Comportamiento esfuerzo deformación en discontinuidades presentes en rocas debido a fracturamiento hidráulico en yacimientos de hidrocarburos no convencionales

dc.contributor.advisorTapias Camacho, Mauricio Alberto
dc.contributor.advisorRueda Cordero, Julio Alberto
dc.contributor.authorMateus Tarazona, Jefferson Said
dc.contributor.cvlacTarazona, Jefferson Mateus [0000448559]
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genki
dc.date.accessioned2025-09-09T19:29:25Z
dc.date.available2025-09-09T19:29:25Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, gráficosspa
dc.description.abstractEn el presente trabajo se investiga el comportamiento mecánico de discontinuidades geológicas presentes en el subsuelo cuando se realizan operaciones de fracturamiento hidráulico. Se desarrollaron 2 modelos numéricos de elementos finitos (FEM) utilizando elementos cohesivos para representar las discontinuidades y simular el fracturamiento hidráulico en rocas con permeabilidad intrínseca diferente. Se encontró que la energía de fractura se optimiza en tratamientos de fracturamiento hidráulico realizados en rocas de menor permeabilidad. En la roca de menor permeabilidad se obtuvo: Mayor apertura de fractura, mayor longitud de fractura, mayor desplazamiento de los bordes de fractura, mayor esfuerzo normal en la zona del proceso cohesivo, mayor espesor de la zona en donde se da el proceso cohesivo y menor presión de inyección. En un siguiente nivel de la investigación se incluyó una fractura natural en el modelo, se estableció una metodología para manejar las características topológicas de los elementos cohesivos con el fin de dar continuidad al flujo del fluido en los puntos de intersección de la fractura hidráulica (FH) y la fractura natural (FN) permitiendo la propagación de las dos discontinuidades luego de la intersección. Se encontró que la presencia de la FN en el medio de propagación de la FH genera una caída característica en la presión de inyección que representa una marca dejada por la presencia de la FN. También se encontró que la FN y la FH, en el punto de inyección, sufren un cerramiento por efecto de la propagación simultánea de las dos discontinuidades. Este comportamiento realístico tiene implicaciones significativas para los tratamientos de estimulación en la vida real, teniendo en cuenta que la geometría alcanzada por la FN y la FH son aspectos que condicionan el flujo de los hidrocarburos al controlar el paso de materiales propantes. En el mismo sentido el cerramiento de las discontinuidades puede romper ciertos tamaños de partícula del material propante que ingresó previamente a las discontinuidades (Texto tomado de la fuente).spa
dc.description.abstractThis work investigates the mechanical behavior of geological discontinuities present in the subsurface during hydraulic fracturing operations. Two numerical finite element models (FEMs) were developed using cohesive elements to represent the discontinuities and simulate hydraulic fracturing in rocks with different intrinsic permeability. It was found that fracture energy is optimized in hydraulic fracturing treatments performed in rocks with low permeability. In the rock with low permeability, the following were obtained: larger fracture aperture, greater fracture length, greater displacement of the fracture edges, greater normal stress in the cohesive process zone, greater thickness of the zone where the cohesive process occurs, and lower injection pressure. At the next level of investigation, a natural fracture was included in the model, and a methodology was developed to manage the topological characteristics of the cohesive elements to provide continuity to the fluid flow at the intersection points of the hydraulic fracture (HF) and the natural fracture (NF), allowing the propagation of the two discontinuities after the intersection. It was found that the presence of the NF in the medium generates a characteristic drop in the injection pressure that represents a mark left by the presence of the NF. It was also found that the NF and HF at the injection point undergo closure due to the simultaneous propagation of the discontinuities. This realistic behavior has significant implications for real-life stimulation treatments, considering that the geometry achieved by the NF and HF influences hydrocarbon flow by controlling the passage of proppant materials. Similarly, the closure of the discontinuities can break up certain particle sizes of the proppant material that previously entered the discontinuities.eng
dc.description.curricularareaIngeniería Civil y Agrícola.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Geotecnia
dc.description.researchareaModelación y análisis en geotecnia
dc.format.extentxxiii, 155 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88676
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Geotecnia
dc.relation.referencesAadnoy, B., Cooper, I., Miska, S., Mitchell, R. F., & Payne, M. L. (2009). Advanced drilling and well technology (A. Bernt S, Iain Cooper, M. Stefan Z., M. Robert F., & P. Michael M., Eds.). Society of Petroleum Engineers.
dc.relation.referencesAadnøy, B. S., & Looyeh, R. (2019). Chapter 15 - The Effect of Mud Losses on Wellbore Stability. In B. S. Aadnøy & R. Looyeh (Eds.), Petroleum Rock Mechanics (Second Edition) (pp. 335–356). Gulf Professional Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-815903-3.00015-7
dc.relation.referencesAdachi, J. I., & Detournay, E. (2008). Plane strain propagation of a hydraulic fracture in a permeable rock. 75, 4666–4694. https://doi.org/10.1016/j.engfracmech.2008.04.006
dc.relation.referencesAhmed, Usman., & Meehan, D. Nathan. (2016). Unconventional oil and gas resources : exploitation and development. CRC Press, Taylor & Francis Group.
dc.relation.referencesAnderson, E. M. (1951). The dynamics of faulting and dyke formation with applications to Britain. In (No Title) (second edition). Oliver and Boyd.
dc.relation.referencesANH. (2024, May). Informe Anual de Reservas y Recursos IRR 2023 - Agencia Nacional de Hidrocarburos. https://www.anh.gov.co/es/noticias/informe-anual-de-reservas-y-recursos-irr-2023/
dc.relation.referencesArdila, S., Corzo, R., Rubio, N., & Arias, H. (2019). Brittleness , Fracability and Stresses Evaluation to Define the Completion Quality in Unconventional Reservoirs. May, 978–981.
dc.relation.referencesArndt, S., Van Der Zee, W., Hoeink, T., Hughes, B., & Nie, J. (2015). Hydraulic Fracturing Simulation for Fracture Networks. May, 1–18.
dc.relation.referencesBarton, C. A., & Zoback, M. D. (1988). IN SITU STRESS ORIENTATION AND MAGNITUDE AT THE FENTON GEOTHERMAL SITE, NEW MEXICO, DETERMINED FROM WELLBORE BREAKOUTS. Geophysical Research Letters, 15(5), 467–470.
dc.relation.referencesBunger, A. P., Detournay, E., & Garagash, D. I. (2005). Toughness-dominated hydraulic fracture with leak-off. International Journal of Fracture, 134(2), 175–190. https://doi.org/10.1007/s10704-005-0154-0
dc.relation.referencesCalderon Carrillo, Z. (2014). Introducción a la mecánica de rocas y sus aplicaciones en la industria del petróleo: Vol. I (Publicaciones UIS). Universidad Industrial de Santander.
dc.relation.referencesCamacho, G. T., & Ortizt, M. (1996). COMPUTATIONAL MODELLING OF IMPACT DAMAGE IN BRITTLE MATERIALS. Int.J.Solids Structures, 33(22), 2899–2938.
dc.relation.referencesCamacho Morales, A., Correa Flores, C. A., Morillo, J. L., Matinez, J., Palma, M., & Araque, T. (2024, March). Resumen ejecutivo Plan energético Nacional (PEN) 2022-2050. Informe.
dc.relation.referencesCamanho, P. P., & Dávila, C. G. (2002). Mixed-mode decohesion finite elements for the simulation of delamination in composite materials.
dc.relation.referencesCarrier, B., & Granet, S. (2012). Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Engineering Fracture Mechanics, 79, 312–328. https://doi.org/10.1016/j.engfracmech.2011.11.012
dc.relation.referencesCorrea, M. G. A., Garzón, L. D. D., Martínez, J. F. E., González, M. G., Muñoz, M. R., Neslin, D., Manzano, O., Cock, D. A. R., Soto, J. P. R., & Ferro, N. S. (2019). INFORME SOBRE EFECTOS AMBIENTALES (BIÓTICOS, FÍSICOS Y SOCIALES) Y ECONÓMICOS DE LA EXPLORACIÓN DE HIDROCARBUROS EN ÁREAS CON POSIBLE DESPLIEGUE DE TÉCNICAS DE FRACTURAMIENTO HIDRÁULICO DE ROCA GENERADORA MEDIANTE PERFORACIÓN HORIZONTAL.
dc.relation.referencesDahi Taleghani, A., Gonzalez-Chavez, M., Yu, H., & Asala, H. (2018). Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model. Journal of Petroleum Science and Engineering, 165, 42–57. https://doi.org/10.1016/j.petrol.2018.01.063
dc.relation.referencesDassault Systemes. (2021a). Defining the constitutive response of cohesive elements using a traction-separation description - Asistencia de usuario de SIMULIA 2021. Web Page. https://help.3ds.com/2021/english/DSSIMULIA_Established/SIMACAEELMRefMap/simaelm-c-cohesivebehavior.htm?contextscope=all&id=9f19866ec09140eaa972b0dfeb967072
dc.relation.referencesDassault Systemes. (2021b, February 22). About cohesive elements - Asistencia de usuario de SIMULIA 2021. Web Page. https://help.3ds.com/2021/english/DSSIMULIA_Established/SIMACAEELMRefMap/simaelm-c-cohesiveoverview.htm?contextscope=all&id=693038d9d9c7451ca7894173c596519d
dc.relation.referencesDassault Systemes. (2021c, February 22). Choosing a cohesive element - Asistencia de usuario de SIMULIA 2021. Web Page. https://help.3ds.com/2021/english/DSSIMULIA_Established/SIMACAEELMRefMap/simaelm-c-cohesiveelem.htm?contextscope=all&id=8adc2dc348a846129e6b52e33bb5d385
dc.relation.referencesDassault Systemes. (2021d, February 22). Modeling with cohesive elements - Asistencia de usuario de SIMULIA 2021. Web Page. https://help.3ds.com/2021/english/DSSIMULIA_Established/SIMACAEELMRefMap/simaelm-c-cohesiveusage.htm?contextscope=all&id=7f782f1d166c46e48d9b4a55fa111509
dc.relation.referencesDesroches, J., Detournay, E., Lenoach, B., Papanastasiou, P., Pearson, J. R. A., Thiercelin, M., & Cheng, A. (1994). The crack tip region in hydraulic fracturing. The Royal Society, 39–48. https://royalsocietypublishing.org/
dc.relation.referencesDetournay, E., & Cheng, A. H. D. (1993). Fundamentals of Poroelasticity. Comprehensive Rock Engineering. Vol. 2, 113–171. https://doi.org/10.1016/B978-0-08-040615-2.50011-3
dc.relation.referencesEaton, B. A. (1969). Fracture Gradient Prediction and Its Application in Oilfield Operations. Journal of Petroleum Technology, 21(10), 1353–1360. https://doi.org/10.2118/2163-PA
dc.relation.referencesFjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Petroleum Related Rock Mechanics 2nd Edition. In ELSEVIER (2nd ed., Vol. 71, Issue 5).
dc.relation.referencesGale, J. F. W., & Holder, J. (2015). Natural fractures in some US shales and their importance for gas production. Geological Society, London, Petroleum Geology Conference Series, 7(1), 1131–1140.
dc.relation.referencesGaragash, D. I. (2006). Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness. Engineering Fracture Mechanics, 73(4), 456–481. https://doi.org/10.1016/j.engfracmech.2005.07.012
dc.relation.referencesGeertsma, J., & De Klerk, F. (1969). A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21(12), 1571–1581.
dc.relation.referencesGomez Isidro, S. (2014). Aguas Subterráneas en Zonas de Montaña y trazadores ambientales (Ediciones UIS). Universidad Industrial de Santander.
dc.relation.referencesGonzalez, M., Dahi Taleghani, A., & Olson, J. E. (2015). A cohesive model for modeling hydraulic fractures in naturally fractured formations. Society of Petroleum Engineers, d(SPE Hydraulic Fracturing Technology Conference 2015), 858–873. https://doi.org/10.2118/spe-173384-ms
dc.relation.referencesGuo, J., & Liu, Y. (2014). A comprehensive model for simulating fracturing fluid leakoff in natural fractures. Journal of Natural Gas Science and Engineering, 21, 977–985. https://doi.org/10.1016/j.jngse.2014.10.020
dc.relation.referencesGuo, J., Zhao, X., Zhu, H., Zhang, X., & Pan, R. (2015). Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method. Journal of Natural Gas Science and Engineering, 25, 180–188. https://doi.org/10.1016/j.jngse.2015.05.008
dc.relation.referencesHaddad, M., Du, J., & Vidal-Gilbert, S. (2016). Integration of dynamic Microseismic data with a true 3D modeling of hydraulic fracture propagation in Vaca Muerta Shale. Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference, HFTC 2016. https://doi.org/10.2118/179164-ms
dc.relation.referencesHaddad, M., & Sepehrnoori, K. (2014a). Cohesive Fracture Analysis to Model Multiple-Stage Fracturing in Quasibrittle Shale Formations. Simulia Community Conference, MAY 2014, 1–15.
dc.relation.referencesHaddad, M., & Sepehrnoori, K. (2014b). Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized cohesive layer: Stimulation controlling factors. Journal of Unconventional Oil and Gas Resources, 9, 65–83. https://doi.org/10.1016/j.juogr.2014.10.001
dc.relation.referencesHaddad, M., & Sepehrnoori, K. (2016a). Modeling natural fracture activation using a poro-elastic fracture intersection model. Oral Presentation given at the 2016 Science in the Age of Experience Conference, Boston, Massachusetts, 803–815.
dc.relation.referencesHaddad, M., & Sepehrnoori, K. (2016b). XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations. Rock Mechanics and Rock Engineering, 49(12), 4731–4748. https://doi.org/10.1007/s00603-016-1057-2
dc.relation.referencesHolbrook, P. (1997). Discussion of a new simple method to estimate fracture pressure gradients. SPE Drilling and Completion, 12(1), 71.
dc.relation.referencesHubbert, M. K., & Willis, D. G. (1957). Mechanics Of Hydraulic Fracturing. Transactions of the AIME, 210(01), 153–168. https://doi.org/10.2118/686-G
dc.relation.referencesIrwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate.
dc.relation.referencesKolawole, O., & Ispas, I. (2019). How Hydraulic Fractures Interact with Natural Fractures: A Review and New Observations. ARMA Symposium, 2017.
dc.relation.referencesKümpel, H.-J. (2003). Thermo-hydro-mechanical coupling in fractured rock (Vol. 160). Springer Science & Business Media.
dc.relation.referencesLambe, T. W., & Whitman, R. V. (1984). Mecánica de suelos (Editorial).
dc.relation.referencesLawn, B. (1993). Continuum aspects of crack propagation I: Linear elastic crack-tip field. In E. A. Davis & I. M. Ward FRS (Eds.), Fracture of Brittle Solids (2nd ed., pp. 16–50). Press Syndicate of The University of Cambridge.
dc.relation.referencesLin, J.-S., & Ku, C.-Y. (2006). Two-scale modeling of jointed rock masses.
dc.relation.referencesMa, X., & Zoback, M. D. (2017). Laboratory experiments simulating poroelastic stress changes associated with depletion and injection in low-porosity sedimentary rocks. Journal of Geophysical Research: Solid Earth, 122(4), 2478–2503. https://doi.org/10.1002/2016JB013668
dc.relation.referencesMack, M. G., & Warpinski, N. R. (2000). Mechanics of Hydraulic Fracturing. In E. Kapitan-White (Ed.), Reservoir Estimulation (Schlumberger). John Wiley & Sons Ltd,.
dc.relation.referencesMatthews, W. R., & Kelly, J. (1967). How to Predict Formation Pressure and Fracture Gradient. Oil and Gas Journal, 92–106.
dc.relation.referencesMaxwell, S. C., Urbancic, T. I., Steinsberger, N., & Zinno, R. (2002). Microseismic imaging of hydraulic fracture complexity in the Barnett shale. SPE Annual Technical Conference and Exhibition?, SPE-77440.
dc.relation.referencesMoos, D., Peska, P., Ward, C., & Brehm, A. (2004). Quantitative risk assessment applied to pre-drill pore pressure, sealing potential, and mud window predictions from seismic data. ARMA North America Rock Mechanics Symposium, ARMA-04.
dc.relation.referencesNeedleman, A. (1987). Continuum Model for Void Nucleation By Inclusion Debonding. American Society of Mechanical Engineers (Paper), 54(September 1987), 525–531.
dc.relation.referencesNikam, A., Awoleke, O. O., & Ahmadi, M. (2016). Modeling the interaction between natural and hydraulic fractures using three dimensional finite element analysis. Society of Petroleum Engineers - SPE Western Regional Meeting, 1987. https://doi.org/10.2118/180364-ms
dc.relation.referencesPankaj, P., & Li, J. (2018). Impact of natural fractures beyond the hydraulic fracture complexity in unconventional reservoirs – A Permian case study. SPE/AAPG/SEG Unconventional Resources Technology Conference 2018, URTC 2018, 1–23. https://doi.org/10.15530/urtec-2018-2874839
dc.relation.referencesPaullo, L. F., Mejia, C., Rueda, J., & Roehl, D. (2022). Pseudo-coupled hydraulic fracturing analysis with displacement discontinuity and finite element methods. Engineering Fracture Mechanics, 274(April). https://doi.org/10.1016/j.engfracmech.2022.108774
dc.relation.referencesPfunt, H., Houben, G., & Himmelsbach, T. (2016). Modélisation numérique de la migration des fluides de fracturation hydraulique dans de zones de failles et des fractures dans le Bassin d’Allemagne du Nord. Hydrogeology Journal, 24(6), 1343–1358. https://doi.org/10.1007/s10040-016-1418-7
dc.relation.referencesRincón, O. F. (2024, August). La necesidad de una visión integral: Coexistencia energética para la transición. Revista Conexión, ACIPET. Revista Conexión, ACIPET, Edición No 5, 4–6.
dc.relation.referencesRueda Cordero, J. A., Mejia Sanchez, E. C., & Roehl, D. (2019). Hydromechanical modeling of unrestricted crack propagation in fractured formations using intrinsic cohesive zone model. Engineering Fracture Mechanics, 221(August), 106655. https://doi.org/10.1016/j.engfracmech.2019.106655
dc.relation.referencesRueda, J. A., Mejia, C., & Roehl, D. (2019). Hydraulic fracture propagation and its interaction with open and sealed natural fractures. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA-2019.
dc.relation.referencesRueda, J. C., Noreña, N. V., Oliveira, M. F., & Roehl, D. (2014). Numerical Models for Detection of Fault Reactivation in Oil and Gas Fields. American Rock Mechanics Association. https://doi.org/https://www.onepetro.org/conference-paper/ARMA-2014-7354
dc.relation.referencesRueda, J., Mejia, C., Quevedo, R., & Roehl, D. (2020). Impacts of natural fractures on hydraulic fracturing treatment in all asymptotic propagation regimes. Computer Methods in Applied Mechanics and Engineering, 371, 113296. https://doi.org/10.1016/j.cma.2020.113296
dc.relation.referencesRueda, J., Mejia, C., & Roehl, D. (2022). 3D unrestricted fluid-driven fracture propagation based on coupled hydromechanical interface elements. Engineering Fracture Mechanics, 272(July), 108680. https://doi.org/10.1016/j.engfracmech.2022.108680
dc.relation.referencesRueda, J., Mejia, E., & Roehl, D. (2019). Hydromechanical modeling of unrestricted crack propagation in fractured formations using intrinsic cohesive zone model. Engineering Fracture Mechanics, 221. https://doi.org/10.1016/j.engfracmech.2019.106655
dc.relation.referencesRueda, J., Mejia, E., Roehl, D., & Cabral, L. (2019). Hydro-mechanical modeling of hydraulic fracture propagation and its interactions with frictional natural fractures. Computers and Geotechnics, 111, 291–291. https://doi.org/10.1016/j.compgeo.2019.03.020
dc.relation.referencesSegura, J. M., & Carol, I. (2004). On zero-thickness interface elements for diffusion problems. International Journal for Numerical and Analytical Methods in Geomechanics, 28(9), 947–962. https://doi.org/10.1002/nag.358
dc.relation.referencesSegura, J. M., & Carol, I. (2010). Numerical modelling of pressurized fracture evolution in concrete using zero-thickness interface elements. Engineering Fracture Mechanics, 77(9), 1386–1399. https://doi.org/10.1016/j.engfracmech.2010.03.014
dc.relation.referencesSettari, A., & Price, H. S. (1986). Simulation of Hydraulic Fracturing in Low-Permeability Reservoirs. Society of Petroleum Engineers Journal, 24(2), 141–152. https://doi.org/10.2118/8939-PA
dc.relation.referencesShen, X., & Shen, G. (2014). Poro-elasto-plastic calculation on fault reactivation caused by hydraulic fracturing in a field offshore West Africa. 48th US Rock Mechanics / Geomechanics Symposium 2014, 1, 571–576.
dc.relation.referencesSun, Z., Salazar-Tio, R., Wu, L., Bostrøm, B., Fager, A., & Crouse, B. (2023). Geomechanical assessment of a large-scale CO2 storage and insights from uncertainty analysis. Geoenergy Science and Engineering, 224, 211596.
dc.relation.referencesTarbuck, E. J., & Lutgens, F. K. (2010). Ciencias de la Tierra. Una introducción a la Geología Física. In M. Martin-Romo (Ed.), Geology (8th ed.). Prentice Hall.
dc.relation.referencesThiercelin, M. C., & Roegiers, J.-C. (2000). Formation Characterization : Rock Mechanics. In E. Kapitan-White (Ed.), Reservoir Stimulation (Third Edition, pp. 1–35). John Wiley & Sons Ltd,.
dc.relation.referencesTodd, T., & Simmons, G. (1972). Effect of pore pressure on the velocity of compressional waves in low-porosity rocks. Journal of Geophysical Research, 77(20), 3731–3743. https://doi.org/10.1029/jb077i020p03731
dc.relation.referencesVidal-Gilbert, S., Nauroy, J.-F., & Brosse, E. (2009). 3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin. International Journal of Greenhouse Gas Control, 3(3), 288–299.
dc.relation.referencesWarpinski, N. R. (2013). Understanding Hydraulic Fracture Growth, Effectiveness, and Safety Through Microseismic Monitoring. ISRM International Conference for Effective and Sustainable Hydraulic Fracturing 2013, 123–135. https://doi.org/10.5772/55974
dc.relation.referencesWarpinski, N. R., Mayerhofer, M. J., Vincent, M. C., Cipolla, C. L., & Lolon, E. R. (2009). Stimulating unconventional reservoirs: Maximizing network growth while optimizing fracture conductivity. Journal of Canadian Petroleum Technology, 48(10), 39–51. https://doi.org/10.2118/114173-PA
dc.relation.referencesWarpinski, N. R., & Teufel, L. W. (1987). Influence of geologic discontinuities on hydraulic fracture propagation. Journal of Petroleum Technology, 209–220. https://doi.org/https://doi.org/10.1016/B978-081551554-8.50015-X
dc.relation.referencesWeng, X. (2014). Modeling of complex hydraulic fractures in naturally fractured formation. Journal of Unconventional Oil and Gas Resources, 9, 114–135. https://doi.org/10.1016/j.juogr.2014.07.001
dc.relation.referencesWood M., D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.
dc.relation.referencesZhang, X., Thiercelin, M., & Jeffrey, R. (2007). Effects of Frictional Geological Discontinuities on Hydraulic FracturePropagation. 1–11. https://doi.org/10.2523/106111-ms
dc.relation.referencesZienkiewics, O. C., & Taylor, R. L. (1995). El método de los elementos finitos: Vol. Volumen 2 (M. J. Norte, Ed.; 4th ed.). McGraw-Hill.
dc.relation.referencesZoback, M. D. (2007). Reservoir Geomechanics. Cambridge University Press. https://doi.org/10.1017/CBO9780511586477
dc.relation.referencesZoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., & Wiprut, D. J. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7–8), 1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001
dc.relation.referencesZoback, M. D., & Healy, J. H. (1984). Friction, faulting and «in situ» stress. Annales Geophysicae (1983), 2(6), 689–698.
dc.relation.referencesZoback, M. D., & Kohli, A. H. (2019). Unconventional reservoir geomechanics: Shale gas, tight oil, and induced seismicity. In Unconventional Reservoir Geomechanics: Shale Gas, Tight Oil, and Induced Seismicity. Cambridge University Press. https://doi.org/10.1017/9781316091869
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.bneSubsuelo
dc.subject.bneSubsoils
dc.subject.bneFracturación hidráulica
dc.subject.bneHydraulic fracturing
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
dc.subject.lembPozos petroleros
dc.subject.lembOil wells
dc.subject.lembReservas de hidrocarburos
dc.subject.lembHydrocarbon reservoirs
dc.subject.proposalElementos cohesivosspa
dc.subject.proposalMétodo de los elementos finitosspa
dc.subject.proposalGeomecánica de fracturasspa
dc.subject.proposalFracturas naturalesspa
dc.subject.proposalEsfuerzo deformaciónspa
dc.subject.proposalCohesive elementseng
dc.subject.proposalFinite element methodeng
dc.subject.proposalFracture geomechanicseng
dc.subject.proposalNatural fractureseng
dc.subject.proposalStress-strain analysiseng
dc.titleComportamiento esfuerzo deformación en discontinuidades presentes en rocas debido a fracturamiento hidráulico en yacimientos de hidrocarburos no convencionalesspa
dc.title.translatedStress-strain behavior in discontinuities present in rocks due to hydraulic fracturing in unconventional hydrocarbon reservoirseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
91015676.2025.pdf
Tamaño:
8.7 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: