Evaluación de compuestos nutracéuticos en cerdos posdestete sobre la dinámica de desarrollo microbiano como biomarcador asociado a la expresión de mRNA de proteínas de salud intestinal

dc.contributor.advisorParra Suescún, Jaime
dc.contributor.advisorLópez Herrera, Albeiro
dc.contributor.authorÁngel Isaza, Jaime Andres
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=oN_sET4AAAAJ&hl=esspa
dc.contributor.orcidÁngel Isaza, Jaime Andres [0000-0003-1612-6938]spa
dc.contributor.researchgroupBiodiversidad y Génetica Molecular "Biogem"spa
dc.date.accessioned2025-03-25T14:04:30Z
dc.date.available2025-03-25T14:04:30Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficasspa
dc.description.abstractEn el ciclo de producción del cerdo, la fase posdestete es de gran importancia, debido a que confluyen factores estresantes que generan desbalance de la microbiota intestinal, alterando la salud de los lechones y causando diarreas. Los productores han recurrido al uso de antibióticos en el alimento, sin embargo, esta práctica ya se ha prohibido en diversos países por la posible inducción de resistencia microbiana. El objetivo del presente estudio fue evaluar la suplementación de aditivos alimenticios sobre la composición microbiana como biomarcador asociado a la expresión de proteínas de salud intestinal en cerdos durante el posdestete. Se utilizaron 240 lechones, distribuidos en seis dietas: (D1) alimento base, (D2) D1 + 350 ppm de bacitracina de zinc, (D3) D1 + 550 ppm de maltodextrina, (D4) D1 + 300 ppm de fructooligosacáridos, (D5) D1 + 69 ppm de aceite esencial de Lippia origanoides, y (D6) D1 + 750 ppm de humatos de sodio. Se evaluaron parámetros clínicos y productivos, así como muestras intestinales para el análisis del desarrollo morfológico, la expresión de proteínas de barrera y enzimáticas, y la composición microbiana ileal y fecal. Se observó que los fructooligosacáridos y aceite esencial de Lippia origanoides mejoraron la productividad, el desarrollo morfométrico, la expresión molecular de proteínas enzimáticas y de barrera, además de modular positivamente las comunidades microbianas ileales y fecales de los lechones en comparación con el D1 y D2. En conclusión, estos dos compuestos se postulan como alternativas biotecnológicas al uso de promotores de crecimiento antibióticos durante el posdestete. (Tomado de la fuente)spa
dc.description.abstractIn the pig production cycle, the post-weaning phase is of great importance, as stress factors converge, causing an imbalance in the intestinal microbiota, which affects the health of piglets and leads to diarrhea. Producers have traditionally relied on antibiotics in feed; however, this practice has been banned in several countries due to the potential induction of antimicrobial resistance. The aim of this study was to evaluate the supplementation of feed additives on microbial composition as a biomarker associated with the expression of intestinal health proteins in post-weaning pigs. A total of 240 piglets were used, divided into six diets: (D1) basal diet, (D2) D1 + 350 ppm zinc bacitracin, (D3) D1 + 550 ppm maltodextrin, (D4) D1 + 300 ppm fructooligosaccharides, (D5) D1 + 69 ppm Lippia origanoides essential oil, and (D6) D1 + 750 ppm sodium humates. Clinical and productive parameters were evaluated, along with intestinal samples for analysis of morphometric development, the expression of barrier and enzymatic proteins, and ileal and fecal microbial composition. It was observed that fructooligosaccharides and Lippia origanoides essential oil improved productivity, morphometric development, and the molecular expression of enzymatic and barrier proteins. Additionally, these additives positively modulated ileal and fecal microbial communities in comparison with D1 and D2. In conclusion, these two compounds are proposed as biotechnological alternatives to antibiotic growth promoters during the post-weaning phase.eng
dc.description.curricularareaBiotecnología.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Biotecnologíaspa
dc.format.extent160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87723
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgredo-Palechor, J. A., Gomez-Rosales, S., Angeles, M. de L., Pérez Alvarado, M. A., López-Hernández, L. H., Mariscal-Landín, G., & Mendoza-Elvira, S. E. (2023). The addition of humic substances extracted from vermicompost enhances the growth performance and the antioxidant status of weaning pigs. Veterinaria México OA, 10. https://doi.org/10.22201/fmvz.24486760e.2023.1211spa
dc.relation.referencesAlmutairi, R., Basson, A. R., Wearsh, P., Cominelli, F., & Rodriguez-Palacios, A. (2022). Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. European Journal of Nutrition, 61(6), 2853–2871. https://doi.org/10.1007/S00394-022-02802-5spa
dc.relation.referencesAl-Taey, D. K., Al-Shareefi, M. J., Mijwel, A. K., Razzaq Al-Tawaha, A., & Rahman Al- Tawaha, A. (2019). The benefi cial effects of bio-fertilizers combinations and humic acid on growth, yield parameters and nitrogen content of broccoli grown under drip irrigation system Abstract. Bulgarian Journal of Agricultural Science, 25(5), 959– 966.spa
dc.relation.referencesArenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática Livestock production and emergency antibiotic resistance in Colombia: Systematic review. Infectio, 22(2), 110–119.spa
dc.relation.referencesArif, M., Alagawany, M., Abd El-Hack, M. E., Saeed, M., Arain, M. A., & Elnesr, S. S. (2019). Humic acid as a feed additive in poultry diets: a review. Iranian Journal of Veterinary Research, 20(3), 167–172.spa
dc.relation.referencesAyuso, M., Michiels, J., Wuyts, S., Yan, H., Degroote, J., Lebeer, S., Le Bourgot, C. Majdeddin, M., Van Noten, N., Vanden Hole, C., Van Cruchten, S., Van Poucke, M., Peelman, L., & Van Ginneken, C. (2020). PLOS ONE, 15(6), e0233910. https://doi.org/10.1371/journal.pone.0233910spa
dc.relation.referencesAzad, M. A. K., Gao, J., Ma, J., Li, T., Tan, B., Huang, X., & Yin, J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 6(4), 379–388. https://doi.org/10.1016/j.aninu.2020.08.001spa
dc.relation.referencesAzad, M. A. K., Gao, J., Ma, J., Li, T., Tan, B., Huang, X., & Yin, J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 6(4), 379–388. https://doi.org/10.1016/j.aninu.2020.08.001spa
dc.relation.referencesBäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host- bacterial mutualism in the human intestine. science, 307(5717), 1915-1920.spa
dc.relation.referencesBadaras, S., Ruzauskas, M., Gruzauskas, R., Zokaityte, E., Starkute, V., Klupsaite, D., Mockus, E., Klementaviciute, J., Vadopalas, L., Zokaityte, G., Dauksiene, A., Bartkevics, V., & Bartkiene, E. (2022). Different creep compound feed formulations for new born piglets: influence on growth performance and health parameters. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.971783spa
dc.relation.referencesBallou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 2. https://doi.org/10.3389/FVETS.2016.00002/BIBTEXspa
dc.relation.referencesBarko, P. C., McMichael, M. A., Swanson, K. S., & Williams, D. A. (2018). The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32(1), 9–25. https://doi.org/10.1111/jvim.14875spa
dc.relation.referencesBarnett, D., Arts, I., & Penders, J. (2021). microViz: an R package for microbiome data visualization and statistics. Journal of Open Source Software, 6(63), 3201. https://doi.org/10.21105/joss.03201spa
dc.relation.referencesBellini, S. (2021). 7. The pig sector in the European Union. In Understanding and combatting African Swine Fever (pp. 183–195). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-910-7_7spa
dc.relation.referencesBerg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1–22. https://doi.org/10.1186/S40168-020-00875-0/FIGURES/7spa
dc.relation.referencesBergamaschi, M., Tiezzi, F., Howard, J., Huang, Y. J., Gray, K. A., Schillebeeckx, C., McNulty, N. P., & Maltecca, C. (2020). Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome, 8(1), 110. https://doi.org/10.1186/s40168-020-00888-9spa
dc.relation.referencesBetancourt, L., Hume, M., Rodríguez, F., Nisbet, D., Sohail, M. U., & Afanador-Tellez, G. (2019). Effects of Colombian oregano essential oil (Lippia origanoides Kunth) and Eimeria species on broiler production and cecal microbiota. Poultry Science, 98(10), 4777–4786. https://doi.org/10.3382/ps/pez193spa
dc.relation.referencesBezuglova, O., & Klimenko, A. (2022). Application of Humic Substances in Agricultural Industry. Agronomy, 12(3), 584. https://doi.org/10.3390/agronomy12030584spa
dc.relation.referencesBonetti, A., Tugnoli, B., Piva, A., & Grilli, E. (2021). Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals, 11(3), 642. https://doi.org/10.3390/ani11030642spa
dc.relation.referencesBosco, N. J. (2008). Some Growth Promoters Already Tried to Replace Antimicrobial Growth Promoter in Weaned Pig, a Review. International Research Journal of Engineering and Technology, 1741spa
dc.relation.referencesBrown, C. T., Davis-Richardson, A. G., Giongo, A., Gano, K. A., Crabb, D. B., Mukherjee, N., Casella, G., Drew, J. C., Ilonen, J., Knip, M., Hyöty, H., Veijola, R., Simell, T., Simell, O., Neu, J., Wasserfall, C. H., Schatz, D., Atkinson, M. A., & Triplett, E. W. (2011). Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes. PLoS ONE, 6(10), e25792. https://doi.org/10.1371/journal.pone.0025792spa
dc.relation.referencesBrown, K., Zaytsoff, S. J. M., Uwiera, R. R. E., & Inglis, G. D. (2016). Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota. Nature Publishing Group, November, 1–13. https://doi.org/10.1038/srep38377spa
dc.relation.referencesCanadian Council on Animal Care. (2009). CCAC guidelines on: the care and use of farm animals in research, teaching and testing Canadian Council on Animal Care in science (Vol. 1). http://www.ccac.caspa
dc.relation.referencesCao, Y., Dong, Q., Wang, D., Zhang, P., Liu, Y., & Niu, C. (2022). microbiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics, 38(16), 4027–4029. https://doi.org/10.1093/bioinformatics/btac438spa
dc.relation.referencesCarlier, J.-P., Bedora-Faure, M., K’ouas, G., Alauzet, C., & Mory, F. (2010). Proposal to unify Clostridium orbiscindens Winter et al. 1991 and Eubacterium plautii (Séguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 60(3), 585–590. https://doi.org/10.1099/ijs.0.016725-0spa
dc.relation.referencesChang, S. C., Shen, M. H., Liu, C. Y., Pu, C. M., Hu, J. M., & Huang, C. J. (2020). A gut butyrate producing bacterium Butyricicoccus pullicaecorum regulates short chain fatty acid transporter and receptor to reduce the progression of 1, 2 dimethylhydrazine associated colorectal cancer. Oncology Letters, 20(6), 327. https://doi.org/10.3892/ol.2020.12190spa
dc.relation.referencesChang, S. Y., Song, M. H., Lee, J. H., Oh, H. J., Kim, Y. J., An, J. W., Go, Y. bin, Song, D. C., Cho, H. A., Cho, S. Y., Kim, D. J., Kim, M. S., Kim, H. B., & Cho, J. H. (2022). Phytogenic feed additives alleviate pathogenic Escherichia coli-induced intestinal damage through improving barrier integrity and inhibiting inflammation in weaned pigs. Journal of Animal Science and Biotechnology, 13(1), 1–12. https://doi.org/10.1186/S40104-022-00750-Y/TABLES/8spa
dc.relation.referencesChen, H., Mao, X., He, J., Yu, B., Huang, Z., Yu, J., Zheng, P., & Chen, D. (2013). Dietary fiber affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. The British Journal of Nutrition, 110(10), 1837–1848. https://doi.org/10.1017/S0007114513001293spa
dc.relation.referencesChen, L., Xu, Y., Chen, X., Fang, C., Zhao, L., & Chen, F. (2017). The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01688spa
dc.relation.referencesCheng, C., Xia, M., Zhang, X., Wang, C., Jiang, S., & Peng, J. (2018). Supplementing oregano essential oil in a reduced-protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs. Animals, 8(9). https://doi.org/10.3390/ani8090159spa
dc.relation.referencesCheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. https://doi.org/10.1016/j.jhazmat.2019.121682spa
dc.relation.referencesCheon, S., Kim, G., Bae, J.-H., Lee, D. H., Seong, H., Kim, D. H., Han, J.-S., Lim, S.-Y., & Han, N. S. (2023). Comparative analysis of prebiotic effects of four oligosaccharides using in vitro gut model: digestibility, microbiome, and metabolome changes. FEMS Microbiology Ecology, 99(2). https://doi.org/10.1093/femsec/fiad002spa
dc.relation.referencesChoi, J., Wang, L., Liu, S., Lu, P., Zhao, X., Liu, H., Lahaye, L., Santin, E., Liu, S., Nyachoti, M., & Yang, C. (2020). Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4. Journal of Animal Science, 98(9). https://doi.org/10.1093/jas/skaa259spa
dc.relation.referencesChoudhury, R., Middelkoop, A., Boekhorst, J., Gerrits, W. J. J., Kemp, B., Bolhuis, J. E., & Kleerebezem, M. (2021). Early life feeding accelerates gut microbiome maturation and suppresses acute post‐weaning stress in piglets. Environmental Microbiology, 23(11), 7201–7213. https://doi.org/10.1111/1462-2920.15791spa
dc.relation.referencesCiro, J. A., López, A., & Parra, J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Revista Facultad Nacional de Agronomía Medellín, 69(1), 7803–7811. https://doi.org/10.15446/RFNA.V69N1.54748spa
dc.relation.referencesCorrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A., & Lajolo, F. M. (2019). The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00188spa
dc.relation.referencesCosta, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLOS ONE, 12(2), e0171642. https://doi.org/10.1371/journal.pone.0171642spa
dc.relation.referencesCremonesi, P., Biscarini, F., Castiglioni, B., Sgoifo, C. A., Compiani, R., & Moroni, P. (2022). Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets. PloS one, 17(3), e0262199.spa
dc.relation.referencesCsernus, B., & Czeglédi, L. (2020). Physiological, antimicrobial, intestine morphological, and immunological effects of fructooligosaccharides in pigs. Archives Animal Breeding, 63(2), 325–335. https://doi.org/10.5194/aab-63-325-2020spa
dc.relation.referencesDavani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8(3), 92. https://doi.org/10.3390/foods8030092spa
dc.relation.referencesDave, M., Higgins, P. D., Middha, S., & Rioux, K. P. (2012). The human gut microbiome: current knowledge, challenges, and future directions. Translational Research, 160(4), 246–257. https://doi.org/10.1016/j.trsl.2012.05.003spa
dc.relation.referencesde Lourdes Angeles, M., Gómez-Rosales, S., & Téllez-Isaias, G. (2022). Mechanisms of Action of Humic Substances as Growth Promoters in Animals. In Humus and Humic Substances - Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.105956spa
dc.relation.referencesDiana, A., Boyle, L. A., Leonard, F. C., Carroll, C., Sheehan, E., Murphy, D., & Manzanilla, E. G. (2019). Removing prophylactic antibiotics from pig feed: How does it affect their performance and health? BMC Veterinary Research, 15(1), 1–8. https://doi.org/10.1186/S12917-019-1808-X/TABLES/5spa
dc.relation.referencesDíaz-Sánchez, S., Perrotta, A. R., Rockafellow, I., Alm, E. J., Okimoto, R., Hawken, R., & Hanning, I. (2019). Using fecal microbiota as biomarkers for predictions of performance in the selective breeding process of pedigree broiler breeders. PLOS ONE, 14(5), e0216080. https://doi.org/10.1371/journal.pone.0216080spa
dc.relation.referencesDieguez, S. N., Decundo, J. M., Martínez, G., Amanto, F. A., Bianchi, C. P., Pérez Gaudio, D. S., & Soraci, A. L. (2022). Effect of Dietary Oregano (Lippia origanoides) and Clover (Eugenia caryophillata) Essential Oilsʼ Formulations on Intestinal Health and Performance of Pigs. Planta Medica, 88(03/04), 324–335.https://doi.org/10.1055/a- 1698-8469spa
dc.relation.referencesDonado-Godoy, P., Castellanos, R., León, M., Arevalo, A., Clavijo, V., Bernal, J., León, D., Tafur, M. A., Byrne, B. A., Smith, W. A., & Perez-Gutierrez, E. (2015). The establishment of the colombian integrated program for antimicrobial resistance surveillance (COIPARS): A pilot project on poultry farms, slaughterhouses and retail market. Zoonoses and Public Health, 62(s1), 58–69. https://doi.org/10.1111/ZPH.12192spa
dc.relation.referencesDou, S., Gadonna-Widehem, P., Rome, V., Hamoudi, D., Rhazi, L., Lakhal, L., Larcher, T., Bahi-Jaber, N., Pinon-Quintana, A., Guyonvarch, A., Huërou-Luron, I. L. E., & Abdennebi-Najar, L. (2017). Characterisation of Early-Life Fecal Microbiota in Susceptible and Healthy Pigs to Post-Weaning Diarrhoea. PLOS ONE, 12(1), e0169851. https://doi.org/10.1371/journal.pone.0169851spa
dc.relation.referencesDucatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 49(1), 43. https://doi.org/10.1186/s13567-018-0538-6spa
dc.relation.referencesEeckhaut, V., Machiels, K., Perrier, C., Romero, C., Maes, S., Flahou, B., Steppe, M., Haesebrouck, F., Sas, B., Ducatelle, R., Vermeire, S., & Van Immerseel, F. (2013). Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut, 62(12), 1745– 1752. https://doi.org/10.1136/gutjnl-2012-303611spa
dc.relation.referencesEeckhaut, V., Wang, J., Van Parys, A., Haesebrouck, F., Joossens, M., Falony, G., Raes, J., Ducatelle, R., & Van Immerseel, F. (2016). The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01416spa
dc.relation.referencesEnahoro, D., Bahta, S., Mensah, C., Oloo, S., & Rich, K. M. (2021). Current and future trade in livestock products. Revue Scientifique et Technique de l’OIE, 40(2), 395–411. https://doi.org/10.20506/rst.40.2.3232spa
dc.relation.referencesEngelsmann, M. N., Jensen, L. D., van der Heide, M. E., Hedemann, M. S., Nielsen, T. S., & Nørgaard, J. V. (2022). Age-dependent development in protein digestibility and intestinal morphology in weaned pigs fed different protein sources. https://doi.org/10.1016/j.animal.2021.100439spa
dc.relation.referencesEriksen, E. Ø., Kudirkiene, E., Christensen, A. E., Agerlin, M. V., Weber, N. R., Nødtvedt, A., Nielsen, J. P., Hartmann, K. T., Skade, L., Larsen, L. E., Pankoke, K., Olsen, J. E., Jensen, H. E., & Pedersen, K. S. (2021). Post-weaning diarrhea in pigs weaned without medicinal zinc: risk factors, pathogen dynamics, and association to growth rate. Porcine Health Management, 7(1), 1–19. https://doi.org/10.1186/S40813-021- 00232-Z/TABLES/9spa
dc.relation.referencesFan, Y., Ju, T., Bhardwaj, T., Korver, D. R., & Willing, B. P. (2023). Week-Old Chicks with High Bacteroides Abundance Have Increased Short-Chain Fatty Acids and Reduced Markers of Gut Inflammation. Microbiology Spectrum, 11(2). https://doi.org/10.1128/spectrum.03616-22spa
dc.relation.referencesFan, Y., Zhou, W., Li, G., Liu, X., Zhong, P., Liu, K., Liu, Y., & Wang, D. (2024). Protective effects of sodium humate and its zinc and selenium chelate on the oxidative stress, inflammatory, and intestinal barrier damage of Salmonella Typhimurium-challenged broiler chickens. Poultry Science, 103(5), 103541. https://doi.org/10.1016/j.psj.2024.103541spa
dc.relation.referencesFAO. (2020). Overview of global meat market developments in 2020.spa
dc.relation.referencesFlint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R., & White, B. A. (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology, 6(2), 121–131. https://doi.org/10.1038/nrmicro1817spa
dc.relation.referencesFlorez-Cuadrado, D., Moreno, M. A., Ugarte-Ruíz, M., & Domínguez, L. (2018). Antimicrobial Resistance in the Food Chain in the European Union. Advances in Food and Nutrition Research, 86, 115–136. https://doi.org/10.1016/BS.AFNR.2018.04.004spa
dc.relation.referencesFranco, V. H. H., Carrasco, S. C. P., Suescún, J. E. P. (2022). Antimicrobials added to the feed of weaned piglets at two ages improves the molecular expression of intestinal barrier proteins. Animal Production Science, 62(6), 511–520. https://doi.org/10.1071/AN21027spa
dc.relation.referencesFrese, S. A., Parker, K., Calvert, C. C., & Mills, D. A. (2015). Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome, 3(1), 28. https://doi.org/10.1186/s40168-015-0091-8spa
dc.relation.referencesGadde, U., Kim, W. H., Oh, S. T., & Lillehoj, H. S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Research Reviews, May, 1–20. https://doi.org/10.1017/S1466252316000207spa
dc.relation.referencesGao, G., Zhou, J., Wang, H., Ding, Y., Zhou, J., Chong, P. H., Zhu, L., Ke, L., Wang, X., Rao, P., Wang, Q., & Zhang, L. (2022). Effects of valerate on intestinal barrier function in cultured Caco-2 epithelial cell monolayers. Molecular Biology Reports, 49(3), 1817–1825. https://doi.org/10.1007/s11033-021-06991-wspa
dc.relation.referencesGao, S., He, Y., Zhang, L., Liu, L., Qu, C., Zheng, Z., & Miao, J. (2022). Conjugated linoleic acid ameliorates hepatic steatosis by modulating intestinal permeability and gut microbiota in ob/ob mice. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8226spa
dc.relation.referencesGardiner, G. E., Metzler-Zebeli, B. U., & Lawlor, P. G. (2020). Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms, 8(12), 1886. https://doi.org/10.3390/microorganisms8121886spa
dc.relation.referencesGaukroger, C. H., Stewart, C. J., Edwards, S. A., Walshaw, J., Adams, I. P., & Kyriazakis, I. (2020). Changes in faecal microbiota profiles associated with performance and birthweight of piglets. Frontiers in microbiology, 11, 917.spa
dc.relation.referencesGiannenas, I., Tzora, A., Sarakatsianos, I., Karamoutsios, A., Skoufos, S., Papaioannou, N., Anastasiou, I., & Skoufos, I. (2016). The Effectiveness of the Use of Oregano and Laurel Essential Oils in Chicken Feeding. Annals of Animal Science, 16(3). https://doi.org/10.1515/aoas-2015-0099spa
dc.relation.referencesGibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition, 125(6), 1401-1412. https://doi.org/10.1093/jn/125.6.1401spa
dc.relation.referencesGómez-Arango, L. F., Barrett, H. L., Wilkinson, S. A., Callaway, L. K., McIntyre, H. D., Morrison, M., & Dekker Nitert, M. (2018). Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 9(3), 189–201. https://doi.org/10.1080/19490976.2017.1406584spa
dc.relation.referencesGuevarra, R. B., Hong, S. H., Cho, J. H., Kim, B.-R., Shin, J., Lee, J. H., Kang, B. N., Kim, Y. H., Wattanaphansak, S., Isaacson, R. E., Song, M., & Kim, H. B. (2018). The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. Journal of Animal Science and Biotechnology, 9(1), 54. https://doi.org/10.1186/s40104-018-0269-6spa
dc.relation.referencesGuo, L., Zhang, D., Fu, S., Zhang, J., Zhang, X., He, J., Peng, C., Zhang, Y., Qiu, Y., Ye, C., Liu, Y., Wu, Z., & Hu, C. A. A. (2021). Metagenomic Sequencing Analysis of the Effects of Colistin Sulfate on the Pig Gut Microbiome. Frontiers in Veterinary Science, 8, 676. https://doi.org/10.3389/FVETS.2021.663820/BIBTEXspa
dc.relation.referencesGupta, A., Dhakan, D. B., Maji, A., Saxena, R., P.K., V. P., Mahajan, S., Pulikkan, J., Kurian, J., Gomez, A. M., Scaria, J., Amato, K. R., Sharma, A. K., & Sharma, V. K. (2019). Association of Flavonifractor plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. MSystems, 4(6). https://doi.org/10.1128/mSystems.00438-19spa
dc.relation.referencesHajjo, R., Sabbah, D. A., & Al Bawab, A. Q. (2022). Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics, 12(7), 1742. https://doi.org/10.3390/diagnostics12071742spa
dc.relation.referencesHan, G. G., Lee, J.-Y., Jin, G.-D., Park, J., Choi, Y. H., Chae, B. J., Kim, E. B., & Choi, Y.- J. (2017). Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Applied Microbiology and Biotechnology, 101(14), 5903–5911. https://doi.org/10.1007/s00253-017- 8304-7spa
dc.relation.referencesHe, B., Bai, Y., Jiang, L., Wang, W., Li, T., Liu, P., Tao, S., Zhao, J., Han, D., & Wang, J. (2018). Effects of Oat Bran on Nutrient Digestibility, Intestinal Microbiota, and Inflammatory Responses in the Hindgut of Growing Pigs. International Journal of Molecular Sciences, 19(8), 2407. https://doi.org/10.3390/ijms19082407spa
dc.relation.referencesHe, K., Yan, W., Sun, C., Liu, J., Bai, R., Wang, T., & Qian, W. (2020). Alterations in the diversity and composition of gut microbiota in weaned piglets infected with Balantioides coli. Veterinary Parasitology, 288, 109298. https://doi.org/10.1016/j.vetpar.2020.109298spa
dc.relation.referencesLi, J., Sung, C. Y. J., Lee, N., Ni, Y., Pihlajamäki, J., Panagiotou, G., & El-Nezami, H. (2016). Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proceedings of the National Academy of Sciences, 113(9). https://doi.org/10.1073/pnas.1518189113spa
dc.relation.referencesLi, Y., Guo, Y., Wen, Z., Jiang, X., Ma, X., & Han, X. (2018). Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets. Scientific Reports, 8(1), 18068. https://doi.org/10.1038/s41598-018-33649-8spa
dc.relation.referencesLi, Y., Zhu, Y., Wei, H., Chen, Y., & Shang, H. (2020). Study on the Diversity and Function of Gut Microbiota in Pigs Following Long-Term Antibiotic and Antibiotic-Free Breeding. Current Microbiology, 77(12), 4114–4128. https://doi.org/10.1007/s00284-020-02240-8spa
dc.relation.referencesLiang, Q., Chiu, J., Chen, Y., Huang, Y., Higashimori, A., Fang, J., Brim, H., Ashktorab, H., Ng, S. C., Ng, S. S. M., Zheng, S., Chan, F. K. L., Sung, J. J. Y., & Yu, J. (2017). Fecal Bacteria Act as Novel Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clinical Cancer Research, 23(8), 2061–2070. https://doi.org/10.1158/1078- 0432.CCR-16-1599spa
dc.relation.referencesLiao, S. F., Ji, F., Fan, P., & Denryter, K. (2024). Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. International Journal of Molecular Sciences, 25(2), 1237. https://doi.org/10.3390/ijms25021237spa
dc.relation.referencesLiu, J., Robinson, K., Lyu, W., Yang, Q., Wang, J., Christensen, K. D., & Zhang, G. (2023). Anaerobutyricum and Subdoligranulum Are Differentially Enriched in Broilers with Disparate Weight Gains. Animals, 13(11), 1834. https://doi.org/10.3390/ani13111834spa
dc.relation.referencesLiu, L., Chen, D., Yu, B., Yin, H., Huang, Z., Luo, Y., Zheng, P., Mao, X., Yu, J., Luo, J., Yan, H., & He, J. (2020). Fructooligosaccharides improve growth performance and intestinal epithelium function in weaned pigs exposed to enterotoxigenic Escherichia coli. Food & Function, 11(11), 9599–9612. https://doi.org/10.1039/D0FO01998Dspa
dc.relation.referencesLiu, L., Chen, D., Yu, B., Yin, H., Huang, Z., Luo, Y., Zheng, P., Mao, X., Yu, J., Luo, J., Yan, H., & He, J. (2020). Fructooligosaccharides improve growth performance and intestinal epithelium function in weaned pigs exposed to enterotoxigenic Escherichia coli. Food & Function, 11(11), 9599–9612. https://doi.org/10.1039/D0FO01998Dspa
dc.relation.referencesLiu, Y., Yan, H., Yu, B., He, J., Mao, X., Yu, J., Zheng, P., Huang, Z., Luo, Y., Luo, J., Wu, A., & Chen, D. (2022). Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties. Antioxidants, 11(10), 1947. https://doi.org/10.3390/antiox11101947spa
dc.relation.referencesLiu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.-F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Liu Z, & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/S1473-3099(15)00424-7spa
dc.relation.referencesLondoño, S., Lallès, J. P., & Parra, J. (2016). Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional de Agronomia Medellin, 69(2), 7911–7918. https://doi.org/10.15446/rfna.v69n2.59136spa
dc.relation.referencesLong, S. F., Xu, Y. T., Pan, L., Wang, Q. Q., Wang, C. L., Wu, J. Y., Wu, Y. Y., Han, Y. M., Yun, C. H., & Piao, X. S. (2018). Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Animal Feed Science and Technology, 235, 23–32. https://doi.org/10.1016/J.ANIFEEDSCI.2017.08.018spa
dc.relation.referencesLong, S., Liu, L., Liu, S., Mahfuz, S., & Piao, X. (2019). Effects of Forsythia Suspense Extract as an Antibiotics Substitute on Growth Performance, Nutrient Digestibility, Serum Antioxidant Capacity, Fecal Escherichia coli Concentration and Intestinal Morphology of Weaned Piglets. Animals 2019, Vol. 9, Page 729, 9(10), 729. https://doi.org/10.3390/ANI9100729spa
dc.relation.referencesLuo, Y., Liu, L., Chen, D., Yu, B., Zheng, P., Mao, X., Huang, Z., Yu, J., Luo, J., Yan, H., & He, J. (2021). Dietary supplementation of fructooligosaccharides alleviates enterotoxigenic E. coli -induced disruption of intestinal epithelium in a weaned piglet model. British Journal of Nutrition, 1–27. https://doi.org/10.1017/S0007114521004451spa
dc.relation.referencesMa, F., Xu, S., Tang, Z., Li, Z., & Zhang, L. (2021). Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, 3(1), 32–38. https://doi.org/10.1016/J.BSHEAL.2020.09.004spa
dc.relation.referencesMach, N., Berri, M., Estellé, J., Levenez, F., Lemonnier, G., Denis, C., Leplat, J., Chevaleyre, C., Billon, Y., Doré, J., Rogel‐Gaillard, C., & Lepage, P. (2015). Early‐ life establishment of the swine gut microbiome and impact on host phenotypes. Environmental Microbiology Reports, 7(3), 554–569. https://doi.org/10.1111/1758- 2229.12285spa
dc.relation.referencesMadrid Garcés, T. A., Parra Suescún, J. E., & López Herrera, A. (2018). La ingesta de aceite esencial de orégano (Lippia origanoides) mejora la morfología intestinal en Broilers. Archivos de Zootecnia, 66(254), 287–299. https://doi.org/http://dx.doi.org/10.21071/az.v66i254.2334spa
dc.relation.referencesMadrid-Garcés, T. A., López-Herrera, A., & Parra-Suescún, J. E. (2018). Inclusion of essential oil of oregano enhances intestinal morphology in broiler. Archivos de Zootecnia, 67(260), 470–476. https://doi.org/10.21071/az.v0i0.3876spa
dc.relation.referencesMagne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474spa
dc.relation.referencesMagne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474spa
dc.relation.referencesMahmud, M. R., Jian, C., Uddin, M. K., Huhtinen, M., Salonen, A., Peltoniemi, O. Venhoranta, H., & Oliviero, C. (2023). Impact of Intestinal Microbiota on Growth Performance of Suckling and Weaned Piglets. Microbiology Spectrum, 11(3). https://doi.org/10.1128/spectrum.03744-22spa
dc.relation.referencesMakarewicz, M., Drożdż, I., Tarko, T., & Duda-Chodak, A. (2021). The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants, 10(2), 188. https://doi.org/10.3390/antiox10020188spa
dc.relation.referencesMaltecca, C., Bergamaschi, M., & Tiezzi, F. (2020). The interaction between microbiome and pig efficiency: A review. Journal of Animal Breeding and Genetics, 137(1), 4– 13. https://doi.org/10.1111/jbg.12443spa
dc.relation.referencesMancabelli, L., Ferrario, C., Milani, C., Mangifesta, M., Turroni, F., Duranti, S., Lugli, G. A., Viappiani, A., Ossiprandi, M. C., van Sinderen, D., & Ventura, M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 18(12), 4727–4738. https://doi.org/10.1111/1462-2920.13363spa
dc.relation.referencesMarcin, A., & Nad, P. (2017). Effect of Essential Oils on Enzymatic Activities in the Intestinal Apparatus and Growth Ability of Laboratory Mice. Physiological Research, S567– S574. https://doi.org/10.33549/physiolres.933807spa
dc.relation.referencesMarion, J., Petersen, Y. M., Romé, V., Thomas, F., Sangild, P. T., Dividich, J. Le, & Huërou‐ Luron, I. Le. (2005). Early Weaning Stimulates Intestinal Brush Border Enzyme Activities in Piglets, Mainly at the Posttranscriptional Level. Journal of Pediatric Gastroenterology and Nutrition, 41(4), 401–410. https://doi.org/10.1097/01.mpg.0000177704.99786.07spa
dc.relation.referencesMarková, K., Kreisinger, J., & Vinkler, M. (2024). Are there consistent effects of gut microbiota composition on performance, productivity and condition in poultry. Poultry Science, 103(6), 103752. https://doi.org/10.1016/j.psj.2024.103752spa
dc.relation.referencesMaya, O. C. A., Ángel-Isaza, J. A., Martínez Morales, B. C., & Parra Suescún, J. E. (2021). Aceite esencial de orégano (Lippia origanoides) mejora parámetros productivos y metabólitos sanguíneos en lechones. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(2), 82–93. https://doi.org/10.18684/bsaa.v19.n2.2021.1547spa
dc.relation.referencesMcCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Applied and Environmental Microbiology, 83(15). https://doi.org/10.1128/AEM.00380-17spa
dc.relation.referencesMcCormack, U. M., Curião, T., Metzler-Zebeli, B. U., Magowan, E., Berry, D. P., Reyer, H., Prieto, M. L., Buzoianu, S. G., Harrison, M., Rebeiz, N., Crispie, F., Cotter, P. D., O’Sullivan, O., Gardiner, G. E., & Lawlor, P. G. (2019). Porcine Feed Efficiency- Associated Intestinal Microbiota and Physiological Traits: Finding Consistent Cross- Locational Biomarkers for Residual Feed Intake. MSystems, 4(4). https://doi.org/10.1128/mSystems.00324-18spa
dc.relation.referencesMcMurdie, P.J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one, 8(4), e61217. http://dx.plos.org/10.1371/journal.pone.0061217.spa
dc.relation.referencesMendiburu, F.D. (2015) agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-3. http://CRAN.R-project.org/package=agricolaespa
dc.relation.referencesMeng, Q., Sun, S., Luo, Z., Shi, B., Shan, A., & Cheng, B. (2019). Maternal dietary resveratrol alleviates weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intestinal gene expression and microbiota. Food & Function, 10(9), 5626–5643. https://doi.org/10.1039/C9FO00637Kspa
dc.relation.referencesMilici, M., Tomasch, J., Wos-Oxley, M. L., Wang, H., Jáuregui, R., Camarinha-Silva, A., Deng, Z. L., Plumeier, I., Giebel, H. A., Wurst, M., Pieper, D. H., Simon, M., & Wagner-Döbler, I. (2016). Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports 2016 6:1, 6(1), 1–9. https://doi.org/10.1038/srep19054spa
dc.relation.referencesMinagricultura. (2021). Cadena Cárnica Porcina. https://sioc.minagricultura.gov.co/Porcina/Documentos/2021-03 30%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesMing, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of Weaning Age at 21 and 28 Days on Growth Performance, Intestinal Morphology and Redox Status in Piglets. Animals 2021, Vol. 11, Page 2169, 11(8), 2169. https://doi.org/10.3390/ANI11082169spa
dc.relation.referencesMiragoli, F., Patrone, V., Prandini, A., Sigolo, S., Dell’Anno, M., Rossi, L., Senizza, A., Morelli, L., & Callegari, M. L. (2021). Implications of Tributyrin on Gut Microbiota Shifts Related to Performances of Weaning Piglets. Microorganisms, 9(3), 584. https://doi.org/10.3390/microorganisms9030584spa
dc.relation.referencesMo, K., Li, J., Liu, F., Xu, Y., Huang, X., & Ni, H. (2022). Superiority of Microencapsulated Essential Oils Compared With Common Essential Oils and Antibiotics: Effects on the Intestinal Health and Gut Microbiota of Weaning Piglet. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.808106spa
dc.relation.referencesMohiti-Asli, M., & Ghanaatparast-Rashti, M. (2018). Comparing the effects of a combined phytogenic feed additive with an individual essential oil of oregano on intestinal morphology and microflora in broilers. Journal of Applied Animal Research, 46(1), 184–189. https://doi.org/10.1080/09712119.2017.1284074spa
dc.relation.referencesMolist, F., Manzanilla, E. G., Pérez, J. F., & Nyachoti, C. M. (2012). Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes:Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. British Journal of Nutrition, 108(1), 9–15. https://doi.org/10.1017/S0007114511005216spa
dc.relation.referencesMontagne, L., Gilbert, H., Muller, N., & le Floc’h, N. (2022). Physiological response to the weaning in two pig lines divergently selected for residual feed intake. Journal of Animal Physiology and Animal Nutrition, 106(4), 802–812. https://doi.org/10.1111/JPN.13622spa
dc.relation.referencesMoya, A., & Ferrer, M. (2016). Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends in Microbiology, 24(5), 402–413. https://doi.org/10.1016/j.tim.2016.02.002spa
dc.relation.referencesNasrollahzadeh, A., Mollaei Tavani, S., Arjeh, E., & Jafari, S. M. (2023). Production of conjugated linoleic acid by lactic acid bacteria; important factors and optimum conditions. Food Chemistry: X, 20, 100942. https://doi.org/10.1016/j.fochx.2023.100942spa
dc.relation.referencesNguyen Cong, O., Bernard, T., Pham Kim, D., Do Duc, L., Nassim, M., Nguyen Thi, H., Nguyen Hoang, T., Georges, D., Jérôme, B., Vu Dinh, T., & Hornick, J. (2019). Growth performance, carcass quality characteristics and colonic microbiota profiles in finishing pigs fed diets with different inclusion levels of rice distillers’ by‐product. Animal Science Journal, 90(8), 948–960. https://doi.org/10.1111/asj.13229spa
dc.relation.referencesNguyen, D. T. N. (2021). Relationship between the ratio of villous height:crypt depth and gut bacteria counts as well production parameters in broiler chickens. The Journal of Agriculture and Development, 20(03), 1–10. https://doi.org/10.52997/jad.1.03.2021spa
dc.relation.referencesNiewold, T. A. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poultry Science, 86, 605–609. https://doi.org/10.1093/ps/86.4.605spa
dc.relation.referencesNiu, M., Zhao, Y., Xiang, L., Jia, Y., Yuan, J., Dai, X., & Chen, H. (2022). 16S rRNA gene sequencing analysis of gut microbiome in a mini‐pig diabetes model. Animal Models and Experimental Medicine, 5(1), 81. https://doi.org/10.1002/AME2.12202spa
dc.relation.referencesNowland, T. L., Kirkwood, R. N., & Pluske, J. R. (2021). Review: Can early-life establishment of the piglet intestinal microbiota influence production outcomes? Animal, 100368. https://doi.org/10.1016/j.animal.2021.100368spa
dc.relation.referencesNowland, T., Plush, K., Barton, M., & Kirkwood, R. (2019). Development and Function of the Intestinal Microbiome and Potential Implications for Pig Production. Animals, 9(3), 76. https://doi.org/10.3390/ani9030076spa
dc.relation.referencesO’Shea, C. J. (2022). Feed Additives in Swine Diets. In Sustainable Swine Nutrition (pp. 471–491). Wiley. https://doi.org/10.1002/9781119583998.ch18spa
dc.relation.referencesOCDE, & FAO. (2021). Meat. In OECD-FAO Agricultural Outlook 2021-2030. OECD Publishing. https://doi.org/10.1787/cf68bf79-enspa
dc.relation.referencesOksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., & Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=veganspa
dc.relation.referencesOmonijo, F. A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4(2), 126–136. https://doi.org/10.1016/j.aninu.2017.09.001spa
dc.relation.referencesOrlov, D. S. (2020). Humic Substances of Soils and General Theory of Humification. CRC Press. https://doi.org/10.1201/9781003079460spa
dc.relation.referencesPadilla Pérez, M. (2007). Manual de porcicultura. Ministerio de Agricultura y Ganadería, San José, Costa Rica: MAGspa
dc.relation.referencesPanasevich, M. R., Wankhade, U. D., Chintapalli, S. V., Shankar, K., & Rector, R. S. (2018). Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Physiological Genomics, 50(5), 355–368. https://doi.org/10.1152/physiolgenomics.00110.2017spa
dc.relation.referencesPandey, S., Kim, E. S., Cho, J. H., Song, M., Doo, H., Kim, S., Keum, G. B., Kwak, J., Ryu, S., Choi, Y., Kang, J., Lee, J. J., & Kim, H. B. (2023). Swine gut microbiome associated with non-digestible carbohydrate utilization. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1231072spa
dc.relation.referencesParra Alarcón, E. A., Hijuitl Valeriano, T. D. J., Mariscal Landín, G., & Reis de Souza, T. C. (2022). Concentrado de proteína de papa: una posible alternativa al uso de antibióticos en las dietas para lechones destetados. Revisión. Revista Mexicana de Ciencias Pecuarias, 13(2), 510–524. https://doi.org/10.22319/rmcp.v13i2.5980spa
dc.relation.referencesPatel, S. J., Wellington, M., Shah, R. M., & Ferreira, M. J. (2020). Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, and Opportunities. Clinical Therapeutics, 42(9), 1649–1658. https://doi.org/10.1016/J.CLINTHERA.2020.07.004spa
dc.relation.referencesPatil, Y., Gooneratne, R., & Ju, X.-H. (2020). Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes, 11(3), 310–334. https://doi.org/10.1080/19490976.2019.1690363spa
dc.relation.referencesPatiño, Felipe., Víctor Herrera, F., Daniela López, D., & Jaime Parra, S. (2019). Blood metabolites and zootechnical parameters in piglets weaned at two ages and with the addition of antimicrobials in the feed. Revista de Investigaciones Veterinarias Del Peru, 30(2), 612–623. https://doi.org/10.15381/rivep.v30i2.14887spa
dc.relation.referencesPeng, Q. Y., Li, J. D., Li, Z., Duan, Z. Y., & Wu, Y. P. (2016). Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Animal Feed Science and Technology, 214, 148–153. https://doi.org/10.1016/j.anifeedsci.2016.02.010spa
dc.relation.referencesPetersen, Y. M., Burrin, D. G., & Sangild, P. T. (2001). GLP-2 has differential effects on small intestine growth and function in fetal and neonatal pigs. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(6). https://doi.org/10.1152/AJPREGU.2001.281.6.R1986spa
dc.relation.referencesPetrin, S., Patuzzi, I., di Cesare, A., Tiengo, A., Sette, G., Biancotto, G., Corno, G., Drigo, M., Losasso, C., & Cibin, V. (2019). Evaluation and quantification of antimicrobial residues and antimicrobial resistance genes in two Italian swine farms. Environmental Pollution, 255, 113183. https://doi.org/10.1016/j.envpol.2019.113183spa
dc.relation.referencesPi, Y., Gao, K., Peng, Y., Mu, C. L., & Zhu, W. Y. (2019). Antibiotic-induced alterations of the gut microbiota and microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs. Animal, 13(2), 262–272. https://doi.org/10.1017/S1751731118001416spa
dc.relation.referencesPluske, J. R., Hampson, D. J., & Williams, I. H. (1997). Factors influencing the structure and function of the small intestine in the weaned pig: A review. In Livestock Production Science (Vol. 51, Issues 1–3, pp. 215–236). Elsevier. https://doi.org/10.1016/S0301-6226(97)00057-2spa
dc.relation.referencesPokharel, S., Shrestha, P., & Adhikari, B. (2020). Antimicrobial use in food animals and human health: time to implement ‘One Health’ approach. Antimicrobial Resistance and Infection Control, 9(1), 1–5. https://doi.org/10.1186/S13756-020-00847- X/METRICSspa
dc.relation.referencesRahman, M. R. T., Fliss, I., & Biron, E. (2022). Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics, 11(6), 766. https://doi.org/10.3390/ANTIBIOTICS11060766/S1spa
dc.relation.referencesRamírez, L. S., Isaza, J. H., Veloza, L. í ngela, Stashenko, E., & Marín, D. (2009). Actividad antibacteriana de aceites esenciales de Lippia origanoides de diferentes orígenes de Colombia. Ciencia, 17(4). https://produccioncientificaluz.org/index.php/ciencia/article/view/9960spa
dc.relation.referencesRehman, R., Hanif, M. A., Mushtaq, Z., & Al-Sadi, A. M. (2016). Biosynthesis of essential oils in aromatic plants: A review. Food Reviews International, 32(2), 117–160. https://doi.org/10.1080/87559129.2015.1057841spa
dc.relation.referencesReis-De Souza, T., Carrillo Guerrero, D. J. M., Barreyro, A. A., & Landín, G. M. (2005). Effect of different cereals on intestinal villous morphology in weaned piglets. Pecu Méx, 43(3), 309–321.spa
dc.relation.referencesRostagno, H. S. (2017). Tablas brasileñas para aves y cerdos (4th ed.). Departamento de Zootecnia, UFV.spa
dc.relation.referencesRStudio Team. (2020). RStudio: Integrated Development for R. RStudio, PBC.spa
dc.relation.referencesRuzauskas, M., Bartkiene, E., Stankevicius, A., Bernatoniene, J., Zadeike, D., Lele, V., Starkute, V., Zavistanaviciute, P., Grigas, J., Zokaityte, E., Pautienius, A., Juodeikiene, G., & Jakstas, V. (2020). The Influence of Essential Oils on Gut Microbial Profiles in Pigs. Animals, 10(10), 1734. https://doi.org/10.3390/ani10101734spa
dc.relation.referencesSaladrigas-García, M., D’Angelo, M., Ko, H. L., Nolis, P., Ramayo-Caldas, Y., Folch, J. M., Llonch, P., Solà-Oriol, D., Pérez, J. F., & Martín-Orúe, S. M. (2021). Understanding host-microbiota interactions in the commercial piglet around weaning. Scientific Reports, 11(1), 23488. https://doi.org/10.1038/s41598-021-02754-6spa
dc.relation.referencesSantos, T. G., Fernandes, S. D., de Oliveira Araújo, S. B., Felicioni, F., de Mérici Domingues e Paula, T., Caldeira-Brant, A. L., Ferreira, S. V., de Paula Naves, L., de Souza, S. P., Campos, P. H. R. F., Chiarini-Garcia, H., Dias, A. L. N. A., & de Almeida, F. R. C. L. (2022). Intrauterine growth restriction and its impact on intestinal morphophysiology throughout postnatal development in pigs. Scientific Reports 2022 12:1, 12(1), 1–10. https://doi.org/10.1038/s41598-022-14683-z.spa
dc.relation.referencesSarangi, A. N., Goel, A., & Aggarwal, R. (2019). Methods for Studying Gut Microbiota: A Primer for Physicians. Journal of Clinical and Experimental Hepatology, 9(1), 62– 73. https://doi.org/10.1016/J.JCEH.2018.04.016spa
dc.relation.referencesSchoefer, L., Mohan, R., Schwiertz, A., Braune, A., & Blaut, M. (2003). Anaerobic Degradation of Flavonoids by Clostridium orbiscindens. Applied and Environmental Microbiology, 69(10), 5849–5854. https://doi.org/10.1128/AEM.69.10.5849-5854.2003spa
dc.relation.referencesSciascia, Q. L., & Metges, C. C. (2023). Review: Methods and biomarkers to investigate intestinal function and health in pigs. Animal, 17, 100860. https://doi.org/10.1016/j.animal.2023.100860spa
dc.relation.referencesShang, Y., Kumar, S., Thippareddi, H., & Kim, W. K. (2018). Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poultry science, 97(10), 3622-3634.spa
dc.relation.referencesSlifer, Z. M., & Blikslager, A. T. (2020). The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium. International Journal of Molecular Sciences 2020, Vol. 21, Page 972, 21(3), 972. https://doi.org/10.3390/IJMS21030972spa
dc.relation.referencesSlifier Z, M. J., Friendship, R. M., & Weese, J. S. (2015). Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiology, 15(1), 184. https://doi.org/10.1186/s12866-015-0512-7spa
dc.relation.referencesSoler, C., Goossens, T., Bermejo, A., Migura-García, L., Cusco, A., Francino, O., & Fraile, L. (2018). Digestive microbiota is different in pigs receiving antimicrobials or a feed additive during the nursery period. PLOS ONE, 13(5), e0197353. https://doi.org/10.1371/JOURNAL.PONE.0197353spa
dc.relation.referencesSotelo-Bautista, M., Bello-Perez, L. A., Gonzalez-Soto, R. A., Yañez-Fernandez, J., & Alvarez-Ramirez, J. (2019). OSA-maltodextrin as wall material for encapsulation of essential avocado oil by spray drying. 41(2), 235–242. https://doi.org/10.1080/01932691.2018.1562939spa
dc.relation.referencesSouza, L. M., Fonseca, F. S. A., Silva, J. C., Silva, A., Silva, J., & Martins, E. (2019). Essential oil composition in natural population of Lippia origanoides (Verbenaceae) during dry and rainy seasons. Revista de Biología Tropical, 67(1). https://doi.org/10.15517/rbt.v67i1.31407spa
dc.relation.referencesStanley, D., Geier, M. S., Denman, S. E., Haring, V. R., Crowley, T. M., Hughes, R. J., & Moore, R. J. (2013). Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 164(1–2), 85–92. https://doi.org/10.1016/j.vetmic.2013.01.030 Stashenko, E., & Martínez, J. (2020). Study of Essentialspa
dc.relation.referencesOils Obtained from Tropical Plants Grown in Colombia. In Essential Oils - Oils of Nature. IntechOpen. https://doi.org/10.5772/intechopen.87199spa
dc.relation.referencesSuárez Moya, A. (2017). Microbioma y secuenciación masiva. Revista Española de Quimioterapia, ISSN-e 0214-3429, Vol. 30, No. 5, 2017, Págs. 305-311, 30(5), 305–311.spa
dc.relation.referencesSun, J., Du, L., Li, X., Zhong, H., Ding, Y., Liu, Z., & Ge, L. (2019). Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets. Scientific Reports, 9(1), 18675. https://doi.org/10.1038/s41598-019-55328-yspa
dc.relation.referencesSuriyaphol, P., Chiu, J. K. H., Yimpring, N., Tunsagool, P., Mhuantong, W., Chuanchuen, R., Bessarab, I., Williams, R. B. H., Ong, R. T.-H., & Suriyaphol, G. (2021). Dynamics of the fecal microbiome and antimicrobial resistome in commercial piglets during the weaning period. Scientific Reports, 11(1), 18091. https://doi.org/10.1038/s41598021975869spa
dc.relation.referencesSuzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal, 91(1), e13357. https://doi.org/10.1111/ASJ.13357spa
dc.relation.referencesTang, X., Xiong, K., Fang, R., & Li, M. (2022). Weaning stress and intestinal health of piglets: A review. Frontiers in immunology, 13, 1042778. https://doi.org/10.3389/fimmu.2022.1042778spa
dc.relation.referencesTian, L., Wang, X.-W., Wu, A.-K., Fan, Y., Friedman, J., Dahlin, A., Waldor, M. K., Weinstock, G. M., Weiss, S. T., & Liu, Y.-Y. (2020). Deciphering functional redundancy in the human microbiome. Nature Communications, 11(1), 6217. https://doi.org/10.1038/s41467-020-19940-1spa
dc.relation.referencesTrachsel, J., Humphrey, S., & Allen, H. K. (2018). Butyricicoccus porcorum sp. nov., a butyrate-producing bacterium from swine intestinal tract. International Journal of Systematic and Evolutionary Microbiology, 68(5), 1737–1742. https://doi.org/10.1099/ijsem.0.002738spa
dc.relation.referencesTrckova, M., Lorencova, A., Babak, V., Neca, J., & Ciganek, M. (2018). The effect of leonardite and lignite on the health of weaned piglets. Research in Veterinary Science, 119, 134–142. https://doi.org/10.1016/j.rvsc.2018.06.004spa
dc.relation.referencesTrckova, M., Lorencova, A., Babak, V., Neca, J., & Ciganek, M. (2017). Effects of sodium humate and zinc oxide used in prophylaxis of post-weaning diarrhoea on the health, oxidative stress status and fatty acid profile in weaned piglets. Veterinární Medicína, 62(No. 1), 16–28. https://doi.org/10.17221/70/2016-VETMEDspa
dc.relation.referencesUnusan, N. (2020). Essential oils and microbiota: Implications for diet and weight control. Trends in Food Science & Technology, 104, 60–71. https://doi.org/10.1016/j.tifs.2020.07.014spa
dc.relation.referencesUpadhaya, S. D., & Kim, I. H. (2022). Maintenance of gut microbiome stability for optimum intestinal health in pigs – a review. Journal of Animal Science and Biotechnology, 13(1), 140. https://doi.org/10.1186/s40104-022-00790-4spa
dc.relation.referencesUSDA. (2022). Livestock and Poultry: World Markets and Trade. http://www.fas.usda.gov/psdonline/circulars/livestock_poultry.pdfspa
dc.relation.referencesvan Beers‐Schreurs, H. M. G., Vellenga, L., Wensing, Th., & Breukink, H. J. (1992). The pathogenesis of the post‐weaning syndrome in weaned piglets; a review. Veterinary Quarterly, 14(1), 29–34. https://doi.org/10.1080/01652176.1992.9694322spa
dc.relation.referencesvan Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/PNAS.1503141112/SUPPL_FILE/PNAS.201503141SI.PDFspa
dc.relation.referencesVan Hul, M., Le Roy, T., Prifti, E., Dao, M. C., Paquot, A., Zucker, J.-D., Delzenne, N. M., Muccioli, G. G., Clément, K., & Cani, P. D. (2020). From correlation to causality: the case of Subdoligranulum. Gut Microbes, 12(1), 1849998. https://doi.org/10.1080/19490976.2020.1849998spa
dc.relation.referencesVera, C., Illanes, A., & Guerrero, C. (2021). Enzymatic production of prebiotic oligosaccharides. Current Opinion in Food Science, 37, 160–170. https://doi.org/10.1016/j.cofs.2020.10.013spa
dc.relation.referencesVo, N., Tsai, T. C., Maxwell, C., & Carbonero, F. (2017). Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe, 45, 31–39. https://doi.org/10.1016/j.anaerobe.2017.02.022spa
dc.relation.referencesWalters, W. A., Xu, Z., & Knight, R. (2014). Meta‐analyses of human gut microbes associated with obesity and IBD. FEBS Letters, 588(22), 4223–4233. https://doi.org/10.1016/j.febslet.2014.09.039spa
dc.relation.referencesWang, D., He, Y., Liu, K., Deng, S., Fan, Y., & Liu, Y. (2022). Sodium Humate Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Dysfunction via Alteration of Intestinal Microbiota and Metabolites in Mice. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.809086spa
dc.relation.referencesWang, D., Jia, H., Du, Y., & Liu, Y. (2022). Effects of sodium humate and glutamine on growth performance, diarrhoea incidence, blood parameters, and faecal microflora of pre‐weaned calves. Journal of Animal Physiology and Animal Nutrition. https://doi.org/10.1111/jpn.13703spa
dc.relation.referencesWang, H., Xu, R., Zhang, H., Su, Y., & Zhu, W. (2020). Swine gut microbiota and its interaction with host nutrient metabolism. Animal Nutrition, 6(4), 410–420. https://doi.org/10.1016/j.aninu.2020.10.002spa
dc.relation.referencesWang, J., Han, Y., Zhao, J., Zhou, Z., & Fan, H. (2017). Consuming fermented distillers’ dried grains with solubles (DDGS) feed reveals a shift in the faecal microbiota of growing and fattening pigs using 454 pyrosequencing. Journal of Integrative Agriculture, 16(4), 900–910. https://doi.org/10.1016/S2095-3119(16)61523-Xspa
dc.relation.referencesWang, M., Yang, C., Wang, Q., Li, J., Huang, P., Li, Y., Ding, X., Yang, H., & Yin, Y. (2020). The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 104(2), 606–615.spa
dc.relation.referencesWang, Q., Ying, J., Zou, P., Zhou, Y., Wang, B., Yu, D., Li, W., & Zhan, X. (2020). Effects of Dietary Supplementation of Humic Acid Sodium and Zinc Oxide on Growth Performance, Immune Status and Antioxidant Capacity of Weaned Piglets. Animals, 10(11), 2104. https://doi.org/10.3390/ani10112104spa
dc.relation.referencesWang, Q., Ying, J., Zou, P., Zhou, Y., Wang, B., Yu, D., Li, W., & Zhan, X. (2020). Effects of Dietary Supplementation of Humic Acid Sodium and Zinc Oxide on Growth Performance, Immune Status and Antioxidant Capacity of Weaned Piglets. Animals, 10(11), 2104. https://doi.org/10.3390/ani10112104spa
dc.relation.referencesWang, X., Tsai, T., Deng, F., Wei, X., Chai, J., Knapp, J., Apple, J., Maxwell, C. V., Lee, J. A., Li, Y., & Zhao, J. (2019). Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome, 7(1), 109. https://doi.org/10.1186/s40168-019-0721-7spa
dc.relation.referencesWang, Y., Yan, X., Zhang, W., Liu, Y., Han, D., Teng, K., & Ma, Y. (2019). Lactobacillus casei Zhang Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune Factor Expression. Journal of Microbiology and Biotechnology, 29(6), 863–876. https://doi.org/10.4014/jmb.1903.03054spa
dc.relation.referencesWang, Z., He, Y., Wang, C., Ao, H., Tan, Z., & Xing, K. (2021). Variations in Microbial Diversity and Metabolite Profiles of Female Landrace Finishing Pigs With Distinct Feed Efficiency. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.702931spa
dc.relation.referencesWei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix. Https://Github.Com/Taiyun/Corrplot.spa
dc.relation.referencesWei, X., Tsai, T., Howe, S., & Zhao, J. (2021). Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals 2021, Vol. 11, Page 1279, 11(5), 1279. https://doi.org/10.3390/ANI11051279spa
dc.relation.referencesWen, C., Guo, Q., Wang, W., Duan, Y., Zhang, L., Li, J., He, S., Chen, W., & Li, F. (2020). Taurine Alleviates Intestinal Injury by Mediating Tight Junction Barriers in Diquat- Challenged Piglet Models. Frontiers in Physiology, 11, 449. https://doi.org/10.3389/FPHYS.2020.00449/BIBTEXspa
dc.relation.referencesWu, F., Xiong, X., Yang, H., Yao, K., Duan, Y., Wang, X., Tan, B., Li, T., Xiao, L., Hou, Y., Wu, G., & Yin, Y. (2017). Expression of proteins in intestinal middle villus epithelial cells of weaning piglets. Frontiers in Bioscience - Landmark, 22(4), 539–557. https://doi.org/10.2741/4501spa
dc.relation.referencesWu, W., Zhang, L., Xia, B., Tang, S., Liu, L., Xie, J., & Zhang, H. (2020). Bioregional Alterations in Gut Microbiome Contribute to the Plasma Metabolomic Changes in Pigs Fed with Inulin. Microorganisms, 8(1), 111. https://doi.org/10.3390/microorganisms8010111spa
dc.relation.referencesXiong, X., Liu, X., Wang, Z., Xu, Q., Xu, J., & Rao, Y. (2022). Identifying biomarkers of the gut bacteria, bacteriophages and serum metabolites associated with three weaning periods in piglets. BMC Veterinary Research, 18(1), 104. https://doi.org/10.1186/s12917-022-03203-wspa
dc.relation.referencesXiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., & Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. In Frontiers in Veterinary Science (Vol. 6, Issue FEB, p. 46). Frontiers Media S.A. https://doi.org/10.3389/fvets.2019.00046spa
dc.relation.referencesXiong, X., Yang, H., Tan, B., Yang, C., Wu, M., Liu, G., Kim, S. W., Li, T., Li, L., Wang, J., Wu, G., & Yin, Y. (2015). Differential expression of proteins involved in energy production along the crypt-villus axis in early-weaning pig small intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309(4), G229–G237. https://doi.org/10.1152/ajpgi.00095.2015spa
dc.relation.referencesXu, J., Jia, Z., Xiao, S., Long, C., & Wang, L. (2023). Effects of Enterotoxigenic Escherichia coli Challenge on Jejunal Morphology and Microbial Community Profiles in Weaned Crossbred Piglets. Microorganisms, 11(11), 2646. https://doi.org/10.3390/microorganisms11112646spa
dc.relation.referencesXun, W., Shi, L., Zhou, H., Hou, G., & Cao, T. (2018). Effect of weaning age on intestinal mucosal morphology, permeability, gene expression of tight junction proteins, cytokines and secretory IgA in Wuzhishan mini piglets. 17(4), 976–983. https://doi.org/10.1080/1828051X.2018.1426397spa
dc.relation.referencesYan, H., Zhou, P., Zhang, Y., Zhang, Z., Liu, J., & Zhang, H. (2020). Short-chain fructo- oligosaccharides alleviates oxidized oil-induced intestinal dysfunction in piglets associated with the modulation of gut microbiota. Journal of Functional Foods, 64, 103661. https://doi.org/10.1016/j.jff.2019.103661spa
dc.relation.referencesYang, H., Xiong, X., Wang, X., Tan, B., Li, T., & Yin, Y. (2016). Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets. PLOS ONE, 11(3), e0150216. https://doi.org/10.1371/JOURNAL.PONE.0150216spa
dc.relation.referencesYang, X., Xin, H., Yang, C., & Yang, X. (2018). Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Animal Nutrition, 4(4), 388–393. https://doi.org/10.1016/J.ANINU.2018.04.005spa
dc.relation.referencesYao, Y., Ni, H., Wang, X., Xu, Q., Zhang, J., Jiang, L., Wang, B., Song, S., & Zhu, X. (2021). A New Biomarker of Fecal Bacteria for Non-Invasive Diagnosis of Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.744049spa
dc.relation.referencesZhai, H., Liu, H., Wang, S., Wu, J., & Kluenter, A. M. (2018). Potential of essential oils for poultry and pigs. Animal Nutrition, 4(2), 179–186. https://doi.org/10.1016/J.ANINU.2018.01.005spa
dc.relation.referencesZhang, W., Ma, C., Xie, P., Zhu, Q., Wang, X., Yin, Y., & Kong, X. (2019). Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. Journal of Applied Microbiology, 127(2), 354–369.spa
dc.relation.referencesZhang, Z., Zhang, G., Zhang, S., & Zhao, J. (2022). Fructooligosaccharide Reduces Weanling Pig Diarrhea in Conjunction with Improving Intestinal Antioxidase Activity and Tight Junction Protein Expression. Nutrients, 14(3), 512. https://doi.org/10.3390/nu14030512spa
dc.relation.referencesZhao, F., & Xia, Z. (2019). Application of FOS and CPP in intestinal health of Weaned Piglets. E3S Web of Conferences, 131. https://doi.org/10.1051/e3sconf/201913101077spa
dc.relation.referencesZhao, W., Yuan, M., Li, P., Yan, H., Zhang, H., & Liu, J. (2019). Short-chain fructo- oligosaccharides enhances intestinal barrier function by attenuating mucosa inflammation and altering colonic microbiota composition of weaning piglets. Italian Journal of Animal Science, 18(1), 976–986. https://doi.org/10.1080/1828051X.2019.1612286spa
dc.relation.referencesZheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Frontiers in Veterinary Science, 8, 91. https://doi.org/10.3389/FVETS.2021.628258/BIBTEspa
dc.relation.referencesZwezerijnen-Jiwa, F. H., Sivov, H., Paizs, P., Zafeiropoulou, K., & Kinross, J. (2023). A systematic review of microbiome-derived biomarkers for early colorectal cancerspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.lembIndustria de la carne de cerdo
dc.subject.lembCarne de cerdo - Calidad
dc.subject.lembAlimentos para animales - Producción
dc.subject.lembBiotecnología de alimentos
dc.subject.proposalPorciculturaspa
dc.subject.proposalMicrobiotaspa
dc.subject.proposalCerdospa
dc.subject.proposalPrebióticospa
dc.subject.proposalFitobióticospa
dc.subject.proposalSwine productioneng
dc.subject.proposalMicrobiotaeng
dc.subject.proposalPrebioticeng
dc.subject.proposalPigeng
dc.subject.proposalPhytobioticeng
dc.titleEvaluación de compuestos nutracéuticos en cerdos posdestete sobre la dinámica de desarrollo microbiano como biomarcador asociado a la expresión de mRNA de proteínas de salud intestinalspa
dc.title.translatedEvaluation of feed additives in post-weaning pigs on microbial composition as a biomarker associated with mRNA expression of intestinal health proteinseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernamePROMITEC SANTANDER SASspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144050732.2025.pdf
Tamaño:
5.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: