Evaluación de compuestos nutracéuticos en cerdos posdestete sobre la dinámica de desarrollo microbiano como biomarcador asociado a la expresión de mRNA de proteínas de salud intestinal
dc.contributor.advisor | Parra Suescún, Jaime | |
dc.contributor.advisor | López Herrera, Albeiro | |
dc.contributor.author | Ángel Isaza, Jaime Andres | |
dc.contributor.googlescholar | https://scholar.google.es/citations?user=oN_sET4AAAAJ&hl=es | spa |
dc.contributor.orcid | Ángel Isaza, Jaime Andres [0000-0003-1612-6938] | spa |
dc.contributor.researchgroup | Biodiversidad y Génetica Molecular "Biogem" | spa |
dc.date.accessioned | 2025-03-25T14:04:30Z | |
dc.date.available | 2025-03-25T14:04:30Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, gráficas | spa |
dc.description.abstract | En el ciclo de producción del cerdo, la fase posdestete es de gran importancia, debido a que confluyen factores estresantes que generan desbalance de la microbiota intestinal, alterando la salud de los lechones y causando diarreas. Los productores han recurrido al uso de antibióticos en el alimento, sin embargo, esta práctica ya se ha prohibido en diversos países por la posible inducción de resistencia microbiana. El objetivo del presente estudio fue evaluar la suplementación de aditivos alimenticios sobre la composición microbiana como biomarcador asociado a la expresión de proteínas de salud intestinal en cerdos durante el posdestete. Se utilizaron 240 lechones, distribuidos en seis dietas: (D1) alimento base, (D2) D1 + 350 ppm de bacitracina de zinc, (D3) D1 + 550 ppm de maltodextrina, (D4) D1 + 300 ppm de fructooligosacáridos, (D5) D1 + 69 ppm de aceite esencial de Lippia origanoides, y (D6) D1 + 750 ppm de humatos de sodio. Se evaluaron parámetros clínicos y productivos, así como muestras intestinales para el análisis del desarrollo morfológico, la expresión de proteínas de barrera y enzimáticas, y la composición microbiana ileal y fecal. Se observó que los fructooligosacáridos y aceite esencial de Lippia origanoides mejoraron la productividad, el desarrollo morfométrico, la expresión molecular de proteínas enzimáticas y de barrera, además de modular positivamente las comunidades microbianas ileales y fecales de los lechones en comparación con el D1 y D2. En conclusión, estos dos compuestos se postulan como alternativas biotecnológicas al uso de promotores de crecimiento antibióticos durante el posdestete. (Tomado de la fuente) | spa |
dc.description.abstract | In the pig production cycle, the post-weaning phase is of great importance, as stress factors converge, causing an imbalance in the intestinal microbiota, which affects the health of piglets and leads to diarrhea. Producers have traditionally relied on antibiotics in feed; however, this practice has been banned in several countries due to the potential induction of antimicrobial resistance. The aim of this study was to evaluate the supplementation of feed additives on microbial composition as a biomarker associated with the expression of intestinal health proteins in post-weaning pigs. A total of 240 piglets were used, divided into six diets: (D1) basal diet, (D2) D1 + 350 ppm zinc bacitracin, (D3) D1 + 550 ppm maltodextrin, (D4) D1 + 300 ppm fructooligosaccharides, (D5) D1 + 69 ppm Lippia origanoides essential oil, and (D6) D1 + 750 ppm sodium humates. Clinical and productive parameters were evaluated, along with intestinal samples for analysis of morphometric development, the expression of barrier and enzymatic proteins, and ileal and fecal microbial composition. It was observed that fructooligosaccharides and Lippia origanoides essential oil improved productivity, morphometric development, and the molecular expression of enzymatic and barrier proteins. Additionally, these additives positively modulated ileal and fecal microbial communities in comparison with D1 and D2. In conclusion, these two compounds are proposed as biotechnological alternatives to antibiotic growth promoters during the post-weaning phase. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctorado en Biotecnología | spa |
dc.format.extent | 160 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87723 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Doctorado en Biotecnología | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Agredo-Palechor, J. A., Gomez-Rosales, S., Angeles, M. de L., Pérez Alvarado, M. A., López-Hernández, L. H., Mariscal-Landín, G., & Mendoza-Elvira, S. E. (2023). The addition of humic substances extracted from vermicompost enhances the growth performance and the antioxidant status of weaning pigs. Veterinaria México OA, 10. https://doi.org/10.22201/fmvz.24486760e.2023.1211 | spa |
dc.relation.references | Almutairi, R., Basson, A. R., Wearsh, P., Cominelli, F., & Rodriguez-Palacios, A. (2022). Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. European Journal of Nutrition, 61(6), 2853–2871. https://doi.org/10.1007/S00394-022-02802-5 | spa |
dc.relation.references | Al-Taey, D. K., Al-Shareefi, M. J., Mijwel, A. K., Razzaq Al-Tawaha, A., & Rahman Al- Tawaha, A. (2019). The benefi cial effects of bio-fertilizers combinations and humic acid on growth, yield parameters and nitrogen content of broccoli grown under drip irrigation system Abstract. Bulgarian Journal of Agricultural Science, 25(5), 959– 966. | spa |
dc.relation.references | Arenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119. | spa |
dc.relation.references | Arif, M., Alagawany, M., Abd El-Hack, M. E., Saeed, M., Arain, M. A., & Elnesr, S. S. (2019). Humic acid as a feed additive in poultry diets: a review. Iranian Journal of Veterinary Research, 20(3), 167–172. | spa |
dc.relation.references | Ayuso, M., Michiels, J., Wuyts, S., Yan, H., Degroote, J., Lebeer, S., Le Bourgot, C. Majdeddin, M., Van Noten, N., Vanden Hole, C., Van Cruchten, S., Van Poucke, M., Peelman, L., & Van Ginneken, C. (2020). PLOS ONE, 15(6), e0233910. https://doi.org/10.1371/journal.pone.0233910 | spa |
dc.relation.references | Azad, M. A. K., Gao, J., Ma, J., Li, T., Tan, B., Huang, X., & Yin, J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 6(4), 379–388. https://doi.org/10.1016/j.aninu.2020.08.001 | spa |
dc.relation.references | Azad, M. A. K., Gao, J., Ma, J., Li, T., Tan, B., Huang, X., & Yin, J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 6(4), 379–388. https://doi.org/10.1016/j.aninu.2020.08.001 | spa |
dc.relation.references | Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host- bacterial mutualism in the human intestine. science, 307(5717), 1915-1920. | spa |
dc.relation.references | Badaras, S., Ruzauskas, M., Gruzauskas, R., Zokaityte, E., Starkute, V., Klupsaite, D., Mockus, E., Klementaviciute, J., Vadopalas, L., Zokaityte, G., Dauksiene, A., Bartkevics, V., & Bartkiene, E. (2022). Different creep compound feed formulations for new born piglets: influence on growth performance and health parameters. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.971783 | spa |
dc.relation.references | Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 2. https://doi.org/10.3389/FVETS.2016.00002/BIBTEX | spa |
dc.relation.references | Barko, P. C., McMichael, M. A., Swanson, K. S., & Williams, D. A. (2018). The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32(1), 9–25. https://doi.org/10.1111/jvim.14875 | spa |
dc.relation.references | Barnett, D., Arts, I., & Penders, J. (2021). microViz: an R package for microbiome data visualization and statistics. Journal of Open Source Software, 6(63), 3201. https://doi.org/10.21105/joss.03201 | spa |
dc.relation.references | Bellini, S. (2021). 7. The pig sector in the European Union. In Understanding and combatting African Swine Fever (pp. 183–195). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-910-7_7 | spa |
dc.relation.references | Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1–22. https://doi.org/10.1186/S40168-020-00875-0/FIGURES/7 | spa |
dc.relation.references | Bergamaschi, M., Tiezzi, F., Howard, J., Huang, Y. J., Gray, K. A., Schillebeeckx, C., McNulty, N. P., & Maltecca, C. (2020). Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome, 8(1), 110. https://doi.org/10.1186/s40168-020-00888-9 | spa |
dc.relation.references | Betancourt, L., Hume, M., Rodríguez, F., Nisbet, D., Sohail, M. U., & Afanador-Tellez, G. (2019). Effects of Colombian oregano essential oil (Lippia origanoides Kunth) and Eimeria species on broiler production and cecal microbiota. Poultry Science, 98(10), 4777–4786. https://doi.org/10.3382/ps/pez193 | spa |
dc.relation.references | Bezuglova, O., & Klimenko, A. (2022). Application of Humic Substances in Agricultural Industry. Agronomy, 12(3), 584. https://doi.org/10.3390/agronomy12030584 | spa |
dc.relation.references | Bonetti, A., Tugnoli, B., Piva, A., & Grilli, E. (2021). Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals, 11(3), 642. https://doi.org/10.3390/ani11030642 | spa |
dc.relation.references | Bosco, N. J. (2008). Some Growth Promoters Already Tried to Replace Antimicrobial Growth Promoter in Weaned Pig, a Review. International Research Journal of Engineering and Technology, 1741 | spa |
dc.relation.references | Brown, C. T., Davis-Richardson, A. G., Giongo, A., Gano, K. A., Crabb, D. B., Mukherjee, N., Casella, G., Drew, J. C., Ilonen, J., Knip, M., Hyöty, H., Veijola, R., Simell, T., Simell, O., Neu, J., Wasserfall, C. H., Schatz, D., Atkinson, M. A., & Triplett, E. W. (2011). Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes. PLoS ONE, 6(10), e25792. https://doi.org/10.1371/journal.pone.0025792 | spa |
dc.relation.references | Brown, K., Zaytsoff, S. J. M., Uwiera, R. R. E., & Inglis, G. D. (2016). Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota. Nature Publishing Group, November, 1–13. https://doi.org/10.1038/srep38377 | spa |
dc.relation.references | Canadian Council on Animal Care. (2009). CCAC guidelines on: the care and use of farm animals in research, teaching and testing Canadian Council on Animal Care in science (Vol. 1). http://www.ccac.ca | spa |
dc.relation.references | Cao, Y., Dong, Q., Wang, D., Zhang, P., Liu, Y., & Niu, C. (2022). microbiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics, 38(16), 4027–4029. https://doi.org/10.1093/bioinformatics/btac438 | spa |
dc.relation.references | Carlier, J.-P., Bedora-Faure, M., K’ouas, G., Alauzet, C., & Mory, F. (2010). Proposal to unify Clostridium orbiscindens Winter et al. 1991 and Eubacterium plautii (Séguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 60(3), 585–590. https://doi.org/10.1099/ijs.0.016725-0 | spa |
dc.relation.references | Chang, S. C., Shen, M. H., Liu, C. Y., Pu, C. M., Hu, J. M., & Huang, C. J. (2020). A gut butyrate producing bacterium Butyricicoccus pullicaecorum regulates short chain fatty acid transporter and receptor to reduce the progression of 1, 2 dimethylhydrazine associated colorectal cancer. Oncology Letters, 20(6), 327. https://doi.org/10.3892/ol.2020.12190 | spa |
dc.relation.references | Chang, S. Y., Song, M. H., Lee, J. H., Oh, H. J., Kim, Y. J., An, J. W., Go, Y. bin, Song, D. C., Cho, H. A., Cho, S. Y., Kim, D. J., Kim, M. S., Kim, H. B., & Cho, J. H. (2022). Phytogenic feed additives alleviate pathogenic Escherichia coli-induced intestinal damage through improving barrier integrity and inhibiting inflammation in weaned pigs. Journal of Animal Science and Biotechnology, 13(1), 1–12. https://doi.org/10.1186/S40104-022-00750-Y/TABLES/8 | spa |
dc.relation.references | Chen, H., Mao, X., He, J., Yu, B., Huang, Z., Yu, J., Zheng, P., & Chen, D. (2013). Dietary fiber affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. The British Journal of Nutrition, 110(10), 1837–1848. https://doi.org/10.1017/S0007114513001293 | spa |
dc.relation.references | Chen, L., Xu, Y., Chen, X., Fang, C., Zhao, L., & Chen, F. (2017). The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01688 | spa |
dc.relation.references | Cheng, C., Xia, M., Zhang, X., Wang, C., Jiang, S., & Peng, J. (2018). Supplementing oregano essential oil in a reduced-protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs. Animals, 8(9). https://doi.org/10.3390/ani8090159 | spa |
dc.relation.references | Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. https://doi.org/10.1016/j.jhazmat.2019.121682 | spa |
dc.relation.references | Cheon, S., Kim, G., Bae, J.-H., Lee, D. H., Seong, H., Kim, D. H., Han, J.-S., Lim, S.-Y., & Han, N. S. (2023). Comparative analysis of prebiotic effects of four oligosaccharides using in vitro gut model: digestibility, microbiome, and metabolome changes. FEMS Microbiology Ecology, 99(2). https://doi.org/10.1093/femsec/fiad002 | spa |
dc.relation.references | Choi, J., Wang, L., Liu, S., Lu, P., Zhao, X., Liu, H., Lahaye, L., Santin, E., Liu, S., Nyachoti, M., & Yang, C. (2020). Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4. Journal of Animal Science, 98(9). https://doi.org/10.1093/jas/skaa259 | spa |
dc.relation.references | Choudhury, R., Middelkoop, A., Boekhorst, J., Gerrits, W. J. J., Kemp, B., Bolhuis, J. E., & Kleerebezem, M. (2021). Early life feeding accelerates gut microbiome maturation and suppresses acute post‐weaning stress in piglets. Environmental Microbiology, 23(11), 7201–7213. https://doi.org/10.1111/1462-2920.15791 | spa |
dc.relation.references | Ciro, J. A., López, A., & Parra, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomía Medellín, 69(1), 7803–7811. https://doi.org/10.15446/RFNA.V69N1.54748 | spa |
dc.relation.references | Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A., & Lajolo, F. M. (2019). The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00188 | spa |
dc.relation.references | Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLOS ONE, 12(2), e0171642. https://doi.org/10.1371/journal.pone.0171642 | spa |
dc.relation.references | Cremonesi, P., Biscarini, F., Castiglioni, B., Sgoifo, C. A., Compiani, R., & Moroni, P. (2022). Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets. PloS one, 17(3), e0262199. | spa |
dc.relation.references | Csernus, B., & Czeglédi, L. (2020). Physiological, antimicrobial, intestine morphological, and immunological effects of fructooligosaccharides in pigs. Archives Animal Breeding, 63(2), 325–335. https://doi.org/10.5194/aab-63-325-2020 | spa |
dc.relation.references | Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8(3), 92. https://doi.org/10.3390/foods8030092 | spa |
dc.relation.references | Dave, M., Higgins, P. D., Middha, S., & Rioux, K. P. (2012). The human gut microbiome: current knowledge, challenges, and future directions. Translational Research, 160(4), 246–257. https://doi.org/10.1016/j.trsl.2012.05.003 | spa |
dc.relation.references | de Lourdes Angeles, M., Gómez-Rosales, S., & Téllez-Isaias, G. (2022). Mechanisms of Action of Humic Substances as Growth Promoters in Animals. In Humus and Humic Substances - Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.105956 | spa |
dc.relation.references | Diana, A., Boyle, L. A., Leonard, F. C., Carroll, C., Sheehan, E., Murphy, D., & Manzanilla, E. G. (2019). Removing prophylactic antibiotics from pig feed: How does it affect their performance and health? BMC Veterinary Research, 15(1), 1–8. https://doi.org/10.1186/S12917-019-1808-X/TABLES/5 | spa |
dc.relation.references | Díaz-Sánchez, S., Perrotta, A. R., Rockafellow, I., Alm, E. J., Okimoto, R., Hawken, R., & Hanning, I. (2019). Using fecal microbiota as biomarkers for predictions of performance in the selective breeding process of pedigree broiler breeders. PLOS ONE, 14(5), e0216080. https://doi.org/10.1371/journal.pone.0216080 | spa |
dc.relation.references | Dieguez, S. N., Decundo, J. M., Martínez, G., Amanto, F. A., Bianchi, C. P., Pérez Gaudio, D. S., & Soraci, A. L. (2022). Effect of Dietary Oregano (Lippia origanoides) and Clover (Eugenia caryophillata) Essential Oilsʼ Formulations on Intestinal Health and Performance of Pigs. Planta Medica, 88(03/04), 324–335.https://doi.org/10.1055/a- 1698-8469 | spa |
dc.relation.references | Donado-Godoy, P., Castellanos, R., León, M., Arevalo, A., Clavijo, V., Bernal, J., León, D., Tafur, M. A., Byrne, B. A., Smith, W. A., & Perez-Gutierrez, E. (2015). The establishment of the colombian integrated program for antimicrobial resistance surveillance (COIPARS): A pilot project on poultry farms, slaughterhouses and retail market. Zoonoses and Public Health, 62(s1), 58–69. https://doi.org/10.1111/ZPH.12192 | spa |
dc.relation.references | Dou, S., Gadonna-Widehem, P., Rome, V., Hamoudi, D., Rhazi, L., Lakhal, L., Larcher, T., Bahi-Jaber, N., Pinon-Quintana, A., Guyonvarch, A., Huërou-Luron, I. L. E., & Abdennebi-Najar, L. (2017). Characterisation of Early-Life Fecal Microbiota in Susceptible and Healthy Pigs to Post-Weaning Diarrhoea. PLOS ONE, 12(1), e0169851. https://doi.org/10.1371/journal.pone.0169851 | spa |
dc.relation.references | Ducatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 49(1), 43. https://doi.org/10.1186/s13567-018-0538-6 | spa |
dc.relation.references | Eeckhaut, V., Machiels, K., Perrier, C., Romero, C., Maes, S., Flahou, B., Steppe, M., Haesebrouck, F., Sas, B., Ducatelle, R., Vermeire, S., & Van Immerseel, F. (2013). Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut, 62(12), 1745– 1752. https://doi.org/10.1136/gutjnl-2012-303611 | spa |
dc.relation.references | Eeckhaut, V., Wang, J., Van Parys, A., Haesebrouck, F., Joossens, M., Falony, G., Raes, J., Ducatelle, R., & Van Immerseel, F. (2016). The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01416 | spa |
dc.relation.references | Enahoro, D., Bahta, S., Mensah, C., Oloo, S., & Rich, K. M. (2021). Current and future trade in livestock products. Revue Scientifique et Technique de l’OIE, 40(2), 395–411. https://doi.org/10.20506/rst.40.2.3232 | spa |
dc.relation.references | Engelsmann, M. N., Jensen, L. D., van der Heide, M. E., Hedemann, M. S., Nielsen, T. S., & Nørgaard, J. V. (2022). Age-dependent development in protein digestibility and intestinal morphology in weaned pigs fed different protein sources. https://doi.org/10.1016/j.animal.2021.100439 | spa |
dc.relation.references | Eriksen, E. Ø., Kudirkiene, E., Christensen, A. E., Agerlin, M. V., Weber, N. R., Nødtvedt, A., Nielsen, J. P., Hartmann, K. T., Skade, L., Larsen, L. E., Pankoke, K., Olsen, J. E., Jensen, H. E., & Pedersen, K. S. (2021). Post-weaning diarrhea in pigs weaned without medicinal zinc: risk factors, pathogen dynamics, and association to growth rate. Porcine Health Management, 7(1), 1–19. https://doi.org/10.1186/S40813-021- 00232-Z/TABLES/9 | spa |
dc.relation.references | Fan, Y., Ju, T., Bhardwaj, T., Korver, D. R., & Willing, B. P. (2023). Week-Old Chicks with High Bacteroides Abundance Have Increased Short-Chain Fatty Acids and Reduced Markers of Gut Inflammation. Microbiology Spectrum, 11(2). https://doi.org/10.1128/spectrum.03616-22 | spa |
dc.relation.references | Fan, Y., Zhou, W., Li, G., Liu, X., Zhong, P., Liu, K., Liu, Y., & Wang, D. (2024). Protective effects of sodium humate and its zinc and selenium chelate on the oxidative stress, inflammatory, and intestinal barrier damage of Salmonella Typhimurium-challenged broiler chickens. Poultry Science, 103(5), 103541. https://doi.org/10.1016/j.psj.2024.103541 | spa |
dc.relation.references | FAO. (2020). Overview of global meat market developments in 2020. | spa |
dc.relation.references | Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R., & White, B. A. (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology, 6(2), 121–131. https://doi.org/10.1038/nrmicro1817 | spa |
dc.relation.references | Florez-Cuadrado, D., Moreno, M. A., Ugarte-Ruíz, M., & Domínguez, L. (2018). Antimicrobial Resistance in the Food Chain in the European Union. Advances in Food and Nutrition Research, 86, 115–136. https://doi.org/10.1016/BS.AFNR.2018.04.004 | spa |
dc.relation.references | Franco, V. H. H., Carrasco, S. C. P., Suescún, J. E. P. (2022). Antimicrobials added to the feed of weaned piglets at two ages improves the molecular expression of intestinal barrier proteins. Animal Production Science, 62(6), 511–520. https://doi.org/10.1071/AN21027 | spa |
dc.relation.references | Frese, S. A., Parker, K., Calvert, C. C., & Mills, D. A. (2015). Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome, 3(1), 28. https://doi.org/10.1186/s40168-015-0091-8 | spa |
dc.relation.references | Gadde, U., Kim, W. H., Oh, S. T., & Lillehoj, H. S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Research Reviews, May, 1–20. https://doi.org/10.1017/S1466252316000207 | spa |
dc.relation.references | Gao, G., Zhou, J., Wang, H., Ding, Y., Zhou, J., Chong, P. H., Zhu, L., Ke, L., Wang, X., Rao, P., Wang, Q., & Zhang, L. (2022). Effects of valerate on intestinal barrier function in cultured Caco-2 epithelial cell monolayers. Molecular Biology Reports, 49(3), 1817–1825. https://doi.org/10.1007/s11033-021-06991-w | spa |
dc.relation.references | Gao, S., He, Y., Zhang, L., Liu, L., Qu, C., Zheng, Z., & Miao, J. (2022). Conjugated linoleic acid ameliorates hepatic steatosis by modulating intestinal permeability and gut microbiota in ob/ob mice. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8226 | spa |
dc.relation.references | Gardiner, G. E., Metzler-Zebeli, B. U., & Lawlor, P. G. (2020). Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms, 8(12), 1886. https://doi.org/10.3390/microorganisms8121886 | spa |
dc.relation.references | Gaukroger, C. H., Stewart, C. J., Edwards, S. A., Walshaw, J., Adams, I. P., & Kyriazakis, I. (2020). Changes in faecal microbiota profiles associated with performance and birthweight of piglets. Frontiers in microbiology, 11, 917. | spa |
dc.relation.references | Giannenas, I., Tzora, A., Sarakatsianos, I., Karamoutsios, A., Skoufos, S., Papaioannou, N., Anastasiou, I., & Skoufos, I. (2016). The Effectiveness of the Use of Oregano and Laurel Essential Oils in Chicken Feeding. Annals of Animal Science, 16(3). https://doi.org/10.1515/aoas-2015-0099 | spa |
dc.relation.references | Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition, 125(6), 1401-1412. https://doi.org/10.1093/jn/125.6.1401 | spa |
dc.relation.references | Gómez-Arango, L. F., Barrett, H. L., Wilkinson, S. A., Callaway, L. K., McIntyre, H. D., Morrison, M., & Dekker Nitert, M. (2018). Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 9(3), 189–201. https://doi.org/10.1080/19490976.2017.1406584 | spa |
dc.relation.references | Guevarra, R. B., Hong, S. H., Cho, J. H., Kim, B.-R., Shin, J., Lee, J. H., Kang, B. N., Kim, Y. H., Wattanaphansak, S., Isaacson, R. E., Song, M., & Kim, H. B. (2018). The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. Journal of Animal Science and Biotechnology, 9(1), 54. https://doi.org/10.1186/s40104-018-0269-6 | spa |
dc.relation.references | Guo, L., Zhang, D., Fu, S., Zhang, J., Zhang, X., He, J., Peng, C., Zhang, Y., Qiu, Y., Ye, C., Liu, Y., Wu, Z., & Hu, C. A. A. (2021). Metagenomic Sequencing Analysis of the Effects of Colistin Sulfate on the Pig Gut Microbiome. Frontiers in Veterinary Science, 8, 676. https://doi.org/10.3389/FVETS.2021.663820/BIBTEX | spa |
dc.relation.references | Gupta, A., Dhakan, D. B., Maji, A., Saxena, R., P.K., V. P., Mahajan, S., Pulikkan, J., Kurian, J., Gomez, A. M., Scaria, J., Amato, K. R., Sharma, A. K., & Sharma, V. K. (2019). Association of Flavonifractor plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. MSystems, 4(6). https://doi.org/10.1128/mSystems.00438-19 | spa |
dc.relation.references | Hajjo, R., Sabbah, D. A., & Al Bawab, A. Q. (2022). Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics, 12(7), 1742. https://doi.org/10.3390/diagnostics12071742 | spa |
dc.relation.references | Han, G. G., Lee, J.-Y., Jin, G.-D., Park, J., Choi, Y. H., Chae, B. J., Kim, E. B., & Choi, Y.- J. (2017). Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Applied Microbiology and Biotechnology, 101(14), 5903–5911. https://doi.org/10.1007/s00253-017- 8304-7 | spa |
dc.relation.references | He, B., Bai, Y., Jiang, L., Wang, W., Li, T., Liu, P., Tao, S., Zhao, J., Han, D., & Wang, J. (2018). Effects of Oat Bran on Nutrient Digestibility, Intestinal Microbiota, and Inflammatory Responses in the Hindgut of Growing Pigs. International Journal of Molecular Sciences, 19(8), 2407. https://doi.org/10.3390/ijms19082407 | spa |
dc.relation.references | He, K., Yan, W., Sun, C., Liu, J., Bai, R., Wang, T., & Qian, W. (2020). Alterations in the diversity and composition of gut microbiota in weaned piglets infected with Balantioides coli. Veterinary Parasitology, 288, 109298. https://doi.org/10.1016/j.vetpar.2020.109298 | spa |
dc.relation.references | Li, J., Sung, C. Y. J., Lee, N., Ni, Y., Pihlajamäki, J., Panagiotou, G., & El-Nezami, H. (2016). Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proceedings of the National Academy of Sciences, 113(9). https://doi.org/10.1073/pnas.1518189113 | spa |
dc.relation.references | Li, Y., Guo, Y., Wen, Z., Jiang, X., Ma, X., & Han, X. (2018). Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets. Scientific Reports, 8(1), 18068. https://doi.org/10.1038/s41598-018-33649-8 | spa |
dc.relation.references | Li, Y., Zhu, Y., Wei, H., Chen, Y., & Shang, H. (2020). Study on the Diversity and Function of Gut Microbiota in Pigs Following Long-Term Antibiotic and Antibiotic-Free Breeding. Current Microbiology, 77(12), 4114–4128. https://doi.org/10.1007/s00284-020-02240-8 | spa |
dc.relation.references | Liang, Q., Chiu, J., Chen, Y., Huang, Y., Higashimori, A., Fang, J., Brim, H., Ashktorab, H., Ng, S. C., Ng, S. S. M., Zheng, S., Chan, F. K. L., Sung, J. J. Y., & Yu, J. (2017). Fecal Bacteria Act as Novel Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clinical Cancer Research, 23(8), 2061–2070. https://doi.org/10.1158/1078- 0432.CCR-16-1599 | spa |
dc.relation.references | Liao, S. F., Ji, F., Fan, P., & Denryter, K. (2024). Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. International Journal of Molecular Sciences, 25(2), 1237. https://doi.org/10.3390/ijms25021237 | spa |
dc.relation.references | Liu, J., Robinson, K., Lyu, W., Yang, Q., Wang, J., Christensen, K. D., & Zhang, G. (2023). Anaerobutyricum and Subdoligranulum Are Differentially Enriched in Broilers with Disparate Weight Gains. Animals, 13(11), 1834. https://doi.org/10.3390/ani13111834 | spa |
dc.relation.references | Liu, L., Chen, D., Yu, B., Yin, H., Huang, Z., Luo, Y., Zheng, P., Mao, X., Yu, J., Luo, J., Yan, H., & He, J. (2020). Fructooligosaccharides improve growth performance and intestinal epithelium function in weaned pigs exposed to enterotoxigenic Escherichia coli. Food & Function, 11(11), 9599–9612. https://doi.org/10.1039/D0FO01998D | spa |
dc.relation.references | Liu, L., Chen, D., Yu, B., Yin, H., Huang, Z., Luo, Y., Zheng, P., Mao, X., Yu, J., Luo, J., Yan, H., & He, J. (2020). Fructooligosaccharides improve growth performance and intestinal epithelium function in weaned pigs exposed to enterotoxigenic Escherichia coli. Food & Function, 11(11), 9599–9612. https://doi.org/10.1039/D0FO01998D | spa |
dc.relation.references | Liu, Y., Yan, H., Yu, B., He, J., Mao, X., Yu, J., Zheng, P., Huang, Z., Luo, Y., Luo, J., Wu, A., & Chen, D. (2022). Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties. Antioxidants, 11(10), 1947. https://doi.org/10.3390/antiox11101947 | spa |
dc.relation.references | Liu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.-F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Liu Z, & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7 | spa |
dc.relation.references | Londoño, S., Lallès, J. P., & Parra, J. (2016). Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional de Agronomia Medellin, 69(2), 7911–7918. https://doi.org/10.15446/rfna.v69n2.59136 | spa |
dc.relation.references | Long, S. F., Xu, Y. T., Pan, L., Wang, Q. Q., Wang, C. L., Wu, J. Y., Wu, Y. Y., Han, Y. M., Yun, C. H., & Piao, X. S. (2018). Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Animal Feed Science and Technology, 235, 23–32. https://doi.org/10.1016/J.ANIFEEDSCI.2017.08.018 | spa |
dc.relation.references | Long, S., Liu, L., Liu, S., Mahfuz, S., & Piao, X. (2019). Effects of Forsythia Suspense Extract as an Antibiotics Substitute on Growth Performance, Nutrient Digestibility, Serum Antioxidant Capacity, Fecal Escherichia coli Concentration and Intestinal Morphology of Weaned Piglets. Animals 2019, Vol. 9, Page 729, 9(10), 729. https://doi.org/10.3390/ANI9100729 | spa |
dc.relation.references | Luo, Y., Liu, L., Chen, D., Yu, B., Zheng, P., Mao, X., Huang, Z., Yu, J., Luo, J., Yan, H., & He, J. (2021). Dietary supplementation of fructooligosaccharides alleviates enterotoxigenic E. coli -induced disruption of intestinal epithelium in a weaned piglet model. British Journal of Nutrition, 1–27. https://doi.org/10.1017/S0007114521004451 | spa |
dc.relation.references | Ma, F., Xu, S., Tang, Z., Li, Z., & Zhang, L. (2021). Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, 3(1), 32–38. https://doi.org/10.1016/J.BSHEAL.2020.09.004 | spa |
dc.relation.references | Mach, N., Berri, M., Estellé, J., Levenez, F., Lemonnier, G., Denis, C., Leplat, J., Chevaleyre, C., Billon, Y., Doré, J., Rogel‐Gaillard, C., & Lepage, P. (2015). Early‐ life establishment of the swine gut microbiome and impact on host phenotypes. Environmental Microbiology Reports, 7(3), 554–569. https://doi.org/10.1111/1758- 2229.12285 | spa |
dc.relation.references | Madrid Garcés, T. A., Parra Suescún, J. E., & López Herrera, A. (2018). La ingesta de aceite esencial de orégano (Lippia origanoides) mejora la morfología intestinal en Broilers. Archivos de Zootecnia, 66(254), 287–299. https://doi.org/http://dx.doi.org/10.21071/az.v66i254.2334 | spa |
dc.relation.references | Madrid-Garcés, T. A., López-Herrera, A., & Parra-Suescún, J. E. (2018). Inclusion of essential oil of oregano enhances intestinal morphology in broiler. Archivos de Zootecnia, 67(260), 470–476. https://doi.org/10.21071/az.v0i0.3876 | spa |
dc.relation.references | Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474 | spa |
dc.relation.references | Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474 | spa |
dc.relation.references | Mahmud, M. R., Jian, C., Uddin, M. K., Huhtinen, M., Salonen, A., Peltoniemi, O. Venhoranta, H., & Oliviero, C. (2023). Impact of Intestinal Microbiota on Growth Performance of Suckling and Weaned Piglets. Microbiology Spectrum, 11(3). https://doi.org/10.1128/spectrum.03744-22 | spa |
dc.relation.references | Makarewicz, M., Drożdż, I., Tarko, T., & Duda-Chodak, A. (2021). The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants, 10(2), 188. https://doi.org/10.3390/antiox10020188 | spa |
dc.relation.references | Maltecca, C., Bergamaschi, M., & Tiezzi, F. (2020). The interaction between microbiome and pig efficiency: A review. Journal of Animal Breeding and Genetics, 137(1), 4– 13. https://doi.org/10.1111/jbg.12443 | spa |
dc.relation.references | Mancabelli, L., Ferrario, C., Milani, C., Mangifesta, M., Turroni, F., Duranti, S., Lugli, G. A., Viappiani, A., Ossiprandi, M. C., van Sinderen, D., & Ventura, M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 18(12), 4727–4738. https://doi.org/10.1111/1462-2920.13363 | spa |
dc.relation.references | Marcin, A., & Nad, P. (2017). Effect of Essential Oils on Enzymatic Activities in the Intestinal Apparatus and Growth Ability of Laboratory Mice. Physiological Research, S567– S574. https://doi.org/10.33549/physiolres.933807 | spa |
dc.relation.references | Marion, J., Petersen, Y. M., Romé, V., Thomas, F., Sangild, P. T., Dividich, J. Le, & Huërou‐ Luron, I. Le. (2005). Early Weaning Stimulates Intestinal Brush Border Enzyme Activities in Piglets, Mainly at the Posttranscriptional Level. Journal of Pediatric Gastroenterology and Nutrition, 41(4), 401–410. https://doi.org/10.1097/01.mpg.0000177704.99786.07 | spa |
dc.relation.references | Marková, K., Kreisinger, J., & Vinkler, M. (2024). Are there consistent effects of gut microbiota composition on performance, productivity and condition in poultry. Poultry Science, 103(6), 103752. https://doi.org/10.1016/j.psj.2024.103752 | spa |
dc.relation.references | Maya, O. C. A., Ángel-Isaza, J. A., Martínez Morales, B. C., & Parra Suescún, J. E. (2021). Aceite esencial de orégano (Lippia origanoides) mejora parámetros productivos y metabólitos sanguíneos en lechones. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(2), 82–93. https://doi.org/10.18684/bsaa.v19.n2.2021.1547 | spa |
dc.relation.references | McCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Applied and Environmental Microbiology, 83(15). https://doi.org/10.1128/AEM.00380-17 | spa |
dc.relation.references | McCormack, U. M., Curião, T., Metzler-Zebeli, B. U., Magowan, E., Berry, D. P., Reyer, H., Prieto, M. L., Buzoianu, S. G., Harrison, M., Rebeiz, N., Crispie, F., Cotter, P. D., O’Sullivan, O., Gardiner, G. E., & Lawlor, P. G. (2019). Porcine Feed Efficiency- Associated Intestinal Microbiota and Physiological Traits: Finding Consistent Cross- Locational Biomarkers for Residual Feed Intake. MSystems, 4(4). https://doi.org/10.1128/mSystems.00324-18 | spa |
dc.relation.references | McMurdie, P.J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one, 8(4), e61217. http://dx.plos.org/10.1371/journal.pone.0061217. | spa |
dc.relation.references | Mendiburu, F.D. (2015) agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-3. http://CRAN.R-project.org/package=agricolae | spa |
dc.relation.references | Meng, Q., Sun, S., Luo, Z., Shi, B., Shan, A., & Cheng, B. (2019). Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota. Food & Function, 10(9), 5626–5643. https://doi.org/10.1039/C9FO00637K | spa |
dc.relation.references | Milici, M., Tomasch, J., Wos-Oxley, M. L., Wang, H., Jáuregui, R., Camarinha-Silva, A., Deng, Z. L., Plumeier, I., Giebel, H. A., Wurst, M., Pieper, D. H., Simon, M., & Wagner-Döbler, I. (2016). Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports 2016 6:1, 6(1), 1–9. https://doi.org/10.1038/srep19054 | spa |
dc.relation.references | Minagricultura. (2021). Cadena Cárnica Porcina. https://sioc.minagricultura.gov.co/Porcina/Documentos/2021-03 30%20Cifras%20Sectoriales.pdf | spa |
dc.relation.references | Ming, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of Weaning Age at 21 and 28 Days on Growth Performance, Intestinal Morphology and Redox Status in Piglets. Animals 2021, Vol. 11, Page 2169, 11(8), 2169. https://doi.org/10.3390/ANI11082169 | spa |
dc.relation.references | Miragoli, F., Patrone, V., Prandini, A., Sigolo, S., Dell’Anno, M., Rossi, L., Senizza, A., Morelli, L., & Callegari, M. L. (2021). Implications of Tributyrin on Gut Microbiota Shifts Related to Performances of Weaning Piglets. Microorganisms, 9(3), 584. https://doi.org/10.3390/microorganisms9030584 | spa |
dc.relation.references | Mo, K., Li, J., Liu, F., Xu, Y., Huang, X., & Ni, H. (2022). Superiority of Microencapsulated Essential Oils Compared With Common Essential Oils and Antibiotics: Effects on the Intestinal Health and Gut Microbiota of Weaning Piglet. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.808106 | spa |
dc.relation.references | Mohiti-Asli, M., & Ghanaatparast-Rashti, M. (2018). Comparing the effects of a combined phytogenic feed additive with an individual essential oil of oregano on intestinal morphology and microflora in broilers. Journal of Applied Animal Research, 46(1), 184–189. https://doi.org/10.1080/09712119.2017.1284074 | spa |
dc.relation.references | Molist, F., Manzanilla, E. G., Pérez, J. F., & Nyachoti, C. M. (2012). Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes:Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. British Journal of Nutrition, 108(1), 9–15. https://doi.org/10.1017/S0007114511005216 | spa |
dc.relation.references | Montagne, L., Gilbert, H., Muller, N., & le Floc’h, N. (2022). Physiological response to the weaning in two pig lines divergently selected for residual feed intake. Journal of Animal Physiology and Animal Nutrition, 106(4), 802–812. https://doi.org/10.1111/JPN.13622 | spa |
dc.relation.references | Moya, A., & Ferrer, M. (2016). Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends in Microbiology, 24(5), 402–413. https://doi.org/10.1016/j.tim.2016.02.002 | spa |
dc.relation.references | Nasrollahzadeh, A., Mollaei Tavani, S., Arjeh, E., & Jafari, S. M. (2023). Production of conjugated linoleic acid by lactic acid bacteria; important factors and optimum conditions. Food Chemistry: X, 20, 100942. https://doi.org/10.1016/j.fochx.2023.100942 | spa |
dc.relation.references | Nguyen Cong, O., Bernard, T., Pham Kim, D., Do Duc, L., Nassim, M., Nguyen Thi, H., Nguyen Hoang, T., Georges, D., Jérôme, B., Vu Dinh, T., & Hornick, J. (2019). Growth performance, carcass quality characteristics and colonic microbiota profiles in finishing pigs fed diets with different inclusion levels of rice distillers’ by‐product. Animal Science Journal, 90(8), 948–960. https://doi.org/10.1111/asj.13229 | spa |
dc.relation.references | Nguyen, D. T. N. (2021). Relationship between the ratio of villous height:crypt depth and gut bacteria counts as well production parameters in broiler chickens. The Journal of Agriculture and Development, 20(03), 1–10. https://doi.org/10.52997/jad.1.03.2021 | spa |
dc.relation.references | Niewold, T. A. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poultry Science, 86, 605–609. https://doi.org/10.1093/ps/86.4.605 | spa |
dc.relation.references | Niu, M., Zhao, Y., Xiang, L., Jia, Y., Yuan, J., Dai, X., & Chen, H. (2022). 16S rRNA gene sequencing analysis of gut microbiome in a mini‐pig diabetes model. Animal Models and Experimental Medicine, 5(1), 81. https://doi.org/10.1002/AME2.12202 | spa |
dc.relation.references | Nowland, T. L., Kirkwood, R. N., & Pluske, J. R. (2021). Review: Can early-life establishment of the piglet intestinal microbiota influence production outcomes? Animal, 100368. https://doi.org/10.1016/j.animal.2021.100368 | spa |
dc.relation.references | Nowland, T., Plush, K., Barton, M., & Kirkwood, R. (2019). Development and Function of the Intestinal Microbiome and Potential Implications for Pig Production. Animals, 9(3), 76. https://doi.org/10.3390/ani9030076 | spa |
dc.relation.references | O’Shea, C. J. (2022). Feed Additives in Swine Diets. In Sustainable Swine Nutrition (pp. 471–491). Wiley. https://doi.org/10.1002/9781119583998.ch18 | spa |
dc.relation.references | OCDE, & FAO. (2021). Meat. In OECD-FAO Agricultural Outlook 2021-2030. OECD Publishing. https://doi.org/10.1787/cf68bf79-en | spa |
dc.relation.references | Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., & Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan | spa |
dc.relation.references | Omonijo, F. A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4(2), 126–136. https://doi.org/10.1016/j.aninu.2017.09.001 | spa |
dc.relation.references | Orlov, D. S. (2020). Humic Substances of Soils and General Theory of Humification. CRC Press. https://doi.org/10.1201/9781003079460 | spa |
dc.relation.references | Padilla Pérez, M. (2007). Manual de porcicultura. Ministerio de Agricultura y Ganadería, San José, Costa Rica: MAG | spa |
dc.relation.references | Panasevich, M. R., Wankhade, U. D., Chintapalli, S. V., Shankar, K., & Rector, R. S. (2018). Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Physiological Genomics, 50(5), 355–368. https://doi.org/10.1152/physiolgenomics.00110.2017 | spa |
dc.relation.references | Pandey, S., Kim, E. S., Cho, J. H., Song, M., Doo, H., Kim, S., Keum, G. B., Kwak, J., Ryu, S., Choi, Y., Kang, J., Lee, J. J., & Kim, H. B. (2023). Swine gut microbiome associated with non-digestible carbohydrate utilization. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1231072 | spa |
dc.relation.references | Parra Alarcón, E. A., Hijuitl Valeriano, T. D. J., Mariscal Landín, G., & Reis de Souza, T. C. (2022). Concentrado de proteína de papa: una posible alternativa al uso de antibióticos en las dietas para lechones destetados. Revisión. Revista Mexicana de Ciencias Pecuarias, 13(2), 510–524. https://doi.org/10.22319/rmcp.v13i2.5980 | spa |
dc.relation.references | Patel, S. J., Wellington, M., Shah, R. M., & Ferreira, M. J. (2020). Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, and Opportunities. Clinical Therapeutics, 42(9), 1649–1658. https://doi.org/10.1016/J.CLINTHERA.2020.07.004 | spa |
dc.relation.references | Patil, Y., Gooneratne, R., & Ju, X.-H. (2020). Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes, 11(3), 310–334. https://doi.org/10.1080/19490976.2019.1690363 | spa |
dc.relation.references | Patiño, Felipe., Víctor Herrera, F., Daniela López, D., & Jaime Parra, S. (2019). Blood metabolites and zootechnical parameters in piglets weaned at two ages and with the addition of antimicrobials in the feed. Revista de Investigaciones Veterinarias Del Peru, 30(2), 612–623. https://doi.org/10.15381/rivep.v30i2.14887 | spa |
dc.relation.references | Peng, Q. Y., Li, J. D., Li, Z., Duan, Z. Y., & Wu, Y. P. (2016). Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Animal Feed Science and Technology, 214, 148–153. https://doi.org/10.1016/j.anifeedsci.2016.02.010 | spa |
dc.relation.references | Petersen, Y. M., Burrin, D. G., & Sangild, P. T. (2001). GLP-2 has differential effects on small intestine growth and function in fetal and neonatal pigs. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(6). https://doi.org/10.1152/AJPREGU.2001.281.6.R1986 | spa |
dc.relation.references | Petrin, S., Patuzzi, I., di Cesare, A., Tiengo, A., Sette, G., Biancotto, G., Corno, G., Drigo, M., Losasso, C., & Cibin, V. (2019). Evaluation and quantification of antimicrobial residues and antimicrobial resistance genes in two Italian swine farms. Environmental Pollution, 255, 113183. https://doi.org/10.1016/j.envpol.2019.113183 | spa |
dc.relation.references | Pi, Y., Gao, K., Peng, Y., Mu, C. L., & Zhu, W. Y. (2019). Antibiotic-induced alterations of the gut microbiota and microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs. Animal, 13(2), 262–272. https://doi.org/10.1017/S1751731118001416 | spa |
dc.relation.references | Pluske, J. R., Hampson, D. J., & Williams, I. H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig: A review. In Livestock Production Science (Vol. 51, Issues 1–3, pp. 215–236). Elsevier. https://doi.org/10.1016/S0301-6226(97)00057-2 | spa |
dc.relation.references | Pokharel, S., Shrestha, P., & Adhikari, B. (2020). Antimicrobial use in food animals and human health: time to implement ‘One Health’ approach. Antimicrobial Resistance and Infection Control, 9(1), 1–5. https://doi.org/10.1186/S13756-020-00847- X/METRICS | spa |
dc.relation.references | Rahman, M. R. T., Fliss, I., & Biron, E. (2022). Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics, 11(6), 766. https://doi.org/10.3390/ANTIBIOTICS11060766/S1 | spa |
dc.relation.references | Ramírez, L. S., Isaza, J. H., Veloza, L. í ngela, Stashenko, E., & Marín, D. (2009). Actividad antibacteriana de aceites esenciales de Lippia origanoides de diferentes orígenes de Colombia. Ciencia, 17(4). https://produccioncientificaluz.org/index.php/ciencia/article/view/9960 | spa |
dc.relation.references | Rehman, R., Hanif, M. A., Mushtaq, Z., & Al-Sadi, A. M. (2016). Biosynthesis of essential oils in aromatic plants: A review. Food Reviews International, 32(2), 117–160. https://doi.org/10.1080/87559129.2015.1057841 | spa |
dc.relation.references | Reis-De Souza, T., Carrillo Guerrero, D. J. M., Barreyro, A. A., & Landín, G. M. (2005). Effect of different cereals on intestinal villous morphology in weaned piglets. Pecu Méx, 43(3), 309–321. | spa |
dc.relation.references | Rostagno, H. S. (2017). Tablas brasileñas para aves y cerdos (4th ed.). Departamento de Zootecnia, UFV. | spa |
dc.relation.references | RStudio Team. (2020). RStudio: Integrated Development for R. RStudio, PBC. | spa |
dc.relation.references | Ruzauskas, M., Bartkiene, E., Stankevicius, A., Bernatoniene, J., Zadeike, D., Lele, V., Starkute, V., Zavistanaviciute, P., Grigas, J., Zokaityte, E., Pautienius, A., Juodeikiene, G., & Jakstas, V. (2020). The Influence of Essential Oils on Gut Microbial Profiles in Pigs. Animals, 10(10), 1734. https://doi.org/10.3390/ani10101734 | spa |
dc.relation.references | Saladrigas-García, M., D’Angelo, M., Ko, H. L., Nolis, P., Ramayo-Caldas, Y., Folch, J. M., Llonch, P., Solà-Oriol, D., Pérez, J. F., & Martín-Orúe, S. M. (2021). Understanding host-microbiota interactions in the commercial piglet around weaning. Scientific Reports, 11(1), 23488. https://doi.org/10.1038/s41598-021-02754-6 | spa |
dc.relation.references | Santos, T. G., Fernandes, S. D., de Oliveira Araújo, S. B., Felicioni, F., de Mérici Domingues e Paula, T., Caldeira-Brant, A. L., Ferreira, S. V., de Paula Naves, L., de Souza, S. P., Campos, P. H. R. F., Chiarini-Garcia, H., Dias, A. L. N. A., & de Almeida, F. R. C. L. (2022). Intrauterine growth restriction and its impact on intestinal morphophysiology throughout postnatal development in pigs. Scientific Reports 2022 12:1, 12(1), 1–10. https://doi.org/10.1038/s41598-022-14683-z. | spa |
dc.relation.references | Sarangi, A. N., Goel, A., & Aggarwal, R. (2019). Methods for Studying Gut Microbiota: A Primer for Physicians. Journal of Clinical and Experimental Hepatology, 9(1), 62– 73. https://doi.org/10.1016/J.JCEH.2018.04.016 | spa |
dc.relation.references | Schoefer, L., Mohan, R., Schwiertz, A., Braune, A., & Blaut, M. (2003). Anaerobic Degradation of Flavonoids by Clostridium orbiscindens. Applied and Environmental Microbiology, 69(10), 5849–5854. https://doi.org/10.1128/AEM.69.10.5849-5854.2003 | spa |
dc.relation.references | Sciascia, Q. L., & Metges, C. C. (2023). Review: Methods and biomarkers to investigate intestinal function and health in pigs. Animal, 17, 100860. https://doi.org/10.1016/j.animal.2023.100860 | spa |
dc.relation.references | Shang, Y., Kumar, S., Thippareddi, H., & Kim, W. K. (2018). Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poultry science, 97(10), 3622-3634. | spa |
dc.relation.references | Slifer, Z. M., & Blikslager, A. T. (2020). The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium. International Journal of Molecular Sciences 2020, Vol. 21, Page 972, 21(3), 972. https://doi.org/10.3390/IJMS21030972 | spa |
dc.relation.references | Slifier Z, M. J., Friendship, R. M., & Weese, J. S. (2015). Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiology, 15(1), 184. https://doi.org/10.1186/s12866-015-0512-7 | spa |
dc.relation.references | Soler, C., Goossens, T., Bermejo, A., Migura-García, L., Cusco, A., Francino, O., & Fraile, L. (2018). Digestive microbiota is different in pigs receiving antimicrobials or a feed additive during the nursery period. PLOS ONE, 13(5), e0197353. https://doi.org/10.1371/JOURNAL.PONE.0197353 | spa |
dc.relation.references | Sotelo-Bautista, M., Bello-Perez, L. A., Gonzalez-Soto, R. A., Yañez-Fernandez, J., & Alvarez-Ramirez, J. (2019). OSA-maltodextrin as wall material for encapsulation of essential avocado oil by spray drying. 41(2), 235–242. https://doi.org/10.1080/01932691.2018.1562939 | spa |
dc.relation.references | Souza, L. M., Fonseca, F. S. A., Silva, J. C., Silva, A., Silva, J., & Martins, E. (2019). Essential oil composition in natural population of Lippia origanoides (Verbenaceae) during dry and rainy seasons. Revista de Biología Tropical, 67(1). https://doi.org/10.15517/rbt.v67i1.31407 | spa |
dc.relation.references | Stanley, D., Geier, M. S., Denman, S. E., Haring, V. R., Crowley, T. M., Hughes, R. J., & Moore, R. J. (2013). Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 164(1–2), 85–92. https://doi.org/10.1016/j.vetmic.2013.01.030 Stashenko, E., & Martínez, J. (2020). Study of Essential | spa |
dc.relation.references | Oils Obtained from Tropical Plants Grown in Colombia. In Essential Oils - Oils of Nature. IntechOpen. https://doi.org/10.5772/intechopen.87199 | spa |
dc.relation.references | Suárez Moya, A. (2017). Microbioma y secuenciación masiva. Revista Española de Quimioterapia, ISSN-e 0214-3429, Vol. 30, No. 5, 2017, Págs. 305-311, 30(5), 305–311. | spa |
dc.relation.references | Sun, J., Du, L., Li, X., Zhong, H., Ding, Y., Liu, Z., & Ge, L. (2019). Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets. Scientific Reports, 9(1), 18675. https://doi.org/10.1038/s41598-019-55328-y | spa |
dc.relation.references | Suriyaphol, P., Chiu, J. K. H., Yimpring, N., Tunsagool, P., Mhuantong, W., Chuanchuen, R., Bessarab, I., Williams, R. B. H., Ong, R. T.-H., & Suriyaphol, G. (2021). Dynamics of the fecal microbiome and antimicrobial resistome in commercial piglets during the weaning period. Scientific Reports, 11(1), 18091. https://doi.org/10.1038/s41598021975869 | spa |
dc.relation.references | Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal, 91(1), e13357. https://doi.org/10.1111/ASJ.13357 | spa |
dc.relation.references | Tang, X., Xiong, K., Fang, R., & Li, M. (2022). Weaning stress and intestinal health of piglets: A review. Frontiers in immunology, 13, 1042778. https://doi.org/10.3389/fimmu.2022.1042778 | spa |
dc.relation.references | Tian, L., Wang, X.-W., Wu, A.-K., Fan, Y., Friedman, J., Dahlin, A., Waldor, M. K., Weinstock, G. M., Weiss, S. T., & Liu, Y.-Y. (2020). Deciphering functional redundancy in the human microbiome. Nature Communications, 11(1), 6217. https://doi.org/10.1038/s41467-020-19940-1 | spa |
dc.relation.references | Trachsel, J., Humphrey, S., & Allen, H. K. (2018). Butyricicoccus porcorum sp. nov., a butyrate-producing bacterium from swine intestinal tract. International Journal of Systematic and Evolutionary Microbiology, 68(5), 1737–1742. https://doi.org/10.1099/ijsem.0.002738 | spa |
dc.relation.references | Trckova, M., Lorencova, A., Babak, V., Neca, J., & Ciganek, M. (2018). The effect of leonardite and lignite on the health of weaned piglets. Research in Veterinary Science, 119, 134–142. https://doi.org/10.1016/j.rvsc.2018.06.004 | spa |
dc.relation.references | Trckova, M., Lorencova, A., Babak, V., Neca, J., & Ciganek, M. (2017). Effects of sodium humate and zinc oxide used in prophylaxis of post-weaning diarrhoea on the health, oxidative stress status and fatty acid profile in weaned piglets. Veterinární Medicína, 62(No. 1), 16–28. https://doi.org/10.17221/70/2016-VETMED | spa |
dc.relation.references | Unusan, N. (2020). Essential oils and microbiota: Implications for diet and weight control. Trends in Food Science & Technology, 104, 60–71. https://doi.org/10.1016/j.tifs.2020.07.014 | spa |
dc.relation.references | Upadhaya, S. D., & Kim, I. H. (2022). Maintenance of gut microbiome stability for optimum intestinal health in pigs – a review. Journal of Animal Science and Biotechnology, 13(1), 140. https://doi.org/10.1186/s40104-022-00790-4 | spa |
dc.relation.references | USDA. (2022). Livestock and Poultry: World Markets and Trade. http://www.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf | spa |
dc.relation.references | van Beers‐Schreurs, H. M. G., Vellenga, L., Wensing, Th., & Breukink, H. J. (1992). The pathogenesis of the post‐weaning syndrome in weaned piglets; a review. Veterinary Quarterly, 14(1), 29–34. https://doi.org/10.1080/01652176.1992.9694322 | spa |
dc.relation.references | van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/PNAS.1503141112/SUPPL_FILE/PNAS.201503141SI.PDF | spa |
dc.relation.references | Van Hul, M., Le Roy, T., Prifti, E., Dao, M. C., Paquot, A., Zucker, J.-D., Delzenne, N. M., Muccioli, G. G., Clément, K., & Cani, P. D. (2020). From correlation to causality: the case of Subdoligranulum. Gut Microbes, 12(1), 1849998. https://doi.org/10.1080/19490976.2020.1849998 | spa |
dc.relation.references | Vera, C., Illanes, A., & Guerrero, C. (2021). Enzymatic production of prebiotic oligosaccharides. Current Opinion in Food Science, 37, 160–170. https://doi.org/10.1016/j.cofs.2020.10.013 | spa |
dc.relation.references | Vo, N., Tsai, T. C., Maxwell, C., & Carbonero, F. (2017). Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe, 45, 31–39. https://doi.org/10.1016/j.anaerobe.2017.02.022 | spa |
dc.relation.references | Walters, W. A., Xu, Z., & Knight, R. (2014). Meta‐analyses of human gut microbes associated with obesity and IBD. FEBS Letters, 588(22), 4223–4233. https://doi.org/10.1016/j.febslet.2014.09.039 | spa |
dc.relation.references | Wang, D., He, Y., Liu, K., Deng, S., Fan, Y., & Liu, Y. (2022). Sodium Humate Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Dysfunction via Alteration of Intestinal Microbiota and Metabolites in Mice. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.809086 | spa |
dc.relation.references | Wang, D., Jia, H., Du, Y., & Liu, Y. (2022). Effects of sodium humate and glutamine on growth performance, diarrhoea incidence, blood parameters, and faecal microflora of pre‐weaned calves. Journal of Animal Physiology and Animal Nutrition. https://doi.org/10.1111/jpn.13703 | spa |
dc.relation.references | Wang, H., Xu, R., Zhang, H., Su, Y., & Zhu, W. (2020). Swine gut microbiota and its interaction with host nutrient metabolism. Animal Nutrition, 6(4), 410–420. https://doi.org/10.1016/j.aninu.2020.10.002 | spa |
dc.relation.references | Wang, J., Han, Y., Zhao, J., Zhou, Z., & Fan, H. (2017). Consuming fermented distillers’ dried grains with solubles (DDGS) feed reveals a shift in the faecal microbiota of growing and fattening pigs using 454 pyrosequencing. Journal of Integrative Agriculture, 16(4), 900–910. https://doi.org/10.1016/S2095-3119(16)61523-X | spa |
dc.relation.references | Wang, M., Yang, C., Wang, Q., Li, J., Huang, P., Li, Y., Ding, X., Yang, H., & Yin, Y. (2020). The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 104(2), 606–615. | spa |
dc.relation.references | Wang, Q., Ying, J., Zou, P., Zhou, Y., Wang, B., Yu, D., Li, W., & Zhan, X. (2020). Effects of Dietary Supplementation of Humic Acid Sodium and Zinc Oxide on Growth Performance, Immune Status and Antioxidant Capacity of Weaned Piglets. Animals, 10(11), 2104. https://doi.org/10.3390/ani10112104 | spa |
dc.relation.references | Wang, Q., Ying, J., Zou, P., Zhou, Y., Wang, B., Yu, D., Li, W., & Zhan, X. (2020). Effects of Dietary Supplementation of Humic Acid Sodium and Zinc Oxide on Growth Performance, Immune Status and Antioxidant Capacity of Weaned Piglets. Animals, 10(11), 2104. https://doi.org/10.3390/ani10112104 | spa |
dc.relation.references | Wang, X., Tsai, T., Deng, F., Wei, X., Chai, J., Knapp, J., Apple, J., Maxwell, C. V., Lee, J. A., Li, Y., & Zhao, J. (2019). Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome, 7(1), 109. https://doi.org/10.1186/s40168-019-0721-7 | spa |
dc.relation.references | Wang, Y., Yan, X., Zhang, W., Liu, Y., Han, D., Teng, K., & Ma, Y. (2019). Lactobacillus casei Zhang Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune Factor Expression. Journal of Microbiology and Biotechnology, 29(6), 863–876. https://doi.org/10.4014/jmb.1903.03054 | spa |
dc.relation.references | Wang, Z., He, Y., Wang, C., Ao, H., Tan, Z., & Xing, K. (2021). Variations in Microbial Diversity and Metabolite Profiles of Female Landrace Finishing Pigs With Distinct Feed Efficiency. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.702931 | spa |
dc.relation.references | Wei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix. Https://Github.Com/Taiyun/Corrplot. | spa |
dc.relation.references | Wei, X., Tsai, T., Howe, S., & Zhao, J. (2021). Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals 2021, Vol. 11, Page 1279, 11(5), 1279. https://doi.org/10.3390/ANI11051279 | spa |
dc.relation.references | Wen, C., Guo, Q., Wang, W., Duan, Y., Zhang, L., Li, J., He, S., Chen, W., & Li, F. (2020). Taurine Alleviates Intestinal Injury by Mediating Tight Junction Barriers in Diquat- Challenged Piglet Models. Frontiers in Physiology, 11, 449. https://doi.org/10.3389/FPHYS.2020.00449/BIBTEX | spa |
dc.relation.references | Wu, F., Xiong, X., Yang, H., Yao, K., Duan, Y., Wang, X., Tan, B., Li, T., Xiao, L., Hou, Y., Wu, G., & Yin, Y. (2017). Expression of proteins in intestinal middle villus epithelial cells of weaning piglets. Frontiers in Bioscience - Landmark, 22(4), 539–557. https://doi.org/10.2741/4501 | spa |
dc.relation.references | Wu, W., Zhang, L., Xia, B., Tang, S., Liu, L., Xie, J., & Zhang, H. (2020). Bioregional Alterations in Gut Microbiome Contribute to the Plasma Metabolomic Changes in Pigs Fed with Inulin. Microorganisms, 8(1), 111. https://doi.org/10.3390/microorganisms8010111 | spa |
dc.relation.references | Xiong, X., Liu, X., Wang, Z., Xu, Q., Xu, J., & Rao, Y. (2022). Identifying biomarkers of the gut bacteria, bacteriophages and serum metabolites associated with three weaning periods in piglets. BMC Veterinary Research, 18(1), 104. https://doi.org/10.1186/s12917-022-03203-w | spa |
dc.relation.references | Xiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., & Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. In Frontiers in Veterinary Science (Vol. 6, Issue FEB, p. 46). Frontiers Media S.A. https://doi.org/10.3389/fvets.2019.00046 | spa |
dc.relation.references | Xiong, X., Yang, H., Tan, B., Yang, C., Wu, M., Liu, G., Kim, S. W., Li, T., Li, L., Wang, J., Wu, G., & Yin, Y. (2015). Differential expression of proteins involved in energy production along the crypt-villus axis in early-weaning pig small intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309(4), G229–G237. https://doi.org/10.1152/ajpgi.00095.2015 | spa |
dc.relation.references | Xu, J., Jia, Z., Xiao, S., Long, C., & Wang, L. (2023). Effects of Enterotoxigenic Escherichia coli Challenge on Jejunal Morphology and Microbial Community Profiles in Weaned Crossbred Piglets. Microorganisms, 11(11), 2646. https://doi.org/10.3390/microorganisms11112646 | spa |
dc.relation.references | Xun, W., Shi, L., Zhou, H., Hou, G., & Cao, T. (2018). Effect of weaning age on intestinal mucosal morphology, permeability, gene expression of tight junction proteins, cytokines and secretory IgA in Wuzhishan mini piglets. 17(4), 976–983. https://doi.org/10.1080/1828051X.2018.1426397 | spa |
dc.relation.references | Yan, H., Zhou, P., Zhang, Y., Zhang, Z., Liu, J., & Zhang, H. (2020). Short-chain fructo- oligosaccharides alleviates oxidized oil-induced intestinal dysfunction in piglets associated with the modulation of gut microbiota. Journal of Functional Foods, 64, 103661. https://doi.org/10.1016/j.jff.2019.103661 | spa |
dc.relation.references | Yang, H., Xiong, X., Wang, X., Tan, B., Li, T., & Yin, Y. (2016). Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets. PLOS ONE, 11(3), e0150216. https://doi.org/10.1371/JOURNAL.PONE.0150216 | spa |
dc.relation.references | Yang, X., Xin, H., Yang, C., & Yang, X. (2018). Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Animal Nutrition, 4(4), 388–393. https://doi.org/10.1016/J.ANINU.2018.04.005 | spa |
dc.relation.references | Yao, Y., Ni, H., Wang, X., Xu, Q., Zhang, J., Jiang, L., Wang, B., Song, S., & Zhu, X. (2021). A New Biomarker of Fecal Bacteria for Non-Invasive Diagnosis of Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.744049 | spa |
dc.relation.references | Zhai, H., Liu, H., Wang, S., Wu, J., & Kluenter, A. M. (2018). Potential of essential oils for poultry and pigs. Animal Nutrition, 4(2), 179–186. https://doi.org/10.1016/J.ANINU.2018.01.005 | spa |
dc.relation.references | Zhang, W., Ma, C., Xie, P., Zhu, Q., Wang, X., Yin, Y., & Kong, X. (2019). Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. Journal of Applied Microbiology, 127(2), 354–369. | spa |
dc.relation.references | Zhang, Z., Zhang, G., Zhang, S., & Zhao, J. (2022). Fructooligosaccharide Reduces Weanling Pig Diarrhea in Conjunction with Improving Intestinal Antioxidase Activity and Tight Junction Protein Expression. Nutrients, 14(3), 512. https://doi.org/10.3390/nu14030512 | spa |
dc.relation.references | Zhao, F., & Xia, Z. (2019). Application of FOS and CPP in intestinal health of Weaned Piglets. E3S Web of Conferences, 131. https://doi.org/10.1051/e3sconf/201913101077 | spa |
dc.relation.references | Zhao, W., Yuan, M., Li, P., Yan, H., Zhang, H., & Liu, J. (2019). Short-chain fructo- oligosaccharides enhances intestinal barrier function by attenuating mucosa inflammation and altering colonic microbiota composition of weaning piglets. Italian Journal of Animal Science, 18(1), 976–986. https://doi.org/10.1080/1828051X.2019.1612286 | spa |
dc.relation.references | Zheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Frontiers in Veterinary Science, 8, 91. https://doi.org/10.3389/FVETS.2021.628258/BIBTE | spa |
dc.relation.references | Zwezerijnen-Jiwa, F. H., Sivov, H., Paizs, P., Zafeiropoulou, K., & Kinross, J. (2023). A systematic review of microbiome-derived biomarkers for early colorectal cancer | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::636 - Producción animal | spa |
dc.subject.ddc | 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales | spa |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | spa |
dc.subject.ddc | 590 - Animales::599 - Mamíferos | spa |
dc.subject.lemb | Industria de la carne de cerdo | |
dc.subject.lemb | Carne de cerdo - Calidad | |
dc.subject.lemb | Alimentos para animales - Producción | |
dc.subject.lemb | Biotecnología de alimentos | |
dc.subject.proposal | Porcicultura | spa |
dc.subject.proposal | Microbiota | spa |
dc.subject.proposal | Cerdo | spa |
dc.subject.proposal | Prebiótico | spa |
dc.subject.proposal | Fitobiótico | spa |
dc.subject.proposal | Swine production | eng |
dc.subject.proposal | Microbiota | eng |
dc.subject.proposal | Prebiotic | eng |
dc.subject.proposal | Pig | eng |
dc.subject.proposal | Phytobiotic | eng |
dc.title | Evaluación de compuestos nutracéuticos en cerdos posdestete sobre la dinámica de desarrollo microbiano como biomarcador asociado a la expresión de mRNA de proteínas de salud intestinal | spa |
dc.title.translated | Evaluation of feed additives in post-weaning pigs on microbial composition as a biomarker associated with mRNA expression of intestinal health proteins | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | PROMITEC SANTANDER SAS | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1144050732.2025.pdf
- Tamaño:
- 5.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: