transfer impedance | eng |
dc.subject.lemb | OXIDO DE CINC | spa |
dc.subject.lemb | Zinc oxide | eng |
dc.subject.lemb | ANALISIS ELECTROQUIMICO | spa |
dc.subject.lemb | Electrochemical analysis | eng |
dc.subject.proposal | Espectroscopía de impedancia | spa |
dc.subject.proposal | Respuesta en frecuencia | spa |
dc.subject.proposal | Circuito equivalente | spa |
dc.subject.proposal | ZnO | spa |
dc.subject.proposal | Procesos de relajación | spa |
dc.subject.proposal | Transporte de carga | spa |
dc.subject.proposal | Impedance spectroscopy | eng |
dc.subject.proposal | Frequency response | eng |
dc.subject.proposal | Equivalent circuit | eng |
dc.subject.proposal | ZnO | eng |
dc.subject.proposal | Relaxation processes | eng |
dc.subject.proposal | Charge transport | eng |
dc.title | Desarrollo y evaluación de un módulo acoplado a un Potenciostato/Galvanostato para la realización de medidas de impedancia en películas delgadas de ZnO:Co | spa |
dc.title.translated | Development and evaluation of a Potentiostat/Galvanostat coupled module for impedance measurements on ZnO:Co thin films | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1063962699.2025.pdf
- Tamaño:
- 3.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias -Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: