Caracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)

dc.contributor.advisorRincón Prat, Sonia Lucíaspa
dc.contributor.advisorGarcía Muñoz, María Cristinaspa
dc.contributor.authorHerrera Cardona, Andreaspa
dc.contributor.researchgroupBiomasa y Optimización Térmica de Procesos Biotspa
dc.contributor.researchgroupInnovación tecnológica de procesos agroindustriales para el desarrollo rural (Agrosavia)spa
dc.date.accessioned2024-05-17T19:50:11Z
dc.date.available2024-05-17T19:50:11Z
dc.date.issued2024-05-15
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEste estudio aborda la caracterización de los almidones de dos clones de achira, denominados clon 2008 – 001 y clon 2007 – 006, con el propósito de identificar oportunidades para su aplicación industrial en concordancia con las actuales directrices y políticas ambientales, así como su uso en aditivos alimentarios. Ambos almidones demostraron similitudes fisicoquímicas, destacando su condición como fuentes ricas de almidón con igual contenido de amilosa (≈ 32 %). Los almidones tienen un elevado contenido de minerales, un pH ligeramente ácido (≈ 6,1), actividad de agua moderada (≈0,6) y un alto índice de blancura (≈ 92 %). En cuanto a características morfológicas, ambos clones exhibieron gránulos de superficie lisa y regular, con el clon 2008 – 001 mostrando una forma más ovalada y el clon 2007 – 006 una forma más redonda. El clon 2007 – 006 presentó una menor cristalinidad (21,7%), indicando un mayor potencial de asimilación por el organismo humano. En relación con las propiedades térmicas y reológicas, se observaron diferencias significativas. El clon 2008 – 001 presentó mayor temperatura de gelatinización (67,6 °C) en comparación con el clon 2007 – 006 (63,3 °C). El clon 2007 – 006 mostró viscosidad más alta (427 UB) y formó geles más firmes, mientras que el clon 2008 – 001 formó pastas más claras. Ambos almidones presentaron baja retrogradación, preservando la transparencia de las soluciones. Estos hallazgos subrayan la importancia de comprender las propiedades específicas de cada almidón para su aplicación precisa en la industria alimentaria y no alimentaria. (Texto tomado de la fuente).spa
dc.description.abstractThis study addresses the characterization of starches from two arrowroot clones, denominated as clone 2008 – 001 and clone 2007 – 006, with the purpose of identifying opportunities for their industrial application in accordance with current environmental guidelines and policies, as well as their use in food additives. Both starches demonstrated physicochemical similarities, emphasizing their status as rich sources of starch with an equal amylose content (≈ 32%). The starches exhibited a high mineral content, slightly acidic pH (≈ 6.1), moderate water activity (≈ 0.6), and a high whiteness index (≈ 92%). In terms of morphological characteristics, both clones displayed granules with a smooth and regular surface, with clone 2008 – 001 showing a more oval shape and clone 2007 – 006 a more rounded shape. Clone 2007 – 006 presented lower crystallinity (21.7%), indicating a greater potential for assimilation by the human body. Regarding thermal and rheological properties, significant differences were observed. Clone 2008 – 001 exhibited a higher gelatinization temperature (67.6 °C) compared to clone 2007 – 006 (63.3 °C). Clone 2007 – 006 showed higher viscosity (427 BU) and formed firmer gels, while clone 2008 – 001 formed clearer pastes. Both starches exhibited low retrogradation, preserving the transparency of solutions. These findings underscore the importance of understanding the specific properties of each starch for its precise application in the food and non-food industry.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Ingeniería de Biosistemasspa
dc.description.researchareaPoscosecha y procesos agroindustrialesspa
dc.format.extentxiv, 101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86109
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Biosistemasspa
dc.relation.referencesAcuña Pinto, H. M. (2012). Extracción, caracterización y aplicación de almidón de ñame variedad blanco (dioscorea trifida) originario de la región amazónica colombiana para la elaboración de productos horneados [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/9785/spa
dc.relation.referencesAleixandre, A., & Rosell, C. M. (2022). Starch gels enriched with phenolics: Effects on paste properties, structure and digestibility. Lwt, 161(October 2021), 113350. https://doi.org/10.1016/j.lwt.2022.113350spa
dc.relation.referencesAlvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Físico-Químico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas Physicochemical and Morphological Analyses of Yam, Cassava and Potato Starches and Determination of their Viscosity. Información Tecnológica, 19(1), 19–28spa
dc.relation.referencesAnderson, R. A., Conway, H. F., & Peplinski, A. J. (1970). Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. In Starch - Stärke (Vol. 22, Issue 4). https://doi.org/10.1002/star.19700220408spa
dc.relation.referencesAOAC. (2019). Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International (21st Editi). AOACspa
dc.relation.referencesAOAC INTERNATIONAL. (1997). Official Method 996.11 : Starch (Total) in Cereal Products - Amyloglucosidase- -Amylase Method. First Action 1996 AOAC-AACC Method, 32.2.05a. In Journal of AOAC International.spa
dc.relation.referencesAprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51(12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5spa
dc.relation.referencesAristizábal, J., & Sánchez, T. (2007). Guía técnica para producción y análisis de almidón de yuca. Fao, 163, 134. https://doi.org/9253056770-9789253056774spa
dc.relation.referencesÁvila Martín, L. (2018). Efecto de la adición de ácido cítrico y proteína de lactosuero en la elaboración de películas basadas en almidón de Canna indica L [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/68666/1015401865.2018.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesBertolini, A. (2010). Starches: Characterization, properties, and applications. CRC Press, Taylor & Francys groupspa
dc.relation.referencesCaicedo, G., Rozo, S., & Rengifo, G. (2003). La Achira: Alternativa agroindustrial para áreas de economía campesina. In Corpoica. CORPOICAspa
dc.relation.referencesCanton Trevisol, T., Oliveira Henriques, R., Antunes Souza, A. J., Cesca, K., & Furigo, A. (2023). Starch- and carboxymethyl cellulose-based films as active beauty masks with papain incorporation. International Journal of Biological Macromolecules, 231(July 2022), 123258. https://doi.org/10.1016/j.ijbiomac.2023.123258spa
dc.relation.referencesChai, K., Lu, K., Xu, Z., Tong, Z., & Ji, H. (2018). Rapid and selective recovery of acetophenone from petrochemical effluents by crosslinked starch polymer. Journal of Hazardous Materials, 348(July 2017), 20–28. https://doi.org/10.1016/j.jhazmat.2018.01.034spa
dc.relation.referencesChen, N., Wang, Q., Wang, M. X., Li, N. yang, Briones, A. V., Cassani, L., Prieto, M. A., Carandang, M. B., Liu, C., Gu, C. M., & Sun, J. Y. (2022). Characterization of the physicochemical, thermal and rheological properties of cashew kernel starch. Food Chemistry: X, 15(July), 100432. https://doi.org/10.1016/j.fochx.2022.100432spa
dc.relation.referencesChen, P., Xie, F., Zhao, L., Qiao, Q., & Liu, X. (2017). Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocolloids, 69, 359–368. https://doi.org/10.1016/j.foodhyd.2017.03.003spa
dc.relation.referencesChibuogwu, C., Amadi, B., Anyaegbunam, Z., Emesiani, B., & Ofoefule, S. (2019). Application of Starch and Starch Derivatives in Pharmaceutical Formulation. IntechOpen, 13. http://dx.doi.org/10.1039/C7RA00172J%0Ahttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics%0Ahttp://dx.doi.org/10.1016/j.colsurfa.2011.12.014spa
dc.relation.referencesChiranthika, N. N. G., Chandrasekara, A., & Gunathilake, K. D. P. P. (2022). Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocolloids, 124(PA), 107272. https://doi.org/10.1016/j.foodhyd.2021.107272spa
dc.relation.referencesChoque-Quispe, D., Ligarda-Samanez, C. A., Ramos-Pacheco, B. S., Taipe-Pardo, F., Peralta-Guevara, D. E., & Solano Reynoso, A. M. (2019). Evaluación de las isotermas de sorción de granos y harina de kiwicha (Amaranthus caudatus). Revista ION, 31(2), 67–81. https://doi.org/10.18273/revion.v31n2-2018005spa
dc.relation.referencesChuenkamol, B., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2007). Characterization of low-substituted hydroxypropylated canna starch. Food Hydrocolloids, 21(7), 1123–1132. https://doi.org/10.1016/j.foodhyd.2006.08.013spa
dc.relation.referencesCisneros, F. H., Zevillanos, R., & Cisneros-Zevallos, L. (2009). Characterization of starch from two ecotypes of andean achira roots (Canna edulis). Journal of Agricultural and Food Chemistry, 57(16), 7363–7368. https://doi.org/10.1021/jf9004687spa
dc.relation.referencesCraig, S. A. S., Maningat, C. C., Seib, P. A., & Hoseney, R. C. (1989). Starch paste clarity. In Cereal Chem (Vol. 66, Issue 3, pp. 173–182)spa
dc.relation.referencesCui, C., Jia, Y., Sun, Q., Yu, M., Ji, N., Dai, L., Wang, Y., Qin, Y., Xiong, L., & Sun, Q. (2022). Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydrate Polymers, 291(May). https://doi.org/10.1016/j.carbpol.2022.119624spa
dc.relation.referencesDigaitis, R., Falkman, P., Oltner, V., Briggner, L. E., & Kocherbitov, V. (2022). Hydration and dehydration induced changes in porosity of starch microspheres. Carbohydrate Polymers, 291(February), 1–10. https://doi.org/10.1016/j.carbpol.2022.119542spa
dc.relation.referencesEnesi, R. O., Pypers, P., Kreye, C., Tariku, M., Six, J., & Hauser, S. (2022). Effects of expanding cassava planting and harvesting windows on root yield, starch content and revenue in southwestern Nigeria. Field Crops Research, 286(July), 108639. https://doi.org/10.1016/j.fcr.2022.108639spa
dc.relation.referencesFan, D., Liu, Y., Hu, B., Lin, L., Huang, L., Wang, L., Zhao, J., Zhang, H., & Chen, W. (2016). Influence of microwave parameters and water activity on radical generation in rice starch. Food Chemistry, 196, 34–41. https://doi.org/10.1016/j.foodchem.2015.09.012spa
dc.relation.referencesFAOSTAT. (2020). Datos sobre alimentación y agricultura. Producción de cultivos. FAO. http://www.fao.org/faostat/es/#data/QCspa
dc.relation.referencesFonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017a). Gelling of amaranth and achira starch blends in excess and limited water. Lwt, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061spa
dc.relation.referencesFonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017b). Gelling of amaranth and achira starch blends in excess and limited water. LWT - Food Science and Technology, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061spa
dc.relation.referencesFuentes, C., Perez-Rea, D., Bergenståhl, B., Carballo, S., Sjöö, M., & Nilsson, L. (2019). Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules, 125, 829–838. https://doi.org/10.1016/j.ijbiomac.2018.12.120spa
dc.relation.referencesGarcía Acosta, O. R., Pinzón Fandiño, M. I., & Sánchez Ante, L. T. (2013). Extracción y propiedades funcionales del almidón de yuca, manihot esculenta, variedad ica, como materia prima para la elaboración de películas comestibles. @limentech, Ciencia y Tecnología Alimentaria, 11(1), 13–21. http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/ALIMENTECH/article/view/382spa
dc.relation.referencesGarcía, Y., Cabrera, D., & Fuenmayor, C. A. (2020). Obtención y caracterización de harinas compuestas de Cucurbita moschata D . y Cajanus cajan L . como fuentes alternativas de proteína y vitamina A Obtaining and characterizing composite flours from Cucurbita moschata D . Obtención de harinas. 69, 89–96. https://doi.org/0.15446/acag.v69n2.80412spa
dc.relation.referencesGarnica, A. M., Romero, A. R., Cerón, M. D. S., & Prieto Contreras, L. (2010). Características funcionales de almidones nativos extraídos de clones promisorios de papa (Solanum tuberosum l. subespecie andigena ) para la industria de alimentos. Revista Alimentos Hoy, 19(21), 3–15. http://alimentoshoy.acta.org.co/index.php/hoy/article/view/1/10spa
dc.relation.referencesGranados, C., Guzmán, L., Acevedo, D., Díaz, M., & Herrera, A. (2014). PROPIEDADES FUNCIONALES DEL ALMIDON DE SAGU (Maranta arundinacea). Biotecnología En El Sector Agropecuario y Agroindustrial, 12(2), 90–96. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200010&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesGuízar Miranda, A., Montañéz Sotoa, J. L., & García Ruiza, I. (2008). Parcial caracterización de nuevos almidones obtenidos del tubérculo de camote del cerro (Dioscorea spp). Revista Iberoamericana de Tecnología Postcosecha, 9(March 2014), 81–88spa
dc.relation.referencesGutiérrez, T. J. (2018). Biological Macromolecule Composite Films Made from Sagu Starch and Flour / Poly ( ε-Caprolactone ) Blends Processed by Blending / Thermo. Journal of Polymers and the Environment, 26(9), 3902–3912. https://doi.org/10.1007/s10924-018-1268-6spa
dc.relation.referencesHedayati, S., & Niakousari, M. (2018). Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food Hydrocolloids, 81, 1–5. https://doi.org/10.1016/j.foodhyd.2018.02.024spa
dc.relation.referencesHerceg, Z., Batur, V., Jambrak, A. R., Badanjak, M., Brnčić, S. R., & Lalas, V. (2010). Modification of rheological, thermophysical, textural and some physical properties of corn starch by tribomechanical treatment. Carbohydrate Polymers, 80(4), 1072–1077. https://doi.org/10.1016/j.carbpol.2010.01.026spa
dc.relation.referencesHernández Medina, M., Torruco Uco, J. G., Chel Guerrero, L., & Betancur Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101-20612008000300031spa
dc.relation.referencesHoover R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267spa
dc.relation.referencesHoseney, R. C. (1991). Principios de ciencia y tecnología de los cereales (S. A. ACRIBIA (ed.)). American Association of Cereals Chemistsspa
dc.relation.referencesHuang, Y., Jin, Y., Fang, Y., Li, Y., & Zhao, H. (2013). Simultaneous utilization of non-starch polysaccharides and starch and viscosity reduction for bioethanol fermentation from fresh Canna edulis Ker. tubers. Bioresource Technology, 128, 560–564. https://doi.org/10.1016/j.biortech.2012.09.134spa
dc.relation.referencesIrani, M., Razavi, S. M. A., Abdel-Aal, E. S. M., Hucl, P., & Patterson, C. A. (2019). Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. International Journal of Biological Macromolecules, 124, 270–281. https://doi.org/10.1016/j.ijbiomac.2018.11.216spa
dc.relation.referencesJan, N., Naik, H. R., Gani, G., Bashir, O., Amin, T., Wani, S. M., & Sofi, S. A. (2022). Influence of replacement of wheat flour by rice flour on rheo ‑ structural changes , in vitro starch digestibility and consumer acceptability of low ‑ gluten pretzels. Food Production, Processing and Nutrition, 4(9), 1–12. https://doi.org/10.1186/s43014-022-00088-yspa
dc.relation.referencesJaramillo Montenegro, L. P. (2013). Obtención de almidones modificados de achira y caracterrización de sus propiedades de interés en la industria de alimentos [Universdidad del Valle]. https://doi.org/10.1190/segam2013-0137.1spa
dc.relation.referencesKaur, L., Singh, J., & Liu, Q. (2007). Starch - A potential biomaterial for biomedical applications. Nanomaterials and Nanosystems for Biomedical Applications, 83–98. https://doi.org/10.1007/978-1-4020-6289-6_5spa
dc.relation.referencesKaur, P., Kaur, K., Basha, S. J., & Kennedy, J. F. (2022). Current trends in the preparation, characterization and applications of oat starch — A review. International Journal of Biological Macromolecules, 212(March), 172–181. https://doi.org/10.1016/j.ijbiomac.2022.05.117spa
dc.relation.referencesKayode, B. I., Kayode, R. M. O., Salami, K. O., Obilana, A. O., George, T. T., Dudu, O. E., Adebo, O. A., Njobeh, P. B., Diarra, S. S., & Oyeyinka, S. A. (2021). Morphology and physicochemical properties of starch isolated from frozen cassava root. LWT, 147, 111546. https://doi.org/10.1016/j.lwt.2021.111546spa
dc.relation.referencesKheto, A., Das, R., Deb, S., Bist, Y., Kumar, Y., Tarafdar, A., & Saxena, D. C. (2022). Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. International Journal of Biological Macromolecules, 222(PA), 636–651. https://doi.org/10.1016/j.ijbiomac.2022.09.191spa
dc.relation.referencesKuakpetoon, D., & Wang, Y. J. (2001). Characterization of different starches oxidized by hypochlorite. Starch/Staerke, 53(5), 211–218. https://doi.org/10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO;2-Mspa
dc.relation.referencesLan, T., Wang, J., Lei, Y., Lei, J., Sun, X., & Ma, T. (2023). A new source of starchy flour : Physicochemical and nutritional properties of starchy kiwifruit flour. Food Chemistry. https://doi.org/10.1016/j.foodchem.2023.137627spa
dc.relation.referencesLares, M., & Pérez, E. (2006). Determination of the mineral fraction and rheological properties of microwave modified starch from canna edulis. Plant Foods for Human Nutrition, 61(3), 109–113. https://doi.org/10.1007/s11130-006-0007-7spa
dc.relation.referencesLeonel, M., Bolfarini, A. C. B., Rodrigues da Silva, M. J., Souza, J. M. A., & Leonel, S. (2020). Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilization. International Journal of Biological Macromolecules, 150, 1020–1026. https://doi.org/10.1016/J.IJBIOMAC.2019.10.217spa
dc.relation.referencesLeonel, M., Del Bem, M. S., dos Santos, T. P. R., & Franco, C. M. L. (2021). Preparation and properties of phosphate starches from tuberous roots. International Journal of Biological Macromolecules, 183, 898–907. https://doi.org/10.1016/j.ijbiomac.2021.05.045spa
dc.relation.referencesLeonel, M., Sarmiento, S., Cereda, M. P., & Guerreiro, L. (2002). Extração E Caracterização Do Amido De Starch Extraction and Characterization of. Brazilian Journal of Food Technology, 5(January), 23–32.spa
dc.relation.referencesLi, S., Ye, F., Zhou, Y., Lei, L., & Zhao, G. (2019). Rheological and textural insights into the blending of sweet potato and cassava starches: In hot and cooled pastes as well as in fresh and dried gels. Food Hydrocolloids, 89(August 2018), 901–911. https://doi.org/10.1016/j.foodhyd.2018.11.041spa
dc.relation.referencesLobo Arias, M., Medina Cano, C. I., Grisales Arias, J. D., Yepes Agudelo, A. F., & Álvarez Guzmán, J. A. (2017). Caracterización y evaluación morfológicas de la colección colombiana de achira, Canna edulis Ker Gawl. (Cannaceae). Corpoica Ciencia y Tecnologia Agropecuaria, 18(1), 47–73. https://doi.org/10.21930/rcta.vol18_num1_art:558spa
dc.relation.referencesLourith, N., & Kanlayavattanakul, M. (2023). Sustainable approach to natural makeup cosmetics containing microencapsulated butterfly pea anthocyanins. Sustainable Chemistry and Pharmacy, 32(January), 101005. https://doi.org/10.1016/j.scp.2023.101005spa
dc.relation.referencesMaldonado, G., Romero, J. V., Mojica, S. L., Garnica, J. P., & Volverás, B. (2018). EVALUACION AGRONOMICA DE SIETE CLONES DE ACHIRA PARA TRES SUBREGIONES PRODUCTORAS DE ALMIDON EN CUNDINAMARCA, HUILA Y NARIÑO, DURANTE EL PERIODO 2016-2017 (Vol. 2, Issue 6). https://www.ptonline.com/articles/how-to-get-better-mfi-results%0Amuhammadkahfi16060474066@mhs.unesa.ac.idspa
dc.relation.referencesMalki, M. K. S., Wijesinghe, J. A. A. C., Ratnayake, R. H. M. K., & Thilakarathna, G. C. (2023). Characterization of arrowroot (Maranta arundinacea) starch as a potential starch source for the food industry. Heliyon, 9(9), e20033. https://doi.org/10.1016/j.heliyon.2023.e20033spa
dc.relation.referencesMedina, J. A., & Salas, J. C. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56–62. https://doi.org/10.16924/revinge.27.6spa
dc.relation.referencesMendez, G., Velazquez, G., Fonseca, H. A., Morales, E., & Soler, A. (2022). Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. Lwt, 153(September 2021), 112509. https://doi.org/10.1016/j.lwt.2021.112509spa
dc.relation.referencesMex, R., Garma, P., Bolivar, N., & Guillén, M. (2016). análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-. Revista Latinoamericana de Recursos Naturales, 12(2), 74–80. https://www.itson.mx/publicaciones/rlrn/Documents/v12-n2-4-análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-del-Estado-de-Campeche-%28México%29.pdfspa
dc.relation.referencesMinagricultura. (2022). Reporte: Área, producción y rendimiento nacional por cultivo. Biblioteca Digital – Agronet. Estadísticas. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesMontes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J., & Meza, I. (2009). Modelado de las isotermas de desorción del ñame (Dioscorea rotundata). DYNA (Colombia), 76(157), 145–152.spa
dc.relation.referencesMontoya López, J., & Giraldo Giraldo, G. A. (2010). Caracterización Físico-Química De Harina De Trigo, Masa Y Pan. Revista de Investigaciones Universidad Del Quindío, 20(1), 29–35. https://doi.org/10.33975/riuq.vol20n1.703spa
dc.relation.referencesNTC. Instituto Colombiano de Normas Técnicas y certificación. (2015). Norma Técnica Colombiana, NTC 440:2015. Productos alimenticios. Métodos de ensayo. (p. 6). ICONTEC. https://doi.org/ICS: 67.050spa
dc.relation.referencesObadi, M., Qi, Y., & Xu, B. (2023). High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydrate Polymers, 299(October 2022), 120185. https://doi.org/10.1016/j.carbpol.2022.120185spa
dc.relation.referencesOCDE/FAO. (2020). OCDE-FAO Perspectivas Agrícolas 2019‑2028. In OCDE-FAO Perspectivas Agrícolas 2019‑2028. Organización para la Cooperación y el Desarrollo Económicos (OCDE) y la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). https://doi.org/10.4060/ca4076esspa
dc.relation.referencesOspitia Ferrer, N. A. (2019). Determinación de la actividad desintegrante en tabletas, de almidones obtenidos de plantas nativas colombianas, modificados químicamente por carboximetilación:achira (Canna edulis) y arracacha (Arracacia xanthorrhiza) [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72854/2/NoraAlejandraOspitiaFerrer.2019.pdfspa
dc.relation.referencesOtegbayo, B., Oguniyan, D., & Akinwumi, O. (2014). Physicochemical and functional characterization of yam starch for potential industrial applications. Starch/Staerke, 66(3–4), 235–250. https://doi.org/10.1002/star.201300056spa
dc.relation.referencesPardo C, O. H., Castañeda, J. C., & Ortiz, C. A. (2013). Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa. Acta Agronomica, 62(4), 289–295.spa
dc.relation.referencesPedrosa, M. T., Sampaio, U. M., & Schmiele, M. (2018). Identification and analysis of starch. In Starches for Food Application: Chemical, Technological and Health Properties. https://doi.org/10.1016/B978-0-12-809440-2.00002-2spa
dc.relation.referencesPérez-Santos, D. M., Velazquez, G., Canonico-Franco, M., Morales-Sanchez, E., Gaytan-Martínez, M., Yañez-Limon, J. M., & Herrera-Gomez, A. (2016). Modeling the limited degree of starch gelatinization. Starch/Staerke, 68(7–8), 727–733. https://doi.org/10.1002/star.201500220spa
dc.relation.referencesPerez, E., & Lares, M. (2005). Chemical Composition , Mineral Profile , and Functional Properties of Canna ( Canna edulis ) and Arrowroot ( Maranta spp .) Starches. Plant Foods for Human Nutrition, 60, 113–116. https://doi.org/10.1007/s11130-005-6838-9spa
dc.relation.referencesPérez, E., & Lares, M. (2005). Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches. Plant Foods for Human Nutrition, 60(3), 113–116. https://doi.org/10.1007/s11130-005-6838-9spa
dc.relation.referencesPeroni, F. H. G., Rocha, T. S., & Franco, C. M. L. (2006). Some structural and physicochemical characteristics of tuber and root starches. Food Science and Technology International, 12(6), 505–513. https://doi.org/10.1177/1082013206073045spa
dc.relation.referencesPiyachomkwan, K., Chotineeranat, S., Kijkhunasatian, C., Tonwitowat, R., Prammanee, S., Oates, C. G., & Sriroth, K. (2002). Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Industrial Crops and Products, 16(1), 11–21. https://doi.org/10.1016/S0926-6690(02)00003-1spa
dc.relation.referencesPrieto Chacón, E. M. (2007). Estudios de las transiciones térmicas del almidón y el almidón termoplástico mediante análisis térmicos (DSC y TGA) (Issue 69). Universidad de los Andes.spa
dc.relation.referencesPriyan V, V., & Narayanasamy, S. (2022). Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by Corn starch nanoparticles: An ecotoxicological assessment. Environmental Toxicology and Pharmacology, 94(September 2021), 103930. https://doi.org/10.1016/j.etap.2022.103930spa
dc.relation.referencesPrzetaczek-Rożnowska, I., Fortuna, T., Wodniak, M., Łabanowska, M., Pająk, P., & Królikowska, K. (2019). Properties of potato starch treated with microwave radiation and enriched with mineral additives. International Journal of Biological Macromolecules, 124, 229–234. https://doi.org/10.1016/j.ijbiomac.2018.11.153spa
dc.relation.referencesPurwitasari, L., Wulanjati, M. P., Pranoto, Y., & Witasari, L. D. (2023). Characterization of porous starch from edible canna (Canna edulis Kerr.) produced by enzymatic hydrolysis using thermostable α-amylase. Food Chemistry Advances, 2, 100152. https://doi.org/10.1016/J.FOCHA.2022.100152spa
dc.relation.referencesRadley, J. A. (1976). Industrial uses of starch and its derivatives. https://doi.org/10.1007/978-94-010-1329-1spa
dc.relation.referencesRahman, S. M. (2007). Handbook of Food Preservation. In International Journal of Food Science & Technology. Taylor & Francis Group. https://doi.org/10.1046/j.1365-2621.2001.00462.xspa
dc.relation.referencesRamírez-Miranda, M., Cruz y Victoria, M. T., Vizcarra-Mendoza, M. G., & Anaya-Sosa, I. (2014). Determination of moisture sorption isotherms and their thermodynamics properties of nixtamalized maize flour. Revista Mexicana de Ingeniera Quimica, 13(1), 165–178.spa
dc.relation.referencesRockland, L. B., & Beuchat, L. R. (1987). Water Activity: Theory and Applications to Food (2nd ed.). Marcell Dekker.spa
dc.relation.referencesRodríguez, D., Espitia, M., Caicedo, Y., & Baena, Y. (2005). Caracterización de algunas propiedades fisicoquímicas y farmacotécnicas del almidón de arracacha ( Arracacia xanthorriza ). Revista Colombiana de Ciencias Químico-Farmacéuticas, 34(2), 140–146.spa
dc.relation.referencesRodríguez, G. (2003). Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (Arracacia xanthorriza) y ñame (Dioscorea sp.). CORPOICA. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Concepción+de+un+modelo+de+agroindustria+rural+para+la+elaboración+de+harina+y+almidón+a+partir+de+raíces+y+tubérculos+promisorios+,+con+énfasis+en+los+casos+de+achira+(+Canna+edulis+),+arracacspa
dc.relation.referencesRodríguez, G., García, H., Camacho, J. H., & Arias, F. L. (2003). El almidón de Achira o Sagú (Canna Edulis, Ker) (Vol. 47, Issue 12, pp. 1086–1093). CORPOICA. https://doi.org/10.1134/S106935131112007Xspa
dc.relation.referencesRojas Rivera, M. A. (2012). Estudios de las caracterisricas fisiologicas de la yuca (Vol. 1, Issue 1, p. 111).spa
dc.relation.referencesRostamabadi, H., Rohit, T., Karaca, A. C., Nowacka, M., Colussi, R., Feksa Frasson, S., Aaliya, B., Valiyapeediyekkal Sunooj, K., & Falsafi, S. R. (2022). How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends in Food Science and Technology, 128(July), 217–237. https://doi.org/10.1016/j.tifs.2022.08.009spa
dc.relation.referencesSaartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211–221. https://doi.org/10.1016/j.carbpol.2005.05.024spa
dc.relation.referencesSalas Cuestas, S. Y. (2018). Caracterización fisicoquímica y propiedades funcionales del almidón de arracacha (arracacia xanthorrhiza ) modificado por irradiación UV-C. Universidad del Tolima.spa
dc.relation.referencesSalazar, D., Arancibia, M., Ocaña, I., Rodríguez-Maecker, R., Bedón, M., López-Caballero, M. E., & Montero, M. P. (2021). Characterization and technological potential of underutilized ancestral andean crop flours from ecuador. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091693spa
dc.relation.referencesSánchez Rivera, M. M., & Bello Pérez, L. A. (2008). Efecto de la temperatura en la reacción de oxidación del almidón de plátano (Musa paradisiaca L.). Estimacipon de la energía de activación. Revista Mexicana de Ingeniería Química, 7(3), 275–281spa
dc.relation.referencesSanguino, D., & Salazar, Z. (2013). Determinación De Actividad De Agua En Un Alimento. 1, 1–4.spa
dc.relation.referencesSatin, M. (1998). Functional properties of starches. AGSI Agriculture, 1–9. http://www.academia.edu/download/33271247/starches.pdfspa
dc.relation.referencesSilveira Thys, R. C., Zapata Noreña, C. P., Ferreira Marczak, L. D., Gomes Aires, A., & Cladera-Olivera, F. (2010). Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal of Food Engineering, 100(3), 468–473. https://doi.org/10.1016/j.jfoodeng.2010.04.033spa
dc.relation.referencesSingh, N., Ogunseitan, O. A., Wong, M. H., & Tang, Y. (2022). Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustainable Horizons, 2(April), 100016. https://doi.org/10.1016/j.horiz.2022.100016spa
dc.relation.referencesSingla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T., & Kumar, P. (2020). Taro starch: Isolation, morphology, modification and novel applications concern - A review. International Journal of Biological Macromolecules, 163, 1283–1290. https://doi.org/10.1016/j.ijbiomac.2020.07.093spa
dc.relation.referencesSun, X., Sun, Z., Saleh, A. S. M., Zhao, K., Ge, X., Shen, H., Zhang, Q., Yuan, L., Yu, X., & Li, W. (2021). Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B- starch granules. Food Hydrocolloids, 121(April), 107034. https://doi.org/10.1016/j.foodhyd.2021.107034spa
dc.relation.referencesSundaram, B., Kumar, P., Suganthy, N., Kesika, P., & Chaiyasut, C. (2022). Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. Journal of Drug Delivery Science and Technology, 77(July), 103890. https://doi.org/10.1016/j.jddst.2022.103890spa
dc.relation.referencesTakahashi, S., Maningat, C. C., & Seib, P. A. (1986). Acetylated and hydroxypropylated wheat starch: paste and gel properties compared with modified maize and tapioca starches.pdf. In Cereal Chemistry (Vol. 66, Issue 6, pp. 499–506).spa
dc.relation.referencesTester, R. F., Karkalas, J., & Qi, X. (2004). Starch - Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165. https://doi.org/10.1016/j.jcs.2003.12.001spa
dc.relation.referencesThitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003a). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I: Chemical composition and physicochemical properties. Carbohydrate Polymers, 53(3), 317–324. https://doi.org/10.1016/S0144-8617(03)00081-Xspa
dc.relation.referencesThitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003b). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydrate Polymers, 54(4), 489–498. https://doi.org/10.1016/j.carbpol.2003.08.003spa
dc.relation.referencesTien, C. (2019). Adsorption Equilibrium Relationships, Isotherm Expressions, Their Determinations, and Predictions. In Introduction to Adsorption. https://doi.org/10.1016/b978-0-12-816446-4.00003-8spa
dc.relation.referencesTimm, N. da S., Coradi, P. C., Lang, G. H., Ramos, A. H., Cañizares, L. da C. C., Ferreira, C. D., & de Oliveira, M. (2023). Effects of drying temperature of corn from the center and extremities of the corncob on morphology and technological, thermal, and pasting properties of isolated starch. Journal of Food Engineering, 336(June 2022). https://doi.org/10.1016/j.jfoodeng.2022.111215spa
dc.relation.referencesUtrilla-Coello, R. G., Hernández-Jaimes, C., Carrillo-Navas, H., González, F., Rodríguez, E., Bello-Pérez, L. A., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Acid hydrolysis of native corn starch: Morphology, crystallinity, rheological and thermal properties. Carbohydrate Polymers, 103(1), 596–602. https://doi.org/10.1016/j.carbpol.2014.01.046spa
dc.relation.referencesVan Hung, P., & Morita, N. (2005). Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohydrate Polymers, 61(3), 314–321. https://doi.org/10.1016/j.carbpol.2005.04.021spa
dc.relation.referencesVilla, C. C., Galus, S., Nowacka, M., Magri, A., Petriccione, M., & Gutiérrez, T. J. (2020). Molecular sieves for food applications: A review. Trends in Food Science and Technology, 102(January), 102–122. https://doi.org/10.1016/j.tifs.2020.05.027spa
dc.relation.referencesVilpoux, O. F., Brito, V. H., & Cereda, M. P. (2019). Starch Extracted From Corms , Roots , Rhizomes , and Tubers for Food Application. In Solid Waste Landfilling. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00004-6spa
dc.relation.referencesVilpoux, O. F., & Santos Silveira Junior, J. F. (2023). Global production and use of starch. In Starchy Crops Morphology, Extraction, Properties and Applications (pp. 43–66). Elsevier. https://doi.org/10.1016/B978-0-323-90058-4.00014-1spa
dc.relation.referencesWang, D., Zheng, X., Liu, W., Sun, Q., Chen, H. H., & Mu, H. (2023). Preparation and characterization of debranched starches: Influence of botanical source and debranching time. Food Chemistry, 407(December 2022), 135141. https://doi.org/10.1016/j.foodchem.2022.135141spa
dc.relation.referencesWang, S., Zhang, P., Li, Y., Li, J., Li, X., Yang, J., Ji, M., Li, F., & Zhang, C. (2023). Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers, 307(January), 120627. https://doi.org/10.1016/j.carbpol.2023.120627spa
dc.relation.referencesWang, Y., Wang, X., Hu, G., Al-Romaima, A., Liu, X., Bai, X., Li, J., Li, Z., & Qiu, M. (2022). Effect of green coffee oil as a natural active emulsifying agent on the properties of corn starch-based films. Lwt, 170(October), 114087. https://doi.org/10.1016/j.lwt.2022.114087spa
dc.relation.referencesWatcharatewinkul, Y., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2009). Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydrate Polymers, 75(3), 505–511. https://doi.org/10.1016/j.carbpol.2008.08.018spa
dc.relation.referencesWu, C., Sun, R., Zhang, Q., & Zhong, G. (2020). Synthesis and characterization of citric acid esterified canna starch ( RS4 ) by semi-dry method using vacuum-microwave-infrared assistance. Carbohydrate Polymers, 250(June), 116985. https://doi.org/10.1016/j.carbpol.2020.116985spa
dc.relation.referencesXiao, W., Shen, M., Ren, Y., Wen, H., Li, J., Rong, L., Liu, W., & Xie, J. (2022). Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocolloids, 123(235), 107136. https://doi.org/10.1016/j.foodhyd.2021.107136spa
dc.relation.referencesXie, F., Ren, X., Wu, H., Zhang, H., Wu, Y., Song, Z., & Ai, L. (2022). Pectins of different resources influences cold storage properties of corn starch gels: Structure-property relationships. Food Hydrocolloids, 124(PA), 107287. https://doi.org/10.1016/j.foodhyd.2021.107287spa
dc.relation.referencesXie, F., Yuan, C., Zhang, H., Wu, Y., & Ai, L. (2023). Structure-function relationship between galactomannans and their effects on freeze-thaw stability, retrogradation, and texture of corn starch gels during cold storage. Food Chemistry, 398(August 2022), 133915. https://doi.org/10.1016/j.foodchem.2022.133915spa
dc.relation.referencesYaruro Cáceres, N. C. (2018). Evaluación de las propiedades fisicoquímicas, térmicas y microestructurales del almidón de Achira (Canna edulis) [Universidad Nacional de Colombia]. In Universidad Nacional de Colombia Facultad. https://repositorio.unal.edu.co/bitstream/handle/unal/69533/1143232250.2019.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesYaruro Cáceres, N. C., Suarez Mahecha, H., de Francisco, A., Vásquez Mejia, S. M., & Diaz Moreno, C. (2021). Physicochemical, thermal, microstructural and paste properties comparison of four achira (Canna edulis sp.) starch ecotypes. International Journal of Gastronomy and Food Science, 25(June). https://doi.org/10.1016/j.ijgfs.2021.100380spa
dc.relation.referencesZamudio, P. B., Vargas, A., Gutiérrez, F., & Bello, L. A. (2010). Caracterización fisicoquímica de almidones doblemente modificados de plátano. Agrociencia, 44(3), 283–295.spa
dc.relation.referencesZárate Polanco et al, L. (2014). Extracción y caracterización de almidón nativo de clones promisorios de papa criolla (Solanum tuberosum, Grupo Phureja). Revista Latinoamericana de La Papa, 18(1), 1–24. https://doi.org/10.37066/ralap.v18i1.206spa
dc.relation.referencesZhang, C., Qiu, M., Wang, T., Luo, L., Xu, W., Wu, J., Zhao, F., Liu, K., Zhang, Y., & Wang, X. (2021). Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis. Food Chemistry, 351(11), 129340. https://doi.org/10.1016/j.foodchem.2021.129340spa
dc.relation.referencesZhang, H., Jing, W. jiang, Xu, J. ju, Ma, B. ju, Wang, W. lu, Zhang, W. yang, Gu, J. fei, Liu, L. jun, Wang, Z. qin, & Yang, J. chang. (2020). Changes in starch quality of mid-season indica rice varieties in the lower reaches of the Yangtze River in last 80 years. Journal of Integrative Agriculture, 19(12), 2983–2996. https://doi.org/10.1016/S2095-3119(20)63431-1spa
dc.relation.referencesZhang, J., Wang, Z., & Shi, X. (2010). Canna edulis Ker By-product : Chemical Composition and Characteristics of the Dietary Fiber. Food Science and Technology International, 16(4), 305–313. https://doi.org/10.1177/1082013209353832spa
dc.relation.referencesZhang, J., Wang, Z. W., & Yang, J. A. (2010). Physicochemical properties of Canna edulis ker starch on heat-moisture treatment. International Journal of Food Properties, 13(6), 1266–1279. https://doi.org/10.1080/10942910903061828spa
dc.relation.referencesZhang, J., Wang, Z. W., Yu, W. J., & Wu, J. H. (2011). Pectins from Canna edulis Ker residue and their physicochemical characterization. Carbohydrate Polymers, 83(1), 210–216. https://doi.org/10.1016/j.carbpol.2010.07.043spa
dc.relation.referencesZhao, T., Pan, X., Ou, Z., Li, Q., & Zhang, W. (2022). Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Scientia Horticulturae, 296(June 2021), 110890. https://doi.org/10.1016/j.scienta.2022.110890spa
dc.relation.referencesZhou, L., Chai, K., Yao, X., & Ji, H. (2021). Enhanced recovery of acetophenone and 1-phenylethanol from petrochemical effluent by highly porous starch-based hypercrosslinked polymers. Chemical Engineering Journal, 418(January), 129351. https://doi.org/10.1016/j.cej.2021.129351spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocGlucanosspa
dc.subject.agrovocglucanseng
dc.subject.agrovocCanna edulisspa
dc.subject.agrovocCanna eduliseng
dc.subject.agrovocPropiedades fisicoquímicasspa
dc.subject.agrovocchemicophysical propertieseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalAlmidón de achiraspa
dc.subject.proposalPropiedades químicasspa
dc.subject.proposalCaracterísticas morfológicasspa
dc.subject.proposalCristalinidadspa
dc.subject.proposalGelatinizaciónspa
dc.subject.proposalComportamiento reológicospa
dc.subject.proposalClaridad de la pastaspa
dc.subject.proposalAchira starcheng
dc.subject.proposalChemical propertieseng
dc.subject.proposalMorphological characteristicseng
dc.subject.proposalCrystallinityeng
dc.subject.proposalGelatinization,eng
dc.subject.proposalRheological behavioreng
dc.subject.proposalPasta clarityeng
dc.titleCaracterización fisicoquímica y funcional del almidón de dos clones de achira (Canna edulis)spa
dc.title.translatedPhysicochemical and functional characterization of starch from two clones of Achira (Canna edulis)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1054568493.2024.pdf
Tamaño:
2.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Biosistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: