Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon

dc.contributor.advisorDuque Montoya, Alvaro
dc.contributor.advisorZuleta, Daniel
dc.contributor.authorJaramillo Mejia, Paola Andrea
dc.contributor.orcidZuleta, Daniel [0000-0001-9832-6188]spa
dc.contributor.researchgroupConservación, Uso y Biodiversidadspa
dc.coverage.regionAmazonas, Colombia
dc.date.accessioned2023-07-04T16:06:47Z
dc.date.available2023-07-04T16:06:47Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas
dc.description.abstractSpatial variation in tree species diversity and distribution is thought to be mediated by environmental variation, including topography, but the underlying processes are not well understood. Wetter habitats like valleys should support higher growth and survival than drier habitats like ridges. However, deviations from this pattern may occur due to species’ habitat associations, which should be aligned with species’ ecological strategy along the interspecific acquisitive-conservative spectrum: fast growth at the cost of lower survival, and higher survival at the cost of slower growth. Here, we assess the influence of topography on the growth and mortality of 123,977 trees (1,266 species) in the 25-ha Amacayacu Forest Dynamics Plot, Northwestern Amazon. Specifically, we asked: (1) Do tree growth and mortality rates vary across topographic habitats (valleys, slopes, and ridges)? (2) Do growth and mortality vary depending on species' habitat associations? and (3) are the observed patterns of tree growth and mortality consistent with expectations based on the acquisitive-conservative spectrum? Mixed-effects models were used to examine demographic variation across topographic habitats and species habitat associations controlling for tree size. Trees growing on valleys had significantly higher mortality and growth rates compared to trees growing on slopes and ridges, which was consistent with the acquisitive-conservative spectrum. This pattern held true regardless of the species habitat associations. Our findings suggest that even small differences in topography can translate into differences in access to soil water affecting tree performance, which has implications for understanding species’ ecological strategies and forest responses to climate change.eng
dc.description.abstractSe cree que la variación espacial en la diversidad y distribución de las especies arbóreas está influenciada por la variación ambiental, incluida la topografía, pero los procesos subyacentes no se comprenden bien. Hábitats más húmedos, como los valles, deberían soportar un mayor crecimiento y supervivencia que hábitats más secos, como las colinas. Sin embargo, pueden ocurrir desviaciones de este patrón debido a las asociaciones de hábitat de las especies, que deben estar alineadas con la estrategia ecológica de las especies a lo largo del espectro adquisitivo-conservador interespecífico: crecimiento rápido a costa de una menor supervivencia y mayor supervivencia a costa de un crecimiento más lento. Aquí, evaluamos la influencia de la topografía en el crecimiento y la mortalidad de 123,977 árboles (1,266 especies) en la Parcela de Dinámica Forestal Amacayacu de 25 ha, en el noroeste de la Amazonía. Específicamente, preguntamos: (1) ¿Varían las tasas de crecimiento y mortalidad de los árboles entre los hábitats topográficos (valles, pendientes y colinas)? (2) ¿Varían el crecimiento y la mortalidad dependiendo de las asociaciones de hábitat de las especies? y (3) ¿los patrones observados de crecimiento y mortalidad de árboles son consistentes con las expectativas basadas en el espectro adquisitivo-conservador? Se utilizaron modelos de efectos mixtos para examinar la variación demográfica entre los hábitats topográficos y las asociaciones de hábitats de especies que controlan el tamaño de los árboles. Los árboles que crecían en valles tenían tasas de mortalidad y crecimiento significativamente más altas en comparación con los árboles que crecían en pendientes y colinas, lo que era consistente con el espectro adquisitivo-conservador. Este patrón se mantuvo independientemente de las asociaciones de hábitat de las especies. Nuestros hallazgos sugieren que incluso pequeñas diferencias en la topografía pueden traducirse en diferencias en el acceso al agua del suelo que afectan el rendimiento de los árboles, lo que tiene implicaciones para comprender las estrategias ecológicas de las especies y las respuestas de los bosques al cambio climático. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambientalspa
dc.description.degreelevelMaestríaspa
dc.description.researchareaDinámica de los bosques de la Amazonia Colombianaspa
dc.format.extentxviii, 38 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84127
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBarton, K. (2022). Package ‘ MuMIn .’ 1.spa
dc.relation.referencesBates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01spa
dc.relation.referencesBauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608(7923), 528–533. https://doi.org/10.1038/s41586-022-04737-7spa
dc.relation.referencesBrodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631spa
dc.relation.referencesChamorro, C. (1989). Biologia de los suelos del Parque Nacional Natural Amacayacu, y zonas adjacentes, Amazonas-Colombia.spa
dc.relation.referencesChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366.spa
dc.relation.referencesChuyong, G. B., Kenfack, D., Harms, K. E., Thomas, D. W., Condit, R., & Comita, L. S. (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212(8), 1363–1374. https://doi.org/10.1007/s11258-011-9912-4spa
dc.relation.referencesComita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.xspa
dc.relation.referencesComita, L. S., & Engelbrecht, B. M. J. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. 90(10), 2755–2765.spa
dc.relation.referencesCondit. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots.spa
dc.relation.referencesCondit, R. (1998). Tropical forest census plot. In Springer-verlag: Vol. CONDIT, R.spa
dc.relation.referencesCondit, Richard, Hubbell, S. P., & Foster, R. B. (1993). Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Forest Ecology and Management, 62(1–4), 123–143. https://doi.org/10.1016/0378-1127(93)90046-Pspa
dc.relation.referencesCondit, Richard, Hubbell, S. P., & Foster, R. B. (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65(4), 419–439. https://doi.org/10.2307/2963497spa
dc.relation.referencesCondit, Richard, Lao, S., Singh, A., Esufali, S., & Dolins, S. (2014). Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 316, 21–31.spa
dc.relation.referencesCondit, Richard, Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295(5555), 666–669. https://doi.org/10.1126/science.1066854spa
dc.relation.referencesCosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215(1), 113–125. https://doi.org/10.1111/nph.14508spa
dc.relation.referencesCosta, F., Schietti, J., Stark, S. C., & Smith, M. N. (2022). The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. https://doi.org/10.1111/nph.17914spa
dc.relation.referencesCushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. (2021). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53(5), 1442–1453. https://doi.org/10.1111/btp.12994spa
dc.relation.referencesDavies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253(December 2020). https://doi.org/10.1016/j.biocon.2020.108907spa
dc.relation.referencesDeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13(2), 77–81.spa
dc.relation.referencesDuffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112spa
dc.relation.referencesDuque, A., Muller-landau, H. C., Valencia, R., Cardenas, D., Davies, S., Oliveira, A. De, Romero-saltos, H., & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure , diversity , and dominance from three large. 669–686. https://doi.org/10.1007/s10531-016-1265-9spa
dc.relation.referencesEsteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995–2006. https://doi.org/10.1111/nph.17005spa
dc.relation.referencesFeeley, K. J., Rehm, E. M., & Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). https://doi.org/10.21425/f5fbg12621spa
dc.relation.referencesFeeley, K. J., & Zuleta, D. (2022). Changing forests under climate change. Nature Plants, 8(9), 984–985. https://doi.org/10.1038/s41477-022-01228-5spa
dc.relation.referencesFortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643spa
dc.relation.referencesFortunel, C., Timothy Paine, C. E., Fine, P. V. A., Mesones, I., Goret, J.-Y., Burban, B., Cazal, J., & Baraloto, C. (2016). There ’ s no place like home : seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 1256–1266. https://doi.org/10.1111/ele.12661spa
dc.relation.referencesHarms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.xspa
dc.relation.referencesHarms, K. E., Wright, S. J., Caldero, O., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. 30(1997), 493–495.spa
dc.relation.referencesHoldridge, L. R. (1978). Ecología : basada en zonas de vida. San José [Costa Rica] IICA 1978. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000741904&lang=es&site=eds-livespa
dc.relation.referencesHoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4spa
dc.relation.referencesHubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography.spa
dc.relation.referencesHubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/science.283.5401.554spa
dc.relation.referencesItoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Stuart, J. D., & Yamakura, T. (2012). The Effect of Habitat Association and Edaphic Conditions on Tree Mortality during El Niño-induced Drought in a Bornean Dipterocarp Forest. 44(5), 606–617.spa
dc.relation.referencesJucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. https://doi.org/10.1111/ele.12964spa
dc.relation.referencesKenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of cameroon. Forest Ecosystems, 1(1), 1–13. https://doi.org/10.1186/s40663-014-0022-3spa
dc.relation.referencesLenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01spa
dc.relation.referencesMalhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106spa
dc.relation.referencesMazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. 1–22.spa
dc.relation.referencesMcDowell, J. M., & Simon, S. A. (2008). Molecular diversity at the plant-pathogen interface. Developmental and Comparative Immunology, 32(7), 736–744. https://doi.org/10.1016/j.dci.2007.11.005spa
dc.relation.referencesMcDowell, N., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/10.1038/s43017-022-00272-1spa
dc.relation.referencesMetcalf, C. J. E., Clark, J. S., & Clark, D. A. (2009). Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 25(1), 1–12. https://doi.org/DOI: 10.1017/S0266467408005646spa
dc.relation.referencesOliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463spa
dc.relation.referencesOliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266spa
dc.relation.referencesPoorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña-Claros, M., Sterck, F., Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.xspa
dc.relation.referencesRusso, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 192–203. https://doi.org/10.1111/j.1365-2745.2007.01330.xspa
dc.relation.referencesRusso, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.xspa
dc.relation.referencesRusso, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Chang-Yang, C. H., Ediriweera, S., Ewango, C. E. N., Fletcher, C., Foster, R. B., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hart, T., Hsieh, C. F., Hubbell, S. P., … Zimmerman, J. K. (2021). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 5(2), 174–183. https://doi.org/10.1038/s41559-020-01340-9spa
dc.relation.referencesSantiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218(3), 1015–1024. https://doi.org/10.1111/nph.15058spa
dc.relation.referencesSousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108(5), 2070–2082. https://doi.org/10.1111/1365-2745.13377spa
dc.relation.referencesValencia, R., Condit, R., Muller-landau, H. C., Hernandez, C., & Navarrete, H. (2009). Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 473–482. https://doi.org/10.1017/S0266467409990095spa
dc.relation.referencesValencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernández, C., Romoleroux, K., Losos, E., Magård, E., & Balslev, H. (2004). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92(2), 214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.xspa
dc.relation.referencesWright, J. S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecological Society of America, 91(12), 3664–3674.spa
dc.relation.referencesZanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database.spa
dc.relation.referencesZuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., & Davies, S. (2017). Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98(10), 2538–2546. https://doi.org/10.1002/ecy.1950spa
dc.relation.referencesZuleta, D., Muller-Landau, H. C., Duque, A., Caro, N., Cardenas, D., Leon-Pelaez, J. D., & Feeley, K. J. (In Press). Interspecific and intraspecific variation of tree branch, leaf, and stomatal traits in relation to topography in an aseasonal Amazon forest. Functional Ecology.spa
dc.relation.referencesZuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D., Castaño, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., & Duque, A. (2020). Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 450(1–2), 133–149. https://doi.org/10.1007/s11104-018-3878-0spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembEcología forestal - Amaonas (Colombia)spa
dc.subject.lembForest ecology - Amaonas (Colombia)eng
dc.subject.lembTree crops - Amazonas (Colombia)eng
dc.subject.lembCultivos forestales - Amazonas (Colombia)spa
dc.subject.proposalTree growtheng
dc.subject.proposalTree mortalityeng
dc.subject.proposalTropical forestseng
dc.subject.proposalForest dynamicseng
dc.subject.proposalSpecies habitat associationseng
dc.subject.proposalCrecimiento de los árbolesspa
dc.subject.proposalMortalidad de los árboleseng
dc.subject.proposalBosques tropicalesspa
dc.subject.proposalDinámica forestalspa
dc.subject.proposalAsociaciones de hábitat de las especiesspa
dc.subject.proposalAcquisitive-conservative strategieseng
dc.subject.proposalEstrategias adquisitivas-conservadorasspa
dc.titleLocal-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazoneng
dc.title.translatedLos cambios en la topografía a escala local influyen en el crecimiento y la mortalidad de los árboles en un bosque de tierra firme del noroeste de la Amazoniaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036656048.2022.pdf
Tamaño:
1.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: