Diseño de un biosensor para la detección de arsénico

dc.contributor.advisorBrito Brandão, Pedro Filipespa
dc.contributor.authorTamayo Figueroa, Diana Paolaspa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINAspa
dc.date.accessioned2020-06-16T21:26:42Zspa
dc.date.available2020-06-16T21:26:42Zspa
dc.date.issued2015-11-23spa
dc.description.abstractArsenic (As) is a metalloid that causes different kinds of diseases including cancer. The World Health Organization recommends a limit in drinking water of 10 µg As/L. In Colombia, the information about the potential risk for As contamination is still scarce, and its presence is reported mainly in Caldas, Nariño and Tolima departments. Accurate measurement of arsenic in drinking water requires expensive methods, sophisticated instrumentation and trained staff. Consequently, the biosensors design represent a great potential because they are cheap, sensitive and user-friendly systems. This work reports the development of three biosensors for arsenic detection in water using chromoproteins as the reporter system. Coding regions of the arsR regulatory gene of 15 native strains and 11 metagenomic clones resistant to arsenic from environments in Colombia were amplified and sequenced. The obtained sequences showed a close relationship with the arsR genes of Bacillius cereus ATCC 14579 (identity of 99 %, E=2e-64) and Escherichia coli ST540 (identity of 100 %, e=0.0). Three biosensors were assembled using the pUC18 cloning vector, the arsR gene of the metagenomic clone M19 and each one a chromoprotein as a reporter system (purple, pink or yellow). The biosensors BASmor and BASama showed a linear response between the intensity of colour or fluorescence (reporter protein) produced over the As(III) concentration allowing, respectively, a qualitative and quantitative assessment of the metalloid in aqueous solutions. Detection limits of 75 µg As(III)/L were obtained for the colour evaluation and 7.5 µg As(III)/L for the fluorescence response, respectively. The third biosensor BASros, under the evaluated conditions, did not show a relationship between As concentration and the colour intensity. These biosensors are emerging as an alternative to assess the presence of As in municipalities where there is no access to other technologies, allowing to detect and determine the prevalence of the metalloid in Colombia.spa
dc.description.abstractEl arsénico (As) es un metaloide causante de diferentes tipos de enfermedades incluyendo el cáncer. La Organización Mundial de la Salud recomienda un límite máximo de 10 µg As/L en agua potable. En Colombia, aún es escasa la información sobre el potencial riesgo de contaminación por As, siendo reportada su presencia principalmente en los departamentos de Caldas, Nariño y Tolima. Los métodos para la detección del elemento son costosos, demorados y difíciles de implementar, por lo que el diseño de biosensores es de gran potencial ya que son sistemas económicos, sensibles y de fácil manejo. El presente trabajo reporta el desarrollo de tres biosensores para la detección de As en aguas, utilizando cromoproteínas como sistema reportero. Se amplificó y secuenció regiones codificantes del gen regulador arsR de 15 cepas nativas y 11 clones metagenómicos de ambientes en Colombia, todas resistentes a arsénico. Las secuencias obtenidas mostraron una estrecha relación con los genes arsR de Bacillius cereus ATCC 14579 (identidad del 99%, E=2e-64) y Escherichia coli ST540 (identidad del 100%, e=0.0). El ensamblaje de los tres biosensores se realizó utilizando el vector de clonación pUC18, el gen arsR del clon metagenómico M19 y en cada uno una cromoproteína como sistema reportero (morada, rosada o amarilla). Los biosensores BASmor y BASama presentaron una respuesta lineal entre la intensidad de color o fluorescencia (proteína reportera) producida respecto a la concentración de As(III), permitiendo una evaluación cualitativa y cuantitativa, respectivamente. Se obtuvieron limites de detección de 75 µg As(III)/L en el caso de evaluación por color y de 7,5 µg As(III)/L en el caso de la respuesta por fluorescencia. El biosensor BASros, bajo las condiciones de estudio, no mostró una respuesta dependiente entre concentración de As(III) y color. Estos biosensores se perfilan como alternativa para evaluar la presencia de As en municipios donde no es posible acceder con otras tecnologías, permitiendo detectar y determinar la prevalencia del metaloide en Colombia.spa
dc.description.degreelevelMaestríaspa
dc.description.projectDiseño de un biosensor para la detección de arsénicospa
dc.format.extent159spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77657
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesATSDR, 2007. Toxicological profile for arsenic. Department of Health and Human Services, Public Health Service.spa
dc.relation.referencesEPA, 2004. Monitoring Arsenic in the Environment: A Review of Science and Technologies for Field Measurements and Sensors. Washington, DCspa
dc.relation.referencesINGEOMINAS, 2004. Programa de Exploración de Aguas subterraneas.spa
dc.relation.referencesISO, 2006. 2846-1 The power of colour.spa
dc.relation.referencesWHO, 2011. Arsenic in Drinking-water World Health Organization.spa
dc.relation.referencesAchour, A. R., Bauda, P., & Billard, P. (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria: Comparative Studyspa
dc.relation.referencesAleksic, J., Bizzari, F., Cai, Y., Davidson, B., Mora, K. d., Ivakhno, S., Millar, A. (2007). Development of a Novel Biosensor for the Detection of Arsenic in Drinking Water. IET Synthetic Biology, 1(Article), 87-90. doi: 10.1049/iet-stb:20060002spa
dc.relation.referencesAlieva, N. O., Konzen, K. A., Field, S. F., Meleshkevitch, E. A., Hunt, M. E., Beltran-Ramirez, V., Matz, M. V. (2008). Diversity and Evolution of Coral Fluorescent Proteins. PLoS ONE, 3(7), e2680. doi: 10.1371/journal.pone.0002680spa
dc.relation.referencesAlonso, D. C. (2014). Determinación de arsénico total y biodisponible en la zona sur occidental del distrito minero de oro California-Vetas en el Departamento de Santander, Colombia. Magister en Ciencias- Química, Universidad Nacional de Colombia, Bogotá, Colombiaspa
dc.relation.referencesAlonso, D. L., Latorre, S., Castillo, E., & Brandao, P. F. (2014). Environmental occurrence of arsenic in Colombia: a review. [Research Support, Review. Environ Pollut, 186, 272-281. doi: 10.1016/j.envpol.2013.12.009spa
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410. doi: http://dx.doi.org/10.1016/S0022-2836(05)80360-2spa
dc.relation.referencesAltschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17), 3389-3402.spa
dc.relation.referencesAmsterdam, A., Lin, S., Moss, L. G., & Hopkins, N. (1996). Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Research Support, U.S. Gov't, P.H.S.]. Gene, 173(1 Spec No), 99-103spa
dc.relation.referencesAndrews, K. T., & Patel, B. K. C. (1996). Fervidobacterium gondwanense sp. nov., a New Thermophilic Anaerobic Bacterium Isolated from Nonvolcanically Heated Geothermal Waters of the Great Artesian Basin of Australia. International Journal of Systematic Bacteriology, 46(1), 265-269. doi: 10.1099/00207713-46-1-265spa
dc.relation.referencesArber, W. (2014). Horizontal Gene Transfer among Bacteria and Its Role in Biological Evolution. [Article]. Life (2075-1729), 4(2), 217-224. doi: 10.3390/life4020217spa
dc.relation.referencesArkin, A. (2008). Setting the standard in synthetic biology. [10.1038/nbt0708-771]. Nat Biotech, 26(7), 771-774.spa
dc.relation.referencesBakhrat, A., Eltzov, E., Finkelstein, Y., Marks, R., & Raveh, D. (2011). UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay. Cell Biology and Toxicology, 27(3), 227-236. doi: 10.1007/s10565-011-9184-8spa
dc.relation.referencesBrandão, P. F. B., Torimura, M., Kurane, R., & Bull, A. T. (2002). Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl Microbiol Biotechnol, 58(1), 77-83.spa
dc.relation.referencesBuffi, N., Merulla, D., Beutier, J., Barbaud, F., Beggah, S., van Lintel, H., Roelof van der Meer, J. (2011). Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples. Lab on a Chip, 11(14), 2369-2377. doi: 10.1039/c1lc20274jspa
dc.relation.referencesBundschuh, J., Litter, M. I., Parvez, F., Roman-Ross, G., Nicolli, H. B., Jean, J. S., Toujaguez, R. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countrie. Sci Total Environ, 429, 2-35. doi: 10.1016/j.scitotenv.2011.06.024spa
dc.relation.referencesBusenlehner, L. S., Pennella, M. A., & Giedroc, D. P. (2003). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev, 27(2–3), 131-143. doi: http://dx.doi.org/10.1016/S0168-6445(03)00054-8spa
dc.relation.referencesCai, J., & DuBow, M. (1997). Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation, 8(2), 105-111. doi: 10.1023/a:1008281028594spa
dc.relation.referencesCai, J., Salmon, K., & DuBow, M. S. (1998). A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology, 144(10), 2705-2729. doi: 10.1099/00221287-144-10-2705spa
dc.relation.referencesCallejas. (2007). Detección de arsénico de origen natural en el agua subterránea en Colombia. Universidad de los Andes, Universidad de los Andes.spa
dc.relation.referencesCánovas, D., Cases, I., & de Lorenzo, V. (2003). Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. [Article]. Environmental Microbiology, 5(12), 1242-1256. doi: 10.1111/j.1462-2920.2003.00463.xspa
dc.relation.referencesCarlin, A., Shi, W., Dey, S., & Rosen, B. P. (1995). The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol, 177(4), 981-986.spa
dc.relation.referencesCarrillo, K. C. (2012). Identificación de genes involucrados en la transformación y resistencia a arsénico en microorganismos recuperados de zonas de Colombia con la presencia del metal. Universidad Nacional de Colombia.spa
dc.relation.referencesCasadaban, M. J., Chou, J., & Cohen, S. N. (1980). In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol, 143(2), 971-980.spa
dc.relation.referencesCastillo, J., Gáspár, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Csöregi, E. (2004). Biosensors for life quality: Design, development and applications. Sensors and Actuators B: Chemical, 102(2), 179-194. doi: http://dx.doi.org/10.1016/j.snb.2004.04.084spa
dc.relation.referencesConsortium, T. U. (2015). UniProt: a hub for protein information. Nucleic Acids Res, 43(D1), D204-D212. doi: 10.1093/nar/gku989spa
dc.relation.referencesCortés-Salazar, F., Beggah, S., van der Meer, J. R., & Girault, H. H. (2013). Electrochemical As(III) whole-cell based biochip sensor. Biosensors and Bioelectronics, 47(0), 237-242. doi: http://dx.doi.org/10.1016/j.bios.2013.03.011spa
dc.relation.referencesChang, Y. Y., Kuo, T. C., Hsu, C. H., Hou, D. R., Kao, Y. H., & Huang, R. N. (2012). Characterization of the role of protein-cysteine residues in the binding with sodium arsenite. Arch Toxicol, 86(6), 911-922. doi: 10.1007/s00204-012-0828-0spa
dc.relation.referencesCheca, S. K., Zurbriggen, M. D., & Soncini, F. C. (2012). Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr Opin Biotechnol, 23(5), 766-772. doi: http://dx.doi.org/10.1016/j.copbio.2012.05.003spa
dc.relation.referencesChen, J., & Rosen, B. P. (2014). Biosensors for inorganic and organic arsenicals. [Review]. Biosensors (Basel), 4(4), 494-512. doi: 10.3390/bios4040494spa
dc.relation.referencesChiou, C.-H., Chien, L.-J., Chou, T.-C., Lin, J.-L., & Tseng, J. T. (2011). Rapid whole-cell sensing chip for low-level arsenite detection. Biosens Bioelectron, 26(5), 2484-2488. doi: 10.1016/j.bios.2010.10.037spa
dc.relation.referencesD'souza, S. (1989). Immobilized cells: Techniques and applications. Indian Journal of Microbiology, 29(2), 83-117.spa
dc.relation.referencesD'Souza, S. F. (2001). Microbial biosensors. [Review]. Biosens Bioelectron, 16(6), 337-353.spa
dc.relation.referencesDate, A., Pasini, P., & Daunert, S. (2007). Construction of spores for portable bacterial whole-cell biosensing systems. [Report]. Anal Chem(24), 9391.spa
dc.relation.referencesDate, A., Pasini, P., & Daunert, S. (2010). Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal Bioanal Chem, 398(1), 349-356. doi: 10.1007/s00216-010-3930-2spa
dc.relation.referencesDate, A., Pasini, P., Sangal, A., & Daunert, S. (2010). Packaging sensing cells in spores for long-term preservation of sensors: A tool for biomedical and environmental analysis. Anal Chem, 82(14), 6098-6103spa
dc.relation.referencesDaunert, S., Barrett, G., Feliciano, J. S., Shetty, R. S., Shrestha, S., & Smith-Spencer, W. (2000). Genetically Engineered Whole-Cell Sensing Systems:  Coupling Biological Recognition with Reporter Genes. Chemical Reviews, 100(7), 2705-2738. doi: 10.1021/cr990115pspa
dc.relation.referencesde Mora, K., Joshi, N., Balint, B. L., Ward, F. B., Elfick, A., & French, C. E. (2011). A pH-based biosensor for detection of arsenic in drinking water. Anal Bioanal Chem, 400(4), 1031-1039. doi: 10.1007/s00216-011-4815-8spa
dc.relation.referencesde Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., & Subramani, S. (1987). Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol, 7(2), 725-737spa
dc.relation.referencesde Wet, J. R., Wood, K. V., Helinski, D. R., & DeLuca, M. (1985). Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 82(23), 7870-7873spa
dc.relation.referencesDhuldhaj, U. P., Yadav, I. C., Singh, S., & Sharma, N. K. (2013). Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. [Review]. Rev Environ Contam Toxicol, 224, 1-38. doi: 10.1007/978-1-4614-5882-1_1spa
dc.relation.referencesDiorio, C., Cai, J., Marmor, J., Shinder, R., & DuBow, M. S. (1995). An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol, 177(8), 2050-2056spa
dc.relation.referencesDohrmann, A., & Tebbe, C. (2004). Section 3 update: Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). In G. A. Kowalchuk, F. J. de Bruijn, I. M. Head, A. D. Akkermans & J. D. van Elsas (Eds.), Molecular Microbial Ecology Manual (pp. 2711-2740): Springer Netherlandsspa
dc.relation.referencesDong, S., & Chen, X. (2002). Some new aspects in biosensors. Reviews in Molecular Biotechnology, 82(4), 303-323. doi: http://dx.doi.org/10.1016/S1389-0352(01)00048-4spa
dc.relation.referencesDuker, A. A., Carranza, E. J., & Hale, M. (2005). Arsenic geochemistry and health. [Review]. Environ Int, 31(5), 631-641. doi: 10.1016/j.envint.2004.10.020spa
dc.relation.referencesEsparza, C. d. (2006). The presence of arsenic in drinking water in Latin America and its effect on public health. Mexicospa
dc.relation.referencesFabricant, J. D., Chalmers, J. H., Jr., & Bradbury, M. W. (1995). Bioluminescent strains of E. coli for the assay of biocides. Bulletin of Environmental Contamination and Toxicology, 54(1), 90-95. doi: 10.1007/bf00196274spa
dc.relation.referencesFujimoto, H., Wakabayashi, M., Yamashiro, H., Maeda, I., Isoda, K., Kondoh, M., . . . Yagi, K. (2006). Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Appl Microbiol Biotechnol, 73(2), 332-338. doi: 10.1007/s00253-006-0483-6spa
dc.relation.referencesFuku, X., Iftikar, F., Hess, E., Iwuoha, E., & Baker, P. (2012). Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Analytica Chimica Acta, 730(0), 49-59. doi: http://dx.doi.org/10.1016/j.aca.2012.02.025spa
dc.relation.referencesGao, C., Yu, X.-Y., Xiong, S.-Q., Liu, J.-H., & Huang, X.-J. (2013). Electrochemical Detection of Arsenic(III) Completely Free from Noble Metal: Fe3O4 Microspheres-Room Temperature Ionic Liquid Composite Showing Better Performance than Gold. Anal Chem, 85(5), 2673-2680. doi: 10.1021/ac303143xspa
dc.relation.referencesGhim, C. M., Lee, S. K., Takayama, S., & Mitchell, R. J. (2010). The art of reporter proteins in science: past, present and future applications. BMB Rep, 43(7), 451-460spa
dc.relation.referencesGihring, T. M., & Banfield, J. F. (2001). Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiology Letters, 204(2), 335-340.spa
dc.relation.referencesGurskaya, N. G., Fradkov, A. F., Terskikh, A., Matz, M. V., Labas, Y. A., Martynov, V. I., Lukyanov, S. A. (2001). GFP-like chromoproteins as a source of far-red fluorescent proteins1. FEBS Letters, 507(1), 16-20. doi: http://dx.doi.org/10.1016/S0014-5793(01)02930-1spa
dc.relation.referencesHan, F., Su, Y., Monts, D., Plodinec, M. J., Banin, A., & Triplett, G. (2003). Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften, 90(9), 395-401. doi: 10.1007/s00114-003-0451-2spa
dc.relation.referencesHanson, G. T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R. A., Tsien, R. Y., & Remington, S. J. (2004). Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators. Journal of Biological Chemistry, 279(13), 13044-13053. doi: 10.1074/jbc.M312846200spa
dc.relation.referencesHeim, R., Cubitt, A. B., & Tsien, R. Y. (1995). Improved green fluorescence. Nature, 373(6516), 663-664. doi: 10.1038/373663b0spa
dc.relation.referencesHeim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12501-12504.spa
dc.relation.referencesHeitzer, A., Webb, O. F., Thonnard, J. E., & Sayler, G. S. (1992). Specific and Quantitative Assessment of Naphthalene and Salicylate Bioavailability by Using a Bioluminescent Catabolic Reporter Bacterium. Appl Environ Microbiol, 58(6), 1839-1846.spa
dc.relation.referencesHo-Shing, O., Lau, K., Vernon, W., Eckdahl, T., & Campbell, A. M. (2012). Assembly of Standardized DNA Parts Using BioBrick Ends in E. coli. In J. Peccoud (Ed.), Gene Synthesis (Vol. 852, pp. 61-76): Humana Pressspa
dc.relation.referencesHou, Q.-H., Ma, A.-Z., Lv, D., Bai, Z.-H., Zhuang, X.-L., & Zhuang, G.-Q. (2014). The impacts of different long-term fertilization regimes on the bioavailability of arsenic in soil: integrating chemical approach with Escherichia coli arsRp::luc-based biosensor. Appl Microbiol Biotechnol, 98(13), 6137-6146. doi: 10.1007/s00253-014-5656-0spa
dc.relation.referencesHu, Q., Li, L., Wang, Y., Zhao, W., Qi, H., & Zhuang, G. (2010). Construction of WCB-11: a novel phiYFP arsenic-resistant whole-cell biosensor. J Environ Sci (China), 22(9), 1469-1474.spa
dc.relation.referencesHuang, H.-H., Camsund, D., Lindblad, P., & Heidorn, T. (2010). Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res, 38(8), 2577-2593. doi: 10.1093/nar/gkq164spa
dc.relation.referencesHughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. [Review]. Toxicol Lett, 133(1), 1-16spa
dc.relation.referencesHughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: a historical perspective. [Historical Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]. Toxicol Sci, 123(2), 305-332. doi: 10.1093/toxsci/kfr184spa
dc.relation.referencesiGEM, U. T. (2012). Chromoproteins. iGEM. Retrieved from http://2012.igem.org/Team:Uppsala_University/Chromoproteinsspa
dc.relation.referencesInskeep, W. P., Macur, R. E., Hamamura, N., Warelow, T. P., Ward, S. A., & Santini, J. M. (2007). Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environmental Microbiology, 9(4), 934-943. doi: 10.1111/j.1462-2920.2006.01215.xspa
dc.relation.referencesIvanina, A. V., & Shuvaeva, O. V. (2009). Use of a bacterial biosensor system for determining arsenic in natural waters. Journal of Analytical Chemistry, 64(3), 310-315. doi: 10.1134/s1061934809030186spa
dc.relation.referencesIvanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., . . . Kyrpides, N. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 423(6935), 87-91. doi: http://www.nature.com/nature/journal/v423/n6935/suppinfo/nature01582_S1.htmlspa
dc.relation.referencesJi, G., & Silver, S. (1992). Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9474-9478.spa
dc.relation.referencesJoshi, N., Wang, X., Montgomery, L., Elfick, A., & French, C. E. (2009). Novel Approaches to Biosensors for Detection of Arsenic in Drinking Water. Desalination, 248(Article), 517-523.spa
dc.relation.referencesKaur, H., Kumar, R., Babu, J. N., & Mittal, S. (2015). Advances in arsenic biosensor development – A comprehensive review. Biosensors and Bioelectronics, 63(0), 533-545. doi: http://dx.doi.org/10.1016/j.bios.2014.08.003spa
dc.relation.referencesKaur, P., & Rosen, B. P. (1992). Plasmid-encoded resistance to arsenic and antimony. Plasmid, 27(1), 29-40.spa
dc.relation.referencesKawakami, Y., Siddiki, M. S. R., Inoue, K., Otabayashi, H., Yoshida, K., Ueda, S., Maeda, I. (2010). Application of fluorescent protein-tagged trans factors and immobilized cis elements to monitoring of toxic metals based on in vitro protein–DNA interactions. Biosensors and Bioelectronics, 26(4), 1466-1473. doi: http://dx.doi.org/10.1016/j.bios.2010.07.082spa
dc.relation.referencesKing, J. M. H., DiGrazia, P. M., Applegate, B., Burlage, R., Sanseverino, J., Dunbar, P.,. Sayler, G. S. (1990). Rapid, Sensitive Bioluminescent Reporter Technology for Naphthalene Exposure and Biodegradation. Science, 249(4970), 778-781. doi: 10.2307/2878083spa
dc.relation.referencesKnight, T. (2003). Idempotent Vector Design for Standard Assembly of Biobricks. MIT Artificial Intelligence Laboratory; MIT Synthetic Biology Working Group.spa
dc.relation.referencesKostal, J., Yang, R., Wu, C. H., Mulchandani, A., & Chen, W. (2004). Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol, 70(8), 4582-4587. doi: 10.1128/AEM.70.8.4582-4587.2004spa
dc.relation.referencesLatorre, S. M. (2014). Búsqueda de genes de resistencia a arsénico en el metagenoma microbiano de la Sabana de Bogotá. Magister en Ciencias- Microbiologia, Universidad Nacional de Colombiaspa
dc.relation.referencesLewis, J. C., Feltus, A., Ensor, C. M., Ramanathan, S., & Daunert, S. (1998). Applications of reporter genes. Anal Chem, 70(17), 579A-585A.spa
dc.relation.referencesLiao, V. H.-C., & Ou, K.-L. (2005). Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environmental Toxicology and Chemistry, 24(7), 1624-1631. doi: 10.1897/04-500r.1spa
dc.relation.referencesLiao, V. H., & Ou, K. L. (2005). Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem, 24(7), 1624-1631spa
dc.relation.referencesLitter. (2009). Metodologías analíticas para la detección de arsénico en aguas y suelos.spa
dc.relation.referencesLitter, M. I., Morgada, M. E., & Bundschuh, J. (2010). Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut, 158(5), 1105-1118. doi: 10.1016/j.envpol.2010.01.028spa
dc.relation.referencesLiu, Z., Mukhopadhyay, R., Shi, J., Ye, J., & Rosen, B. P. (2003). Chapter 18 - Structural proteomics of arsenic transport and detoxification. Arsenic Exposure and Health Effects V (pp. 241-253). Amsterdam: Elsevier Science B.V.spa
dc.relation.referencesLukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky, A. P., Lukyanov, S. A. (2000). Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog. Journal of Biological Chemistry, 275(34), 25879-25882. doi: 10.1074/jbc.C000338200spa
dc.relation.referencesLuong, J. H., Male, K. B., & Glennon, J. D. (2008). Biosensor technology: technology push versus market pull. [Review]. Biotechnol Adv, 26(5), 492-500. doi: 10.1016/j.biotechadv.2008.05.007spa
dc.relation.referencesLuong, J. H. T., Majid, E., & Male, K. B. (2007). Analytical Tools for Monitoring Arsenic in the Environment. The Open Analytical Chemistry Journal, 1(1), 7-14. doi: 10.2174/187406500701017005spa
dc.relation.referencesMandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201-235. doi: http://dx.doi.org/10.1016/S0039-9140(02)00268-0spa
dc.relation.referencesMarchisio, M. A., & Rudolf, F. (2011). Synthetic biosensing systems. The International Journal of Biochemistry & Cell Biology, 43(3), 310-319. doi: http://dx.doi.org/10.1016/j.biocel.2010.11.012spa
dc.relation.referencesMarín. (1978). Recursos minerales de colombia.spa
dc.relation.referencesMcLaren, K. (1976). XIII—The Development of the CIE 1976 (L* a* b*) Uniform Colour Space and Colour-difference Formula. Journal of the Society of Dyers and Colourists, 92(9), 338-341. doi: 10.1111/j.1478-4408.1976.tb03301.xspa
dc.relation.referencesMERCOSUR. (2013). El problema del arsénico en el Mercosur. Un abordaje integrado y multidisciplinar en la investigación y desarrollo para contribuir a su resolución. Retrieved 14 de marzo 2014, from http://www.cyted.org/documentos/noticias/doc_28.pdfspa
dc.relation.referencesMerulla, D., Buffi, N., Beggah, S., Truffer, F., Geiser, M., Renaud, P., & van der Meer, J. R. (2013). Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr Opin Biotechnol, 24(3), 534-541. doi: 10.1016/j.copbio.2012.09.002spa
dc.relation.referencesResolución 2115 (2007).spa
dc.relation.referencesMiraglia, L. J., King, F. J., & Damoiseaux, R. (2011). Seeing the light: Luminescent reporter gene assays. Combinatorial Chemistry and High Throughput Screening, 14(8), 648-657. doi: 10.2174/138620711796504389spa
dc.relation.referencesMiyawaki, A., Shcherbakova, D. M., & Verkhusha, V. V. (2012). Red fluorescent proteins: chromophore formation and cellular applications. Current Opinion in Structural Biology, 22(5), 679-688. doi: http://dx.doi.org/10.1016/j.sbi.2012.09.002spa
dc.relation.referencesMorin, J. G., & Hastings, J. W. (1971). Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol, 77(3), 305-312. doi: 10.1002/jcp.1040770304spa
dc.relation.referencesMukhopadhyay, R., Rosen, B. P., Phung, L. T., & Silver, S. (2002). Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev, 26(3), 311-325.spa
dc.relation.referencesMuller, D., Lièvremont, D., Simeonova, D. D., Hubert, J.-C., & Lett, M.-C. (2003). Arsenite Oxidase aox Genes from a Metal-Resistant β-Proteobacterium. J Bacteriol, 185(1), 135-141. doi: 10.1128/jb.185.1.135-141.2003spa
dc.relation.referencesMuñoz, E. J. (2008). Determinación de arsénico por técnicas de absorción atómica en vegetales, suelos y aguas de riego. Universidad Nacional de Colombiaspa
dc.relation.referencesNaylor, L. H. (1999). Reporter gene technology: the future looks bright. [Review]. Biochem Pharmacol, 58(5), 749-757spa
dc.relation.referencesNg, J. C., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. [Review]. Chemosphere, 52(9), 1353-1359. doi: 10.1016/S0045-6535(03)00470-3spa
dc.relation.referencesNicolli, H. B. (2006). Arsénico en aguas subterráneas de Latinoamérica: panorama y perspectivas. CONICET, Buenos Aires.: Instituto de Geoquímica, Centro de Investigaciones San Miguel.spa
dc.relation.referencesNordstrom, D. K. (2002). Worldwide Occurrences of Arsenic in Ground Water. Science, 296(5576), 2143-2145. doi: 10.1126/science.1072375spa
dc.relation.referencesNotredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of molecular biology, 302(1), 205-217. doi: 10.1006/jmbi.2000.4042spa
dc.relation.referencesPaez-Espino, D., Tamames, J., de Lorenzo, V., & Canovas, D. (2009). Microbial responses to environmental arsenic Biometals, 22(1), 117-130. doi: 10.1007/s10534-008-9195-yspa
dc.relation.referencesPark, M., Tsai, S.-L., & Chen, W. (2013). Microbial Biosensors: Engineered Microorganisms as the Sensing Machinery. Sensors, 13(5), 5777-5795.spa
dc.relation.referencesPetänen, T., & Romantschuk, M. (2002). Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Analytica Chimica Acta, 456(1), 55-61. doi: http://dx.doi.org/10.1016/S0003-2670(01)00963-1spa
dc.relation.referencesPetrusevsky. (2007). Arsenic in drinking water. In S. S (Ed.).spa
dc.relation.referencesPreston, S., Coad, N., Townend, J., Killham, K., & Paton, G. I. (2000). Biosensing the acute toxicity of metal interactions: Are they additive, synergistic, or antagonistic? Environmental Toxicology and Chemistry, 19(3), 775-780. doi: 10.1002/etc.5620190332spa
dc.relation.referencesRamanathan, S., Shi, W., Rosen, B. P., & Daunert, S. (1997). Sensing Antimonite and Arsenite at the Subattomole Level with Genetically Engineered Bioluminescent Bacteria. Anal Chem, 69(16), 3380-3384.spa
dc.relation.referencesRamanathan, S., Shi, W., Rosen, B. P., & Daunert, S. (1998). Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Analytica Chimica Acta, 369(3), 189-195. doi: http://dx.doi.org/10.1016/S0003-2670(98)00244-Xspa
dc.relation.referencesRanjan, R., Rastogi, N. K., & Thakur, M. S. (2012). Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide. Journal of Hazardous Materials, 225–226(0), 114-123. doi: http://dx.doi.org/10.1016/j.jhazmat.2012.04.076spa
dc.relation.referencesRavenscroft, P. (2007). Predicting the global extent of arsenic pollution of groundwater and its potential impact on human health.Final report. New York: UNICEF.spa
dc.relation.referencesRegPrecise. (2009- 2015). Collection of Manually Curated Inferences of Regulons in Prokaryotic Genomes. http://regprecise.lbl.gov/RegPrecise/help.jsp#whatspa
dc.relation.referencesRemington, S. J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics. Current Opinion in Structural Biology, 16(6), 714-721. doi: http://dx.doi.org/10.1016/j.sbi.2006.10.001spa
dc.relation.referencesRoberto, F. F., Barnes, J. M., & Bruhn, D. F. (2002). Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta, 58(1), 181-188.spa
dc.relation.referencesRogers, K. R. (1995). Biosensors for environmental applications. Biosensors and Bioelectronics, 10(6–7), 533-541. doi: http://dx.doi.org/10.1016/0956-5663(95)96929-Sspa
dc.relation.referencesRonderos, M. T. (2011). La fiebre minera se apodero de colombia. Semana.spa
dc.relation.referencesRosen, B. P. (1999). Families of arsenic transporters. [Research Support, U.S. Gov't, P.H.S.]. Trends Microbiol, 7(5), 207-212.spa
dc.relation.referencesRosenstein, R., Nikoleit, K., & Götz, F. (1994). Binding of ArsR, the repressor of the Staphylococcus xylosus (pSX267) arsenic resistance operon to a sequence with dyad symmetry within the ars promoter. Molecular and General Genetics MGG, 242(5), 566-572. doi: 10.1007/bf00285280spa
dc.relation.referencesSalaün, P., Gibbon-Walsh, K. B., Alves, G. M. S., Soares, H. M. V. M., & van den Berg, C. M. G. (2012). Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode. Analytica Chimica Acta, 746(0), 53-62. doi: http://dx.doi.org/10.1016/j.aca.2012.08.013spa
dc.relation.referencesSaltikov, C. W., & Olson, B. H. (2002). Homology of Escherichia coli R773 arsA, arsB, and arsC Genes in Arsenic-Resistant Bacteria Isolated from Raw Sewage and Arsenic-Enriched Creek Waters. Appl Environ Microbiol, 68(1), 280-288. doi: 10.1128/aem.68.1.280-288.2002spa
dc.relation.referencesSambrook, J. (2001). Molecular cloning : a laboratory manual. In D. W. Russell (Ed.), (3rd ed. ed.). Cold Spring Harbor, N.Y. :: Cold Spring Harbor Laboratory Press.spa
dc.relation.referencesSan Francisco, M. J., Hope, C. L., Owolabi, J. B., Tisa, L. S., & Rosen, B. P. (1990). Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res, 18(3), 619-624spa
dc.relation.referencesSayler, G., Cox, C., Burlage, R., Ripp, S., Nivens, D., Werner, C. Matrubutham, U. (1999). Field Application of a Genetically Engineered Microorganism for Polycyclic Aromatic Hydrocarbon Bioremediation Process Monitoring and Control. In R. Fass, Y. Flashner & S. Reuveny (Eds.), Novel Approaches for Bioremediation of Organic Pollution (pp. 241-254): Springer US.spa
dc.relation.referencesScott, D. L., Ramanathan, S., Shi, W., Rosen, B. P., & Daunert, S. (1997). Genetically Engineered Bacteria:  Electrochemical Sensing Systems for Antimonite and Arsenite. Anal Chem, 69(1), 16-20. doi: 10.1021/ac960788xspa
dc.relation.referencesSchäfer, L. V., Groenhof, G., Boggio-Pasqua, M., Robb, M. A., & Grubmüller, H. (2008). Chromophore Protonation State Controls Photoswitching of the Fluoroprotein asFP595. PLoS Computational Biology, 4(3), e1000034. doi: 10.1371/journal.pcbi.1000034spa
dc.relation.referencesScharnagl, C., Raupp-Kossmann, R., & Fischer, S. F. (1999). Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. Biophysical Journal, 77(4), 1839-1857.spa
dc.relation.referencesSengupta, M. K., & Dasgupta, P. K. (2009). An Automated Hydride Generation Interface to ICPMS for Measuring Total Arsenic in Environmental Samples. Anal Chem, 81(23), 9737-9743. doi: 10.1021/ac9020243spa
dc.relation.referencesShaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. [10.1038/nbt1037]. Nat Biotech, 22(12), 1567-1572. doi: http://www.nature.com/nbt/journal/v22/n12/suppinfo/nbt1037_S1.htmlspa
dc.relation.referencesSharma, P., Asad, S., & Ali, A. (2013). Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. [Research Support, Non-U.S. Gov't]. J Biosci, 38(2), 251-258spa
dc.relation.referencesShen, S., Li, X.-F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013). Arsenic Binding to Proteins. Chemical Reviews, 113(10), 7769-7792. doi: 10.1021/cr300015cspa
dc.relation.referencesSiddiki, M. S. R., Kawakami, Y., Ueda, S., & Maeda, I. (2011). Solid Phase Biosensors for Arsenic or Cadmium Composed of A trans Factor and cis Element Complex. Sensors, 11(11), 10063-10073.spa
dc.relation.referencesSiegfried, K., Endes, C., Bhuiyan, A. F. M. K., Kuppardt, A., Mattusch, J., van der Meer, J. R., . . . Harms, H. (2012). Field Testing of Arsenic in Groundwater Samples of Bangladesh Using a Test Kit Based on Lyophilized Bioreporter Bacteria. Environ Sci Technol, 46(6), 3281-3287. doi: 10.1021/es203511kspa
dc.relation.referencesSilver, S., Budd, K., Leahy, K. M., Shaw, W. V., Hammond, D., Novick, R. P., Rosenberg, H. (1981). Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus. J Bacteriol, 146(3), 983-996.spa
dc.relation.referencesSilver, S., Ji, G., Bröer, S., Dey, S., Dou, D., & Rosen, B. P. (1993). Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Molecular Microbiology, 8(4), 637-642. doi: 10.1111/j.1365-2958.1993.tb01607.xspa
dc.relation.referencesSilver, S., & Phung le, T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. [Review]. J Ind Microbiol Biotechnol, 32(11-12), 587-605. doi: 10.1007/s10295-005-0019-6spa
dc.relation.referencesSmith, A. H., & Smith, M. M. H. (2004). Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology, 198(1–3), 39-44. doi: http://dx.doi.org/10.1016/j.tox.2004.02.024spa
dc.relation.referencesStanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (2005). Microbiología.spa
dc.relation.referencesStocker, J., Balluch, D., Gsell, M., Harms, H., Feliciano, J., Daunert, S., van der Meer, J. R. (2003). Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol, 37(20), 4743-4750.spa
dc.relation.referencesStolz, J. F., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and selenium in microbial metabolism. [Review]. Annu Rev Microbiol, 60, 107-130. doi: 10.1146/annurev.micro.60.080805.142053spa
dc.relation.referencesStolz, J. F., & Oremland, R. S. (2011). Microbial Metal and Metalloid Metabolism: Advances and Applications: ASM Press.spa
dc.relation.referencesSu, L., Jia, W., Hou, C., & Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26(5), 1788-1799. doi: http://dx.doi.org/10.1016/j.bios.2010.09.005spa
dc.relation.referencesSummers, A. O. (1992). Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol, 174(10), 3097-3101.spa
dc.relation.referencesTamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi: 10.1093/molbev/mst197spa
dc.relation.referencesTani, C., Inoue, K., Tani, Y., Harun-ur-Rashid, M., Azuma, N., Ueda, S., Maeda, I. (2009). Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter–reporter units in tandem for detection of arsenic. Journal of Bioscience and Bioengineering, 108(5), 414-420. doi: http://dx.doi.org/10.1016/j.jbiosc.2009.05.014spa
dc.relation.referencesTauriainen, S., Karp, M., Chang, W., & Virta, M. (1997). Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol, 63(11), 4456-4461.spa
dc.relation.referencesTauriainen, S., Virta, M., Chang, W., & Karp, M. (1999). Measurement of Firefly Luciferase Reporter Gene Activity from Cells and Lysates Using Escherichia coli Arsenite and Mercury Sensors. Analytical Biochemistry, 272(2), 191-198. doi: http://dx.doi.org/10.1006/abio.1999.4193spa
dc.relation.referencesTorres, J. M., P. (2008). Recuperación de cepas tolerantes a concentraciones de arsénico., Universidad Nacional de colombia.spa
dc.relation.referencesTrang, P. T. K., Berg, M., Viet, P. H., Mui, N. V., & van der Meer, J. R. (2005). Bacterial Bioassay for Rapid and Accurate Analysis of Arsenic in Highly Variable Groundwater Samples. Environ Sci Technol, 39(19), 7625-7630. doi: 10.1021/es050992espa
dc.relation.referencesTsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol, 20(6), 659-667. doi: 10.1016/j.copbio.2009.09.013spa
dc.relation.referencesTsien, R. Y. (1998). The green fluorescent protein.Annu Rev Biochem, 67, 509-544. doi: 10.1146/annurev.biochem.67.1.509spa
dc.relation.referencesUntergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. M. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res, 35(Web Server issue), W71-W74. doi: 10.1093/nar/gkm306spa
dc.relation.referencesvan der Meer, J. R., & Belkin, S. (2010). Where microbiology meets microengineering: design and applications of reporter bacteria. [Review]. Nat Rev Micro, 8(7), 511-522. doi: 10.1038/nrmicro2392spa
dc.relation.referencesVan Dyk, T. K., Majarian, W. R., Konstantinov, K. B., Young, R. M., Dhurjati, P. S., & LaRossa, R. A. (1994). Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol, 60(5), 1414-1420.spa
dc.relation.referencesVerkhusha, V. V., Chudakov, D. M., Gurskaya, N. G., Lukyanov, S., & Lukyanov, K. A. (2004). Common Pathway for the Red Chromophore Formation in Fluorescent Proteins and Chromoproteins. Chemistry & Biology, 11(6), 845-854. doi: http://dx.doi.org/10.1016/j.chembiol.2004.04.007spa
dc.relation.referencesVerkhusha, V. V., & Lukyanov, K. A. (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotech, 22(3), 289-296.spa
dc.relation.referencesWackwitz, A., Harms, H., Chatzinotas, A., Breuer, U., Vogne, C., & Van Der Meer, J. R. (2008). Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microbial Biotechnology, 1(2), 149-157. doi: 10.1111/j.1751-7915.2007.00011.xspa
dc.relation.referencesWachter, R. M. (2006). The Family of GFP-Like Proteins: Structure, Function, Photophysics and Biosensor Applications. Introduction and Perspective. Photochemistry and Photobiology, 82(2), 339-344. doi: 10.1562/2005-10-02-ir-708spa
dc.relation.referencesWang, B., Barahona, M., & Buck, M. (2013). A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosensors and Bioelectronics, 40(1), 368-376. doi: http://dx.doi.org/10.1016/j.bios.2012.08.011spa
dc.relation.referencesWeber, W., & Fussenegger, M. (2011). Molecular diversity—the toolbox for synthetic gene switches and networks. Current Opinion in Chemical Biology, 15(3), 414-420. doi: http://dx.doi.org/10.1016/j.cbpa.2011.03.003spa
dc.relation.referencesWilmann, P. G., Petersen, J., Devenish, R. J., Prescott, M., & Rossjohn, J. (2005). Variations on the GFP Chromophore: a polypeptide fragmentation within the chromophore revealed in the 2.1-å crystal structure of a nonfluorescent chromoprotein from anemonia sulcata. Journal of Biological Chemistry, 280(4), 2401-2404. doi: 10.1074/jbc.C400484200spa
dc.relation.referencesWokittel. (1960). Compilación de los estudios geológicos oficiales en Colombia. (Vol. 10 ). Bogotá.spa
dc.relation.referencesWood, K. V. (1995). Marker proteins for gene expression. Curr Opin Biotechnol, 6(1), 50-58. doi: http://dx.doi.org/10.1016/0958-1669(95)80009-3spa
dc.relation.referencesWu, J., & Rosen, B. P. (1991). The ArsR protein is a trans-acting regulatory protein. Molecular Microbiology, 5(6), 1331-1336.spa
dc.relation.referencesWu, J., & Rosen, B. P. (1993). The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Molecular Microbiology, 8(3), 615-623. doi: 10.1111/j.1365-2958.1993.tb01605.xspa
dc.relation.referencesWu, J., & Rosen, B. P. (1993). Metalloregulated expression of the ars operon. J Biol Chem, 268(1), 52-58.spa
dc.relation.referencesXu, C., & Rosen, B. P. (1997). Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli. Journal of Biological Chemistry, 272(25), 15734-15738. doi: 10.1074/jbc.272.25.15734spa
dc.relation.referencesXu, C., Shi, W., & Rosen, B. P. (1996). The Chromosomal arsR Gene of Escherichia coli Encodes a trans-acting Metalloregulatory Protein. Journal of Biological Chemistry, 271(5), 2427-2432. doi: 10.1074/jbc.271.5.2427spa
dc.relation.referencesYagi, K. (2007). Applications of whole-cell bacterial sensors in biotechnology and environmental science. [Review]. Appl Microbiol Biotechnol, 73(6), 1251-1258. doi: 10.1007/s00253-006-0718-6spa
dc.relation.referencesYoshida, K., Inoue, K., Takahashi, Y., Ueda, S., Isoda, K., Yagi, K., & Maeda, I. (2008). Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl Environ Microbiol, 74(21), 6730-6738. doi: 10.1128/AEM.00498-08spa
dc.relation.referencesYunus, M., Sohel, N., Hore, S. K., & Rahman, M. (2011). Arsenic exposure and adverse health effects: a review of recent findings from arsenic and health studies in Matlab, Bangladesh. Kaohsiung J Med Sci, 27(9), 371-376. doi: 10.1016/j.kjms.2011.05.012spa
dc.relation.referencesZhang, J. Y., Zheng, C. G., Ren, D. Y., Chou, C. L., Liu, J., Zeng, R. S., Ge, Y. T. (2004). Distribution of potentially hazardous trace elements in coals from Shanxi province, China. Fuel, 83(1), 129-135. doi: 10.1016/s0016-2361(03)00221-7spa
dc.relation.referencesZhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1-2), 203-214. doi: 10.1089/10665270050081478spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc360 - Problemas y servicios sociales; asociaciones::363 - Otros problemas y servicios socialesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.proposalArseniceng
dc.subject.proposalArsénicospa
dc.subject.proposalbiosensorspa
dc.subject.proposalbiosensoreng
dc.subject.proposalcromoproteínaspa
dc.subject.proposalchromoproteineng
dc.subject.proposalgen arsRspa
dc.subject.proposalarsR geneeng
dc.subject.proposalars operoneng
dc.subject.proposaloperon arsspa
dc.subject.proposalIngeniería genéticaspa
dc.subject.proposalgenetic engineeringeng
dc.titleDiseño de un biosensor para la detección de arsénicospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018430894.2015.pdf
Tamaño:
3.74 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: