Evaluación del modelo hidrológico Dynamic Water Balance a escala diaria en cuencas tropicales

dc.contributor.advisorMancipe Munoz, Nestor Alonsospa
dc.contributor.advisorZamora Ávila, David Andrésspa
dc.contributor.authorGarcía Echeverri, Camila Andreaspa
dc.contributor.researchgroupGrupo de Investigación en Ingeniería de Recursos Hidrícos Girehspa
dc.date.accessioned2022-06-13T19:47:02Z
dc.date.available2022-06-13T19:47:02Z
dc.date.issued2022-03-17
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEste trabajo final de maestría presenta los resultados de la evaluación del modelo Dynamic Water Balance (DWB) a escala diaria para representar escorrentía en cuencas tropicales. El presente proyecto utilizó como insumo diferentes conjuntos de datos generados en el marco del Estudio Nacional del Agua del año 2018 (ENA2018) desarrollado por el IDEAM. La información suministrada corresponde a un total de 497 cuencas, de las cuales seleccionaron 30 para este estudio. La selección de las cuencas se realizó a través del algoritmo de clasificación no supervisada k-means que consideró variables morfométricas, hidroclimatológicas, demográficas y geográficas y su relación con una variable que cuantificó el cambio de las coberturas. De esta forma, se identificaron 8 clusters o grupos de cuencas con comportamiento similar y de características heterogéneas. A las 30 cuencas seleccionadas se les realizó una modelación hidrológica con DWB siguiendo el protocolo de modelación hidrológica, así que se hizo la evaluación de la incertidumbre dada por los parámetros del modelo. Dados los resultados encontrados en la revisión bibliográfica, se adoptó una función multiobjetivo que combinó el KGE y RVE con el fin de mejorar el desempeño de la escorrentía diaria, haciendo énfasis en la representación de la curva de duración de caudales siendo esta la mayor ventaja identificada por los desarrolladores del modelo en esta escala. El proceso de evaluación de los resultados arrojó que el modelo DWB logra reproducir las curvas de duración de caudales con excepción de los caudales bajos. Al evaluar la representación temporal a través de análisis de la función objetivo, el modelo arrojó resultados entre muy buenos y satisfactorios en más del 70% de las cuencas de los clusters 1, 5, 7 y 8, estas cuencas con buenos resultados se ubican principalmente sobre las cordilleras. Como resultado general, este trabajo condujo a la identificación de oportunidades de adaptación del modelo DWB con miras a mejorar la representación de la escorrentía diaria. Se identificó que se debe incluir el proceso de tránsito hidrológico y para este fin se presentaron dos estrategias que podrían ser aplicadas, la primera basada en la inclusión de este proceso dentro del modelo como es el caso de la convolución del hidrograma unitario que ha sido implementado en otros modelos hidrológicos parsimoniosos y la segunda basada en el acople con algoritmos externos que han sido diseñados para realizar este proceso. (Texto tomado de la fuente).spa
dc.description.abstractThis final master work presents the results of the evaluation of the model Dynamic Water Balance (DWB) model at daily scale to simulate runoff in tropical watersheds. The present project used as input dataset information generated in the framework of the 2018 National Water Study developed by IDEAM. Therefore, 30 out of 497 watersheds area selected to be assessed in this study. The selection of the watersheds is made through the unsupervised k-means classification algorithm that considered morphometric, hydroclimatological, demographic, and geographic variables and their relationship with a variable that quantified the change in land cover. Thus, 8 clusters or groups of watersheds with similar behavior and heterogeneous characteristics are identified. The 30 selected watersheds were subjected to hydrological modeling with DWB following the hydrological modeling protocol. Then, the uncertainty given by the model parameters is evaluated. Given the results found in the literature review, a multi-objective function combining the KGE and RVE is adopted to improve the daily runoff performance, emphasizing the representation of the flow duration curve which was the major advantage identified by the model developers at the daily scale. The process of evaluating the results showed that the DWB model can reproduce the flow duration curves except for low flows. When evaluating the temporal representation through analysis of the objective function, the model yields very good to satisfactory results in more than 70% of the watersheds in clusters 1, 5, 7 and 8, these basins with good results are located mainly in the mountains. As a general result, this work led to the identification of opportunities for adapting the DWB model to a daily simulation of runoff. It is identified that the hydrologic routing process should be included and for this purpose two strategies are suggested: [1] the inclusion of a hydrologic routing based on the convolution of the unit hydrograph that has been implemented in other parsimonious hydrologic models and [2] the coupling with external algorithms that have been designed to perform this process.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.notesIncluye anexosspa
dc.description.researchareaModelación hidrológicaspa
dc.format.extentxii, 95 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypeapplication/x-compressedspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81573
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAnshuman, A., Kunnath-Poovakka, A., & Eldho, T. I. (2021). Performance evaluation of conceptual rainfall-runoff models GR4J and AWBM. ISH Journal of Hydraulic Engineering, 27(4), 365–374. https://doi.org/10.1080/09715010.2018.1556124spa
dc.relation.referencesArboleda-Obando, P. (2018). Determinando los efectos del cambio climático y del cambio en usos del suelo en la Macro Cuenca Magdalena Cauca utilizando el modelo de suelo-superficie e hidrológico MESH. 253.spa
dc.relation.referencesBai, P., Liu, W., & Guo, M. (2014). Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China. Theoretical and Applied Climatology, 117(1–2), 293–301. https://doi.org/10.1007/s00704-013-1009-7spa
dc.relation.referencesBai, Y., Wagener, T., & Reed, P. (2009). A top-down framework for watershed model evaluation and selection under uncertainty. Environmental Modelling & Software, 24(8), 901–916. https://doi.org/10.1016/j.envsoft.2008.12.012spa
dc.relation.referencesBergström, S. (1991). Principles and Confidence in Hydrological Modelling. Hydrology Research, 22(2), 123–136. https://doi.org/10.2166/nh.1991.0009spa
dc.relation.referencesBeven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298. https://doi.org/10.1002/hyp.3360060305spa
dc.relation.referencesBiondi, D., Freni, G., Iacobellis, V., Mascaro, G., & Montanari, A. (2012). Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice. Physics and Chemistry of the Earth, Parts A/B/C, 42–44, 70–76. https://doi.org/10.1016/j.pce.2011.07.037spa
dc.relation.referencesBoughton, W. (2004). The Australian water balance model. Environmental Modelling & Software, 19(10), 943–956. https://doi.org/https://doi.org/10.1016/j.envsoft.2003.10.007spa
dc.relation.referencesBras, R. L. (2015). Complexity and organization in hydrology: A personal view. Water Resources Research, 51(8), 6532–6548. https://doi.org/10.1002/2015WR016958spa
dc.relation.referencesBrirhet, H., & Benaabidate, L. (2016). Comparison Of Two Hydrological Models (Lumped And Distributed) Over A Pilot Area Of The Issen Watershed In The Souss Basin, Morocco. European Scientific Journal, ESJ, 12(18), 347. https://doi.org/10.19044/esj.2016.v12n18p347spa
dc.relation.referencesBudyko, M. . (1958). The heat balance of the earth’s surface (U. . D. of Commerce (ed.)). Translate from russian by N.A Stepanova.spa
dc.relation.referencesCalder, I. R. (1998). Water use by forests, limits and controls. Tree Physiology, 18(8_9), 625–631. https://doi.org/10.1093/treephys/18.8-9.625spa
dc.relation.referencesCamino, M., Bó, J., Cionchi, J., Del Río, J., López de Armentia, A., & De Marco, S. (2018). Estudio morfométrico de las cuencas de drenaje de la vertiente sur del sudeste de la provincia de Buenos Aires. Revista Universitaria de Geografía, 27(1). https://www.redalyc.org/articulo.oa?id=383257036005spa
dc.relation.referencesCarvajal, L., & Roldán, E. (2007). Calibración del modelo lluvia-escorrentía agregado gr4j aplicación: cuenca del río Aburrá. Dyna, 74(152), 73–97. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=s0012-73532007000200007&lng=en&tlng=esspa
dc.relation.referencesCasper, M. C., Grigoryan, G., Gronz, O., Gutjahr, O., Heinemann, G., & Ley, R. (2011). Analysis of projected hydrological behavior of catchments based on signature indices. Hydrology and Earth System Sciences Discussions, 8(2), 3571–3597. https://doi.org/10.5194/hessd-8-3571-2011spa
dc.relation.referencesCháves-Jiménez, A. (2009). APLICACIÓN DEL MÉTODO DE REGIONALIZACIÓN PARA LA DETERMINACIÓN DE CAUDALES EN EL PUENTE CARRASQUILLO. Universidad de Piura.spa
dc.relation.referencesChiew, F. H. S., Peel, M. C., Western, A. W., Singh, V. P., & Frevert, D. K. (2002). Application and testing of the simple rainfall-runoff model SIMHYD. In L. Water Resources Publications (Ed.), Mathematical models of small watershed hydrology and applications (pp. 335–367).spa
dc.relation.referencesClark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., & Rasmussen, R. M. (2015). A unified approach for process‐based hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498–2514. https://doi.org/10.1002/2015WR017198spa
dc.relation.referencesComber, A., & Zeng, W. (2019). Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations. Geography Compass, 13(10). https://doi.org/10.1111/gec3.12465spa
dc.relation.referencesCoxon, G., Freer, J., Lane, R., Dunne, T., Knoben, W. J. M., Howden, N. J. K., Quinn, N., Wagener, T., & Woods, R. (2019). DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geoscientific Model Development, 12(6), 2285–2306. https://doi.org/10.5194/gmd-12-2285-2019spa
dc.relation.referencesCrochemore, L., Perrin, C., Andréassian, V., Ehret, U., Seibert, S. P., Grimaldi, S., Gupta, H., & Paturel, J.-E. (2015). Comparing expert judgement and numerical criteria for hydrograph evaluation. Hydrological Sciences Journal, 60(3), 402–423. https://doi.org/10.1080/02626667.2014.903331spa
dc.relation.referencesDANE. (2006). Censo General 2005. https://www.dane.gov.co/files/censo2005/boletin.pdfspa
dc.relation.referencesDANE. (2019). Censo General 2018.spa
dc.relation.referencesDíaz, L., & Alarcon, J. (2018). Estudio hidrológico y balance hídrico para determinar la oferta y la demanda de agua de la cuenca de la quebrada niscota para un acueducto interveredal en Nunchía, Casanare [Universidad Católica de Colombia]. https://repository.ucatolica.edu.co/bitstream/10983/15989/1/Proyecto Final.pdfspa
dc.relation.referencesDidan, K. (2015). MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/products/mod13q1v006/spa
dc.relation.referencesDiskin, M. H., & Simon, E. (1977). A procedure for the selection of objective functions for hydrologic simulation models. Journal of Hydrology, 34(1–2), 129–149. https://doi.org/10.1016/0022-1694(77)90066-Xspa
dc.relation.referencesDuque, N., & Fuentes, C. (2019). Usando R para una fácil y eficiente predicción de la incertidumbre de simulaciones de modelos ambientales. Revista Hidrolatinoamericana de Jóvenes Investigadores y Profesionales, 3, 17–20. https://eb482193-b6aa-4d33-b48d-fc5ae67cfe31.filesusr.com/ugd/d728aa_0d0f1d9354bb4aa885fb9ff2cf37f562.pdf?index=truespa
dc.relation.referencesDuque, N., Vega, C., Arboleda, P., & Zamora, D. (2020). DWBmodelUN: Dynamic Water Balance a Hydrological Model. https://cran.r-project.org/package=DWBmodelUNspa
dc.relation.referencesEdijatno, N., Yang, X., Makhlouf, Z., & Michel, C. (1999). GR3J: a daily watershed model with three free parameters. Hydrological Sciences Journal, 44(2), 263–277. https://doi.org/10.1080/02626669909492221spa
dc.relation.referencesEfstratiadis, A., & Koutsoyiannis, D. (2010). One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrological Sciences Journal, 55(1), 58–78. https://doi.org/10.1080/02626660903526292spa
dc.relation.referencesESRI Inc. (2020). ArcGIS Pro (Version 2.7). https://www.esri.com/en-us/arcgis/products/arcgis-pro/overviewspa
dc.relation.referencesFu, B. (1981). On the calculation of the evaporation from land surface. Chinese Journal of Atmospheric Sciences, 23–31.spa
dc.relation.referencesFunk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66spa
dc.relation.referencesGaray, D., & Agüero, J. (2018). Delimitación Hidrográfica y Caracterización Morfométrica de la Cuenca del Río Anzulón (INTA (ed.)).spa
dc.relation.referencesGarcía-Echeverri, C., Duque-Gardeazabal Nicolás, Carolina, V.-V., Arboleda-Obando, P., & Zamora, D. (2020). DWBmodelUN: an R-package for the hydrological model Dynamic Water Balance. 1. https://doi.org/https://doi.org/10.5194/egusphere-egu2020-4222spa
dc.relation.referencesGarcía-Echeverri, C., Mancipe, N., Rodríguez, C., González, C., & Zamora, D. (2021). Evaluación multitemporal del cambio de cobertura vegetal en cuencas colombianas a partir de índices de vegetación. III Congreso Internacional de Ríos y Humedales.spa
dc.relation.referencesGarcia, F., Folton, N., & Oudin, L. (2017). Which objective function to calibrate rainfall–runoff models for low-flow index simulations? Hydrological Sciences Journal, 62(7), 1149–1166. https://doi.org/10.1080/02626667.2017.1308511spa
dc.relation.referencesGraham, J. W. (2009). Missing Data Analysis: Making It Work in the Real World. Annual Review of Psychology, 60(1), 549–576. https://doi.org/10.1146/annurev.psych.58.110405.085530spa
dc.relation.referencesGui, H., Wu, Z., & Zhang, C. (2021). Comparative Study of Different Types of Hydrological Models Applied to Hydrological Simulation. CLEAN – Soil, Air, Water, 49(8), 2000381. https://doi.org/10.1002/clen.202000381spa
dc.relation.referencesGuilarte, R. (1978). Hidrología básica (F. de Ingeniería (ed.)).spa
dc.relation.referencesGupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003spa
dc.relation.referencesHamel, P., Guswa, A. J., Sahl, J., & Zhang, L. (2017). Predicting dry-season flows with a monthly rainfall–runoff model: Performance for gauged and ungauged catchments. Hydrological Processes, 31(22), 3844–3858. https://doi.org/10.1002/hyp.11298spa
dc.relation.referencesHargreaves, G., & Samani, Z. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773spa
dc.relation.referencesHernández, S., Morales, L., & Sallis, P. (2011). Estimation of Reference Evapotranspiration Using Limited Climatic Data and Bayesian Model Averaging. 2011 UKSim 5th European Symposium on Computer Modeling and Simulation, 59–63. https://doi.org/10.1109/EMS.2011.81spa
dc.relation.referencesHuard, D., & Mailhot, A. (2006). A Bayesian perspective on input uncertainty in model calibration: Application to hydrological model “abc.” Water Resources Research, 42(7). https://doi.org/10.1029/2005WR004661spa
dc.relation.referencesHuete, A., Didan, K., Miura, T., Rodriguez, E. ., Gao, X., & Ferreira, L. . (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2spa
dc.relation.referencesHuo, J., & Liu, L. (2020). Evaluation Method of Multiobjective Functions’ Combination and Its Application in Hydrological Model Evaluation. Computational Intelligence and Neuroscience, 2020, 1–23. https://doi.org/10.1155/2020/8594727spa
dc.relation.referencesIDEAM. (2013). Zonificación y codificación de cuencas hidrográficas. http://documentacion.ideam.gov.co/openbiblio/bvirtual/022655/MEMORIASMAPAZONIFICACIONHIDROGRAFICA.pdfspa
dc.relation.referencesIDEAM. (2018). Protocolo De Modelación Hidrológica e Hidráulica. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023833/Protocolo_Modelacion_HH.pdfspa
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua 2018. Bogotá: Ideam 452 pp.spa
dc.relation.referencesJabloun, M., & Sahli, A. (2008). Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data. Agricultural Water Management, 95(6), 707–715. https://doi.org/10.1016/j.agwat.2008.01.009spa
dc.relation.referencesK. Ajami, N., Gupta, H., Wagener, T., & Sorooshian, S. (2004). Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298(1–4), 112–135. https://doi.org/10.1016/j.jhydrol.2004.03.033spa
dc.relation.referencesKallio, M., Guillaume, J. H. A., Virkki, V., Kummu, M., & Virrantaus, K. (2021). Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products. Geoscientific Model Development, 14(8), 5155–5181. https://doi.org/10.5194/gmd-14-5155-2021spa
dc.relation.referencesKim, H. J. (2001). Development of two-parametric hyperbolic model for daily streamflow simulation. PH. D. dissertation, Seoul National University, Seoul.spa
dc.relation.referencesKim, Kwon, & Han. (2018). Exploration of warm-up period in conceptual hydrological modelling. In Journal of Hydrology (Vol. 556). https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.11.015spa
dc.relation.referencesKnoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or not? Comparing NashSutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences. https://doi.org/https://doi.org/10.5194/hess-2019-327spa
dc.relation.referencesKoutsoyiannis, D. (2016). Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrological Sciences Journal, 61(2), 225–244. https://doi.org/10.1080/02626667.2015.1016950spa
dc.relation.referencesKrause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005spa
dc.relation.referencesKunnath-Poovakka, A., & Eldho, T. I. (2019). A comparative study of conceptual rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper Godavari river basin, India. Journal of Earth System Science, 128(2), 33. https://doi.org/10.1007/s12040-018-1055-8spa
dc.relation.referencesLamontagne, J. R., Barber, C. A., & Vogel, R. M. (2020). Improved Estimators of Model Performance Efficiency for Skewed Hydrologic Data. Water Resources Research, 56(9). https://doi.org/10.1029/2020WR027101spa
dc.relation.referencesLang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., & Zhang, M. (2017). A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water, 9(10), 734. https://doi.org/10.3390/w9100734spa
dc.relation.referencesLimbrunner, J., Vogel, R. M., & Chapram, S. (2006). The stream network storage volume is envisioned as a store which has groundwater outflow and direct runoff as inputs and streamflow as outputs. Here direct runoff is summed over all land-uses. https://sites.tufts.edu/richardvogel/files/2019/04/parsimonious-watershed-chap22.pdfspa
dc.relation.referencesLiu, H. Q., & Huete, A. R. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457–465.spa
dc.relation.referencesLloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489spa
dc.relation.referencesMacQueen, J., & others. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281–297.spa
dc.relation.referencesMADS, V. y D. T. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico - PNGIRH.spa
dc.relation.referencesMichel, C. (1983). Que peut-on faire en hydrologie avec un modèle conceptuel a un seul paramètre ? La Houille Blanche, 1, 39–44.spa
dc.relation.referencesMittal, M., Sharma, R. K., & Singh, V. P. (2014). Validation of k-means and threshold based clustering method. International Journal of Advancements in Technology, 5(2), 153–160.spa
dc.relation.referencesMoriasi, D., Gitau, M., Pai, N., & Daggupati, P. (2015). Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715spa
dc.relation.referencesMuñoz, P. (2013). Apuntes de teledetección: Índices de vegetación. http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/26389/Tema Indices de vegetación%2C Pedro Muñoz A.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesNash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6spa
dc.relation.referencesNOAA. (2021). Cold and warm episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpspa
dc.relation.referencesOsman, M. S., Abu-Mahfouz, A. M., & Page, P. R. (2018). A Survey on Data Imputation Techniques: Water Distribution System as a Use Case. IEEE Access, 6, 63279–63291. https://doi.org/10.1109/ACCESS.2018.2877269spa
dc.relation.referencesPeel, M. ., Chiew, F. H. ., Western, A. ., & McMahon, T. . (2000). Extension of Unimpaired Monthly Streamflow Data and Regionalisation of Parameter Values to Estimate Streamflow in Ungauged Catchments. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.9527&rep=rep1&type=pdfspa
dc.relation.referencesPerrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1–4), 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7spa
dc.relation.referencesPiotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., Osuch, M., & Kundzewicz, Z. W. (2017). Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models? Hydrological Sciences Journal, 62(4), 606–625. https://doi.org/10.1080/02626667.2016.1234712spa
dc.relation.referencesQGIS.org. (2022). QGIS Geographic Information System (3.18.3). QGIS Association. https://www.qgis.org/spa
dc.relation.referencesR Core Team. (2021). R: A Language and Environment for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRestrepo, B., & González, J. (2007). De Pearson a Spearman. Revista Colombiana de Ciencias Pecuarias, 20(2), 11. https://www.redalyc.org/articulo.oa?id=295023034010spa
dc.relation.referencesReyes, A., Barroso, F., & Carvajal, Y. (2010). Guía básica para la caracterización morfométrica de cuencas hidrográficas (P. Editorial (ed.)). Universidad del Valle.spa
dc.relation.referencesRodríguez-Sandoval, E., García-Echeverri, C., Sandoval-Barrera, J., Patarrollo-González, M., González-Ramírez, A., Agudelo-Duque, D., & Roldán-Novoa, M. (n.d.). Evaluating the IMERG precipitation satellite product to derive intensity-duration-frequency curves in colombia. Redin, En revisión.spa
dc.relation.referencesRodríguez, C. (2021). Evaluación del desempeño del modelo DWB para estimar curvas de duración de caudales en la cuenca del río Sogamoso. Universidad Nacional de Colombia.spa
dc.relation.referencesRodriguez, C., García-Echeverri, C., González, C., & Zamora, D. (2021). Efectos de las condiciones climáticas cambiantes en la simulación de la escorrentía en la cuenca del río Sogamoso. XXIV Seminario Nacional de Hidráulica e Hidrología.spa
dc.relation.referencesRodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C., & Burke, S. (2019). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management. https://doi.org/doi.org/10.1007/s11269-019-02236-5spa
dc.relation.referencesRouse J., Haas, R., Schell, J., & Deering, D. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. In NASA Special Publication (Vol. 351, p. 309).spa
dc.relation.referencesRousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.spa
dc.relation.referencesRStudio Team. (2020). RStudio: Integrated Development Environment for R. http://www.rstudio.com/spa
dc.relation.referencesSilberstein, R. P. (2006). Hydrological models are so good, do we still need data? Environmental Modelling and Software, 21(9), 1340–1352. https://doi.org/10.1016/j.envsoft.2005.04.019spa
dc.relation.referencesSimonneaux, V., Hanich, L., Boulet, G., & Thomas, S. (2008). Modelling runoff in the Rheraya Catchment (High Atlas, Morocco) using the simple daily model GR4J. Trends over the Last Decades.spa
dc.relation.referencesSteinley, D., & Brusco, M. J. (2007). Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques. Journal of Classification, 24(1), 99–121. https://doi.org/10.1007/s00357-007-0003-0spa
dc.relation.referencesTakeuchi, K., AO, T., & Ishidaira, H. (1999). Introduction of block-wise use of TOPMODEL and Muskingum-Cunge method for the hydroenvironmental simulation of a large ungauged basin. Hydrological Sciences Journal, 44(4), 633–646. https://doi.org/10.1080/02626669909492258spa
dc.relation.referencesTegegne, G., Park, D. K., & Kim, Y.-O. (2017). Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14, 49–66. https://doi.org/10.1016/j.ejrh.2017.10.002spa
dc.relation.referencesTekleab, S., Uhlenbrook, S., Mohamed, Y., Savenije, H. H. G., Temesgen, M., & Wenninger, J. (2011). Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrology and Earth System Sciences, 15(7), 2179–2193. https://doi.org/10.5194/hess-15-2179-2011spa
dc.relation.referencesTian, Y., Xu, Y.-P., & Zhang, X.-J. (2013). Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models. Water Resources Management, 27(8), 2871–2888. https://doi.org/10.1007/s11269-013-0321-4spa
dc.relation.referencesTodini, E., & Biondi, D. (2017). Calibration, parameter estimation, uncertainty, data assimilation, sensitivity analysis, and validation. In V. P. Singh (Ed.), Handbook of Applied Hydrology. McGraw Hill.spa
dc.relation.referencesTolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1). https://doi.org/10.1029/2005WR004723spa
dc.relation.referencesTolson, B. A., & Shoemaker, C. A. (2008). Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resources Research, 44(4), 1–19. https://doi.org/10.1029/2007WR005869spa
dc.relation.referencesTramblay, Y., Rouché, N., Paturel, J.-E., Mahé, G., Boyer, J.-F., Amoussou, E., Bodian, A., Dacosta, H., Dakhlaoui, H., Dezetter, A., Hughes, D., Hanich, L., Peugeot, C., Tshimanga, R., & Lachassagne, P. (2021). ADHI: the African Database of Hydrometric Indices (1950–2018). Earth System Science Data, 13(4), 1547–1560. https://doi.org/10.5194/essd-13-1547-2021spa
dc.relation.referencesTraore, V. B., Sambou, S., Tamba, S., Fall, S., Diaw, A., & Cissé, M. (2014). Calibrating the Rainfall-Runoff Model GR4J and GR2M on the Koulountou River Basin, a Tributary of the Gambia River. American Journal of Environmental Protection.spa
dc.relation.referencesUmaña, I. (2007). Más vale prevenir que lamentar - Las cuencas y la gestión del riesgo a los desastres naturales en Guatemala (FAO (ed.)).spa
dc.relation.referencesVásconez, M., Manchecho, A., Álvarez, C., Prehn, C., Cevallos, C., & Ortiz, L. (2019). Cuencas hidrográficas. https://dspace.ups.edu.ec/bitstream/123456789/19038/1/Cuencas hidrográficas.pdfspa
dc.relation.referencesWang, Q. J., Pagano, T. C., Zhou, S. L., Hapuarachchi, H. A. P., Zhang, L., & Robertson, D. E. (2011). Monthly versus daily water balance models in simulating monthly runoff. Journal of Hydrology, 404(3–4), 166–175. https://doi.org/10.1016/j.jhydrol.2011.04.027spa
dc.relation.referencesWardlow, B. D., & Egbert, S. L. (2010). A comparison of MODIS 250-m EVI and NDVI data for crop mapping: a case study for southwest Kansas. International Journal of Remote Sensing, 31(3), 805–830. https://doi.org/10.1080/01431160902897858spa
dc.relation.referencesZhang, L., Potter, N., Hickel, K., Zhang, Y., & Shao, Q. (2008). Water balance modeling over variable time scales based on the Budyko framework - Model development and testing. Journal of Hydrology, 360(1–4), 117–131. https://doi.org/10.1016/j.jhydrol.2008.07.021spa
dc.relation.referencesZhou, Y., Zhang, Y., Vaze, J., Lane, P., & Xu, S. (2015). Impact of bushfire and climate variability on streamflow from forested catchments in southeast Australia. Hydrological Sciences Journal, 60(7–8), 1340–1360. https://doi.org/10.1080/02626667.2014.961923spa
dc.relation.referencesZuo, D., Xu, Z., Wu, W., Zhao, J., & Zhao, F. (2014). Identification of streamflow response to climate change and human activities in the wei river Basin, China. Water Resources Management, 28(3), 833–851. https://doi.org/10.1007/s11269-014-0519-0spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcHydrology - Mathematical modelseng
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembRunoffspa
dc.subject.lembEscorrentíaspa
dc.subject.lembWatershedseng
dc.subject.lembCuencas hidrográficasspa
dc.subject.lembHidrología - Modelos matemáticosspa
dc.subject.proposalModelación matemáticaspa
dc.subject.proposalDWBspa
dc.subject.proposalClasificación no supervisadaspa
dc.subject.proposalK-meansspa
dc.subject.proposalCDCspa
dc.subject.proposalDDS-AUspa
dc.subject.proposalMathematical modelingeng
dc.subject.proposalDWBeng
dc.subject.proposalUnsupervised classificationeng
dc.subject.proposalK-meanseng
dc.subject.proposalFDCeng
dc.subject.proposalDDS-AUeng
dc.titleEvaluación del modelo hidrológico Dynamic Water Balance a escala diaria en cuencas tropicalesspa
dc.title.translatedEvaluation of the Dynamic Water Balance hydrological model at daily scale in tropical watershedseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1116501914.2022.pdf
Tamaño:
4.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos
No hay miniatura disponible
Nombre:
ANEXOS_TESIS_DWB_DIARIO_CGE.zip
Tamaño:
981.48 MB
Formato:
Comprimido
Descripción:
Anexo

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: