Identificación de reacciones controladoras en un modelo computacional multi­-ómico astrocitario de lipotoxicidad inducida por ácido palmítico

dc.contributor.advisorPinzón Velasco, Andres Mauricio
dc.contributor.authorAngarita Rodríguez, María Andrea
dc.contributor.otherJanneth González Santos
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemas - GIBBSspa
dc.date.accessioned2022-10-05T23:38:20Z
dc.date.available2022-10-05T23:38:20Z
dc.date.issued2022-10-04
dc.description.abstractLos astrocitos juegan un papel importante en varios procesos en el cerebro, incluidas condiciones patológicas como las enfermedades neurodegenerativas. Estudios recientes han demostrado que el aumento de ácidos grasos saturados como el ácido palmítico (PA) desencadena vías proinflamatorias en el cerebro. El uso de neuroesteroides sintéticos como la tibolona ha demostrado mecanismos neuroprotectores. Sin embargo, faltan estudios amplios, con un punto de vista sistémico, sobre el papel neurodegenerativo de PA y los mecanismos neuroprotectores de la tibolona. En este estudio, realizamos la integración de datos multiómicos (transcriptoma y proteoma) en un modelo metabólico a escala genómica de astrocitos humanos para estudiar la respuesta astrocitaria durante el tratamiento con palmitato. Evaluamos los flujos metabólicos en tres escenarios (saludable, inflamación inducida por PA y tratamiento con tibolona bajo inflamación por PA). También aplicamos un enfoque de teoría de control para identificar aquellas reacciones que ejercen más control en el sistema astrocítico. Por último, analizamos las cavidades de las enzimas asociadas a estas reacciones para determinar sus potenciales sitios de unión caracterizándolos en función de puntajes de ligandabilidad y capacidad de interacción farmacológica (drogabilidad). Nuestros resultados sugieren que PA genera una modulación del metabolismo central y secundario, mostrando un cambio en el uso de la fuente de energía a través de la inhibición del ciclo del folato, la β-oxidación de ácidos grasos y la regulación positiva de la formación de cuerpos cetónicos. Encontramos 25 interruptores metabólicos bajo regulación celular mediada por PA, 9 de los cuales fueron críticos solo en el escenario inflamatorio pero no en el protector de tibolona. Dentro de estas reacciones, los perfiles de acoplamiento inhibitorio, total y direccional fueron hallazgos clave, que desempeñaron un papel fundamental en la desregulación de las vías metabólicas que pueden aumentar la neurotoxicidad. De los 25 interruptores metabólicos 16 presentaron cavidades potencialmente drogables que, a su vez, contienen el sitio activo de la proteína. En su conjunto, estas 16 enzimas se configuran como potenciales objetivos terapéuticos. Finalmente, el marco general de nuestro enfoque facilitó la comprensión de la regulación metabólica compleja y puede usarse para la exploración in silico de los mecanismos de regulación de las células astrocitarias, y potencialmente de otros tipos celulares, dirigiendo un trabajo experimental futuro más complejo en enfermedades neurodegenerativas. (Texto tomado de la fuente)spa
dc.description.abstractOur results suggest that PA generates a modulation of central and secondary metabolism, showing a change in the use of the energy source through the inhibition of the folate cycle, the β-oxidation of fatty acids and the positive regulation of the formation of fatty acids. ketone bodies. We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory but not in the protective tibolone scenario. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a critical role in the dysregulation of metabolic pathways that can increase neurotoxicity. Of the 25 metabolic switches, 16 presented potentially drugable cavities that, in turn, contain the active site of the protein. As a whole, these 16 enzymes are configured as potential therapeutic targets. Finally, the general framework of our approach facilitated the understanding of complex metabolic regulation and can be used for in silico exploration of regulatory mechanisms of astrocytic cells, and potentially other cell types, directing future more complex experimental work in diseases. neurodegenerative Our results suggest that PA generates a modulation of central and secondary metabolism, showing a switch in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation. We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory but not in the protective tibolone scenario. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a critical role in the dysregulation of metabolic pathways that can increase neurotoxicity. Of the 25 metabolic switches, 16 presented potentially druggable cavities that, in turn, contain the protein's active site. As a whole, these 16 enzymes are configured as potential therapeutic targets. Finally, the general framework of our approach facilitated the understanding of complex metabolic regulation. It can be used for in silico exploration of regulatory mechanisms of astrocytic cells, and potentially other cell types, directing future more complex experimental work in neurodegenerative diseases.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.researchareaBiología de Sistemasspa
dc.description.sponsorshipLa Pontificia Universidad Javeriana- Sede Bogotá y Minciencias - convocatoria 874 de 2020 “Convocatoria para el Fortalecimiento de Proyectos en Ejecución de CTeI en Ciencias de la Salud con Talento Joven e Impacto Regional” - financiaron el proyecto número 9307, dentro del cual se encuentra enmarcado este trabajo.spa
dc.format.extent96 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82354
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.referencesÃ, G. B. S., & Park, E. (2003). Taurine : new implications for an old amino acid. 226, 195–202. https://doi.org/10.1016/S0378-1097(03)00611-6spa
dc.relation.referencesAgostinho, P., Cunha, R. a, & Oliveira, C. (2010). Neuroinflammation , Oxidative Stress and the Pathogenesis of Alzheimer ’ s Disease. Current Pharmacutical Design, 16, 2766–2778.spa
dc.relation.referencesAllen, N. J., Eroglu, C., Development, F., Studies, B., & Jolla, L. (2018). Cell biology of astrocyte-synapse interactions. Neuron., 96(3), 697–708. https://doi.org/10.1016/j.neuron.2017.09.056.Cellspa
dc.relation.referencesAltenbuchinger, M., Zacharias, H. U., Solbrig, S., Schäfer, A., Büyüközkan, M., Schultheiß, U. T., Kotsis, F., Köttgen, A., Spang, R., Oefner, P. J., Krumsiek, J., & Gronwald, W. (2019). A multi-source data integration approach reveals novel associations between metabolites and renal outcomes in the German Chronic Kidney Disease study. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-50346-2spa
dc.relation.referencesArevalo, M. A., Azcoitia, I., & Garcia-Segura, L. M. (2015). The neuroprotective actions of oestradiol and oestrogen receptors. Nature Reviews Neuroscience, 16(1), 17–29. https://doi.org/10.1038/nrn3856spa
dc.relation.referencesArnedo, M., Ramos, M., Puisac, B., Concepcion, M., Teresa, E., Pie, A., Bueno, G., J., F., Gomez-Puertas, P., & Pie, J. (2011). Mitochondrial HMG–CoA Synthase Deficiency. Advances in the Study of Genetic Disorders, February. https://doi.org/10.5772/22151spa
dc.relation.referencesAsgari, Y., Salehzadeh-Yazdi, A., Schreiber, F., & Masoudi-Nejad, A. (2013). Controllability in cancer metabolic networks according to drug targets as driver nodes. PLoS ONE, 8(11), 1–12. https://doi.org/10.1371/journal.pone.0079397spa
dc.relation.referencesÁvila, M., Garcia-segura, L. M., Cabezas, R., Torrente, D., Capani, F., Gonzalez, J., & Barreto, G. E. (2014). Journal of Steroid Biochemistry & Molecular Biology Tibolone protects T98G cells from glucose deprivation. Journal of Steroid Biochemistry and Molecular Biology, 144, 294–303. https://doi.org/10.1016/j.jsbmb.2014.07.009spa
dc.relation.referencesAyyildiz, M., Celiker, S., Ozhelvaci, F., & Akten, E. D. (2020). Identification of Alternative Allosteric Sites in Glycolytic Enzymes for Potential Use as Species-Specific Drug Targets. 7(May), 1–19. https://doi.org/10.3389/fmolb.2020.00088spa
dc.relation.referencesBadaut, J. (2010). Aquaglyceroporin 9 in brain pathologies. Neuroscience, 168(4), 1047–1057. https://doi.org/10.1016/j.neuroscience.2009.10.030spa
dc.relation.referencesBailey, L. B., & Gregory, J. F. (1999). Recent Advances in Nutritional Science Folate Metabolism and. The Journal of Nutrition, 129, 779–782.spa
dc.relation.referencesBalog, E. (2014). An Allosteric Signaling Pathway of Human 3- Phosphoglycerate Kinase from Force Distribution Analysis. 10(1). https://doi.org/10.1371/journal.pcbi.1003444spa
dc.relation.referencesBalsa, E., Perry, E. A., Bennett, C. F., Jedrychowski, M., Gygi, S. P., Doench, J. G., & Puigserver, P. (2020). Defective NADPH production in mitochondrial disease complex I causes in fl ammation and cell. Nature Communications, 1–12. https://doi.org/10.1038/s41467-020-16423-1spa
dc.relation.referencesBarinova, K., Khomyakova, E., Semenyuk, P., Schmalhausen, E., & Muronetz, V. (2018). SC. Archives of Biochemistry and Biophysics. https://doi.org/10.1016/j.abb.2018.02.002spa
dc.relation.referencesBasler, G., Grimbs, S., & Ebenho, O. (2012). Evolutionary significance of metabolic network properties. November 2011, 1168–1176.spa
dc.relation.referencesBasler, G., & Nikoloski, Z. (2011). JMassBalance : mass-balanced randomization and analysis of metabolic networks. 27(19), 2761–2762. https://doi.org/10.1093/bioinformatics/btr448spa
dc.relation.referencesBasler, G., Nikoloski, Z., Larhlimi, A., Barabási, A. L., & Liu, Y. Y. (2016). Control of fluxes in metabolic networks. Genome Research, 26(7), 956–968. https://doi.org/10.1101/gr.202648.115spa
dc.relation.referencesBecerra-Calixto, A., & Cardona-Gómez, G. P. (2017). The role of astrocytes in neuroprotection after brain stroke: Potential in cell therapy. Frontiers in Molecular Neuroscience, 10(April), 1–12. https://doi.org/10.3389/FNMOL.2017.00088spa
dc.relation.referencesBélanger, M., & Magistretti, P. J. (2009). The role of astroglia in neuroprotection. Dialogues in Clinical Neuroscience, 11(3), 281–296.spa
dc.relation.referencesBidkhori, G., Benfeitas, R., Elmas, E., Kararoudi, M. N., Arif, M., Uhlen, M., Nielsen, J., & Mardinoglu, A. (2018). Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma. Frontiers in Physiology, 9(JUL), 1–11. https://doi.org/10.3389/fphys.2018.00916spa
dc.relation.referencesBordbar, A, & Palsson, B. O. (2011). Using the reconstructed genome-scale human metabolic network to study physiology and pathology. 131–141. https://doi.org/10.1111/j.1365-2796.2011.02494.xspa
dc.relation.referencesBordbar, Aarash, Jamshidi, N., & Palsson, B. O. (2011). IAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Systems Biology, 5, 1–12. https://doi.org/10.1186/1752-0509-5-110spa
dc.relation.referencesBordbar, Aarash, Monk, J. M., King, Z. A., & Palsson, B. O. (2014). Constraint-based models predict metabolic and associated cellular functions. 15(February), 107–120. https://doi.org/10.1038/nrg3643spa
dc.relation.referencesBordel, S., Agren, R., & Nielsen, J. (2010). Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Computational Biology, 6(7), 16. https://doi.org/10.1371/journal.pcbi.1000859spa
dc.relation.referencesBrunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlic, A., Sastry, A., Danielsdottir, A. D., Heinken, A., Noronha, A., Rose, P. W., Burley, S. K., Fleming, R. M. T., Nielsen, J., … Palsson, B. O. (2018). Recon3D enables a three-dimensional view of gene variation in human metabolism. Nature Biotechnology, 36(3), 272–281. https://doi.org/10.1038/nbt.4072spa
dc.relation.referencesBurgard, A. P., Nikolaev, E. V, Schilling, C. H., & Maranas, C. D. (2004). Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions. 4, 301–312. https://doi.org/10.1101/gr.1926504.spa
dc.relation.referencesBurley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V, Christie, C. H., Dalenberg, K., Costanzo, L. Di, Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guzenko, D., Hudson, B. P., Lawson, C. L., … Zhuravleva, M. (2021). RCSB Protein Data Bank : powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology , biomedicine , biotechnology , bioengineering and energy sciences. 49(November 2020), 437–451. https://doi.org/10.1093/nar/gkaa1038spa
dc.relation.referencesBuskila, Y., Bellot-Saez, A., & Morley, J. W. (2019). Generating Brain Waves, the Power of Astrocytes. Frontiers in Neuroscience, 13(October), 1–10. https://doi.org/10.3389/fnins.2019.01125spa
dc.relation.referencesButland, S. L., Sanders, S. S., Schmidt, M. E., Riechers, S. P., Lin, D. T. S., Martin, D. D. O., Vaid, K., Graham, R. K., Singaraja, R. R., Wanker, E. E., Conibear, E., & Hayden, M. R. (2014). The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: Implications for a role in the pathogenesis of Huntington’s disease. Human Molecular Genetics, 23(15), 4142–4160. https://doi.org/10.1093/hmg/ddu137spa
dc.relation.referencesBylicky, M. A., Mueller, G. P., & Day, R. M. (2018). Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/6501031spa
dc.relation.referencesCabezas, R., El-Bachá, R. S., González, J., & Barreto, G. E. (2012). Mitochondrial functions in astrocytes: Neuroprotective implications from oxidative damage by rotenone. Neuroscience Research, 74(2), 80–90. https://doi.org/10.1016/j.neures.2012.07.008spa
dc.relation.referencesCammisa, M., Correra, A., Andreotti, G., & Cubellis, M. V. (2012). Identification and analysis of conserved pockets on protein surfaces. February 2014. https://doi.org/10.1186/1471-2105-14-S7-S9spa
dc.relation.referencesCarta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8(NOV), 1–14. https://doi.org/10.3389/fphys.2017.00902spa
dc.relation.referencesCeccarelli, S. M., Chomienne, O., Gubler, M., & Arduini, A. (2011). Carnitine Palmitoyltransferase ( CPT ) Modulators : A Medicinal Chemistry Perspective on 35 Years of Research.spa
dc.relation.referencesChang, R. L., Xie, L., Xie, L., Bourne, P. E., & Palsson, B. (2010). Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Computational Biology, 6(9). https://doi.org/10.1371/journal.pcbi.1000938spa
dc.relation.referencesChaudhry, F. A., Krizaj, D., Larsson, P., Reimer, R. J., Wreden, C., Storm-Mathisen, J., Copenhagen, D., Kavanaugh, M., & Edwards, R. H. (2001). Coupled and uncoupled proton movement by amino acid transport system N. EMBO Journal, 20(24), 7041–7051. https://doi.org/10.1093/emboj/20.24.7041spa
dc.relation.referencesChaudhry, F. A., Reimer, R. J., Krizaj, D., Barber, D., Storm-Mathisen, J., Copenhagen, D. R., & Edwards, R. H. (1999). Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell, 99(7), 769–780. https://doi.org/10.1016/S0092-8674(00)81674-8spa
dc.relation.referencesChen, K., Wu, S., Ye, S., Huang, H., Zhou, Y., & Zhou, H. (2021). Dimethyl Fumarate Induces Metabolic Crisie to Suppress Pancreatic Carcinoma. 12(February), 1–14. https://doi.org/10.3389/fphar.2021.617714spa
dc.relation.referencesChen, P., Cheng, S., Lin, H., Lee, C., & Chou, C. (2018). Risk Factors for the Progression of Mild Cognitive Impairment in Different Types of Neurodegenerative Disorders. 2018. https://doi.org/10.1155/2018/6929732spa
dc.relation.referencesCoppedè, F. (2021). One-carbon epigenetics and redox biology of neurodegeneration. Free Radical Biology and Medicine, 170(October), 19–33. https://doi.org/10.1016/j.freeradbiomed.2020.12.002spa
dc.relation.referencesCoppedè, F., Mancuso, M., Siciliano, G., Migliore, L., & Murri, L. (2006). Genes and the environment in neurodegeneration. Bioscience Reports, 26(5), 341–367. https://doi.org/10.1007/s10540-006-9028-6spa
dc.relation.referencesCrespo-Castrillo, A., & Arevalo, M. A. (2020). Microglial and astrocytic function in physiological and pathological conditions: Estrogenic modulation. International Journal of Molecular Sciences, 21(9). https://doi.org/10.3390/ijms21093219spa
dc.relation.referencesCrespo-Castrillo, A., Yanguas-Casás, N., Arevalo, M. A., Azcoitia, I., Barreto, G. E., & Garcia-Segura, L. M. (2018). The Synthetic Steroid Tibolone Decreases Reactive Gliosis and Neuronal Death in the Cerebral Cortex of Female Mice After a Stab Wound Injury. Molecular Neurobiology, 55(11), 8651–8667. https://doi.org/10.1007/s12035-018-1008-xspa
dc.relation.referencesCummings, J. L., Morstorf, T., & Zhong, K. (2014). Alzrt269. 1–7.spa
dc.relation.referencesCurrais, A., Goldberg, J., Farrokhi, C., Chang, M., Prior, M., Dargusch, R., Daugherty, D., Armando, A., Quehenberger, O., Maher, P., & Schubert, D. (2015). A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging, 7(11), 937–955. https://doi.org/10.18632/aging.100838spa
dc.relation.referencesDas, A., Banik, N. L., & Ray, S. K. (2010). Flavonoids Activated Caspases for Apoptosis in Human Glioblastoma T98G and U87MG Cells But Not in Human Normal Astrocytes. 164–176. https://doi.org/10.1002/cncr.24699spa
dc.relation.referencesDavid, L., Marashi, S. A., Larhlimi, A., Mieth, B., & Bockmayr, A. (2011). FFCA: A feasibility-based method for flux coupling analysis of metabolic networks. BMC Bioinformatics, 12(1), 236. https://doi.org/10.1186/1471-2105-12-236spa
dc.relation.referencesDe Carvalho, C. C. C. R., & Caramujo, M. J. (2018). The various roles of fatty acids. Molecules, 23(10). https://doi.org/10.3390/molecules23102583spa
dc.relation.referencesDe Young, G. W., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9895–9899. https://doi.org/10.1073/pnas.89.20.9895spa
dc.relation.referencesDevkota, P., & Wuchty, S. (2020). Controllability analysis of molecular pathways points to proteins that control the entire interaction network. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59717-6spa
dc.relation.referencesDhandapani, K. M., Wade, F. M., Mahesh, V. B., & Brann, D. W. (2005). Astrocyte-derived transforming growth factor-β mediates the neuroprotective effects of 17β-estradiol: Involvement of nonclassical genomic signaling pathways. Endocrinology, 146(6), 2749–2759. https://doi.org/10.1210/en.2005-0014spa
dc.relation.referencesDhote, V., Mandloi, A. S., Singour, P. K., Kawadkar, M., Ganeshpurkar, A., & Jadhav, M. P. (2022). Neuroprotective Effects of Combined Trimetazidine and Progesterone on Cerebral Reperfusion Injury. Current Research in Pharmacology and Drug Discovery, 100108. https://doi.org/10.1016/j.crphar.2022.100108spa
dc.relation.referencesDilcan, G., Doruker, P., & Demet, E. (2019). binding affinity of alternative conformers of human β 2 - ­ adrenergic receptor in the presence of intracellular loop 3 ( ICL3 ) and their potential use in virtual screening studies. June 2018, 883–899. https://doi.org/10.1111/cbdd.13478spa
dc.relation.referencesDoengi, M., Hirnet, D., Coulon, P., Pape, H., Deitmer, J. W., & Lohr, C. (2009). GABA uptake-dependent Ca 2 ؉ signaling in developing olfactory bulb astrocytes. 1–6.spa
dc.relation.referencesDuarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., & Palsson, B. Ø. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. 104(6).spa
dc.relation.referencesDupuis, J. R., Ruiz-Arce, R., Barr, N. B., Thomas, D. B., & Geib, S. M. (2019). Range-wide population genomics of the Mexican fruit fly: Toward development of pathway analysis tools. Evolutionary Applications, 12(8), 1641–1660. https://doi.org/10.1111/eva.12824spa
dc.relation.referencesDurkee, C. A., & Araque, A. (2019). Diversity and Specificity of Astrocyte–neuron Communication. Neuroscience, 396(November), 73–78. https://doi.org/10.1016/j.neuroscience.2018.11.010spa
dc.relation.referencesFarfa, E. D., & Gallardo, J. M. (2014). Tibolone Prevents Oxidation and Ameliorates Cholinergic Deficit Induced by Ozone Exposure in the Male Rat Hippocampus. 1776–1786. https://doi.org/10.1007/s11064-014-1385-0spa
dc.relation.referencesFarmer, B. C., Walsh, A. E., Kluemper, J. C., & Johnson, L. A. (2020). Lipid Droplets in Neurodegenerative Disorders. Frontiers in Neuroscience, 14(July), 1–14. https://doi.org/10.3389/fnins.2020.00742spa
dc.relation.referencesFatima, S., Hu, X., Gong, R. H., Huang, C., Chen, M., Wong, H. L. X., Bian, Z., & Kwan, H. Y. (2019). Palmitic acid is an intracellular signaling molecule involved in disease development. Cellular and Molecular Life Sciences, 76(13), 2547–2557. https://doi.org/10.1007/s00018-019-03092-7spa
dc.relation.referencesFell, D. A. (2005). Enzymes, metabolites and fluxes. Journal of Experimental Botany, 56(410), 267–272. https://doi.org/10.1093/jxb/eri011spa
dc.relation.referencesFellner, L., Irschick, R., Schanda, K., Reindl, M., Klimaschewski, L., Poewe, W., Wenning, G. K., & Stefanova, N. (2013). Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia, 61(3), 349–360. https://doi.org/10.1002/glia.22437spa
dc.relation.referencesField, M. S., Kamynina, E., Agunloye, O. C., Liebenthal, R. P., Lamarre, S. G., Brosnan, M. E., Brosnan, J. T., & Stover, P. J. (2014). Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. Journal of Biological Chemistry, 289(43), 29642–29650. https://doi.org/10.1074/jbc.M114.599589spa
dc.relation.referencesFlott, B., & Seifert, W. (1991). Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia, 4(3), 293–304. https://doi.org/10.1002/glia.440040307spa
dc.relation.referencesFrago, L. M., Canelles, S., Freire-Regatillo, A., Argente-Arizón, P., Barrios, V., Argente, J., Garcia-Segura, L. M., & Chowen, J. A. (2017). Estradiol uses different mechanisms in astrocytes from the hippocampus of male and female rats to protect against damage induced by palmitic acid. Frontiers in Molecular Neuroscience, 10(October), 1–17. https://doi.org/10.3389/fnmol.2017.00330spa
dc.relation.referencesFumagalli, M., Lecca, D., Abbracchio, M. P., & Ceruti, S. (2017). Pathophysiological role of purines and pyrimidines in neurodevelopment: Unveiling new pharmacological approaches to congenital brain diseases. Frontiers in Pharmacology, 8(DEC), 1–18. https://doi.org/10.3389/fphar.2017.00941spa
dc.relation.referencesGelius-Dietrich, G., Desouki, A. A., Fritzemeier, C. J., & Lercher, M. J. (2013). Sybil - Efficient constraint-based modelling in R. BMC Systems Biology, 7(November). https://doi.org/10.1186/1752-0509-7-125spa
dc.relation.referencesGianchandani, E. P., Chavali, A. K., & Papin, J. A. (2010). The application of flux balance analysis in systems biology. https://doi.org/10.1002/wsbm.60spa
dc.relation.referencesGille, C., Bölling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hübner, K., Karlstädt, A., Ganeshan, R., König, M., Rother, K., Weidlich, M., Behre, J., & Holzhütter, H. G. (2010). HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology, 6(411). https://doi.org/10.1038/msb.2010.62spa
dc.relation.referencesGonzález-giraldo, Y., Forero, D. A., Echeverria, V., Garcia-segura, L. M., & Barreto, G. E. (2019). Molecular and Cellular Endocrinology Tibolone attenuates in fl ammatory response by palmitic acid and preserves mitochondrial membrane potential in astrocytic cells through estrogen receptor beta. Molecular and Cellular Endocrinology, 486(February), 65–78. https://doi.org/10.1016/j.mce.2019.02.017spa
dc.relation.referencesGonzález, J., Pinzón, A., Angarita-Rodríguez, A., Aristizabal, A. F., Barreto, G. E., & Martín-Jiménez, C. (2020). Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Frontiers in Neuroinformatics, 14(August), 1–13. https://doi.org/10.3389/fninf.2020.00035spa
dc.relation.referencesGreener, J. G., & Sternberg, M. J. E. (2015). AlloPred : prediction of allosteric pockets on proteins using normal mode perturbation analysis. 1–7. https://doi.org/10.1186/s12859-015-0771-1spa
dc.relation.referencesGu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019). Current status and applications of genome-scale metabolic models. Genome Biology, 20(1), 1–18. https://doi.org/10.1186/s13059-019-1730-3spa
dc.relation.referencesGuilloux, V. Le, Schmidtke, P., & Tuffery, P. (2009). Fpocket : An open source platform for ligand pocket detection. February. https://doi.org/10.1186/1471-2105-10-168spa
dc.relation.referencesGulsen, M., Yesilova, Z., Bagci, S., Uygun, A., Ozcan, A., Ercin, C. N., Erdil, A., Sanisoglu, S. Y., Ates, Y., Erbil, M. K., Karaeren, N., & Dagalp, K. (2005). Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. October 2004, 1448–1455. https://doi.org/10.1111/j.1440-1746.2005.03891.xspa
dc.relation.referencesGuo, W. F., Zhang, S. W., Shi, Q. Q., Zhang, C. M., Zeng, T., & Chen, L. (2018). A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification. BMC Genomics, 19(Suppl 1). https://doi.org/10.1186/s12864-017-4332-zspa
dc.relation.referencesGupta, M., Sharma, R., & Kumar, A. (2018). Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry, 76, 210–217. https://doi.org/10.1016/j.compbiolchem.2018.06.005spa
dc.relation.referencesHan, X., Zhang, T., Liu, H., Mi, Y., & Gou, X. (2020). Astrocyte Senescence and Alzheimer’s Disease: A Review. Frontiers in Aging Neuroscience, 12(June), 1–13. https://doi.org/10.3389/fnagi.2020.00148spa
dc.relation.referencesHaroon, E., Miller, A. H., & Sanacora, G. (2017). Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology, 42(1), 193–215. https://doi.org/10.1038/npp.2016.199spa
dc.relation.referencesHashimoto, M., & Hossain, S. (2018). Fatty Acids: From Membrane Ingredients to Signaling Molecules. Biochemistry and Health Benefits of Fatty Acids. https://doi.org/10.5772/intechopen.80430spa
dc.relation.referencesHerculano-Houzel, S., & Dos Santos, S. (2018). You Do Not Mess with the Glia. Neuroglia, 1(1), 193–219. https://doi.org/10.3390/neuroglia1010014spa
dc.relation.referencesHidalgo-lanussa, O., Ávila-rodriguez, M., Baez-jurado, E., Zamudio, J., Echeverria, V., Garcia-segura, L. M., Barreto, G. E., & Garcia-segura, L. M. (2017). Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. https://doi.org/10.1007/s12035-017-0777-yspa
dc.relation.referencesHidalgo-Lanussa, O., Baez-Jurado, E., Echeverria, V., Ashraf, G. M., Sahebkar, A., Garcia-Segura, L. M., Melcangi, R. C., & Barreto, G. E. (2020). Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. Journal of Neuroendocrinology, 32(1), 1–15. https://doi.org/10.1111/jne.12776spa
dc.relation.referencesHilton, B. J., Lang, B. T., & Cregg, J. M. (2012). Keratan Sulfate Proteoglycans in Plasticity and Recovery after Spinal Cord Injury. 32(13), 4331–4333. https://doi.org/10.1523/JNEUROSCI.0333-12.2012spa
dc.relation.referencesHöfer, T., Venance, L., & Giaume, C. (2002). Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach. Journal of Neuroscience, 22(12), 4850–4859. https://doi.org/10.1523/jneurosci.22-12-04850.2002spa
dc.relation.referencesHood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227spa
dc.relation.referencesHood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643. https://doi.org/10.1126/science.1104635spa
dc.relation.referencesHornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006). HIV-1 Protease Flaps Spontaneously Close to the Correct Structure in Simulations Following Manual Placement of an Inhibitor into the Open State. 2812–2813.spa
dc.relation.referencesHu, X., Zhu, X., Yu, W., Zhang, Y., Yang, K., & Liu, Z. (2022). European Journal of Medicinal Chemistry Reports A mini review of small-molecule inhibitors targeting palmitoyltransferases. 5(August 2021).spa
dc.relation.referencesHuang, J., Hou, J., Li, L., & Wang, Y. (2020). Flux balance analysis of glucose degradation by anaerobic digestion in negative pressure. International Journal of Hydrogen Energy, 45(51), 26822–26830. https://doi.org/10.1016/j.ijhydene.2020.07.053spa
dc.relation.referencesHuang, Y. N., Lai, C. C., Chiu, C. T., Lin, J. J., & Wang, J. Y. (2014). L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF- κB translocation in cortical neurons/glia cocultures. PLoS ONE, 9(7), 1–12. https://doi.org/10.1371/journal.pone.0097276spa
dc.relation.referencesHyduke, D., Hyduke, D., Schellenberger, J., Que, R., Fleming, R., Thiele, I., Orth, J., Feist, A., Zielinski, D., Bordbar, A., Lewis, N., Rahmanian, S., Kang, J., & Palsson, B. (2011). COBRA Toolbox 2.0. Protocol Exchange, May, 0–1. https://doi.org/10.1038/protex.2011.234spa
dc.relation.referencesIpata, P. L., & Tozzi, M. G. (2006). Recent advances in structure and function of cytosolic IMP-GMP specific 5′-nucleotidase II (cN-II). Purinergic Signalling, 2(4), 669–675. https://doi.org/10.1007/s11302-006-9009-spa
dc.relation.referencesIto, Z., Sakamoto, K., Imagama, S., Matsuyama, Y., Zhang, H., Hirano, K., Ando, K., Yamashita, T., Ishiguro, N., & Kadomatsu, K. (2010). N -Acetylglucosamine 6- O -Sulfotransferase-1-Deficient Mice Show Better Functional Recovery after Spinal Cord Injury. 30(17), 5937–5947. https://doi.org/10.1523/JNEUROSCI.2570-09.2010spa
dc.relation.referencesJacobs, A. H., & Tavitian, B. (2012). Noninvasive molecular imaging of neuroinflammation. Journal of Cerebral Blood Flow and Metabolism, 32(7), 1393–1415. https://doi.org/10.1038/jcbfm.2012.53spa
dc.relation.referencesJarugumilli, G., Chen, B., & Wu, X. (n.d.). Chemical Probes to Directly Profile Palmitoleoylation of Proteins.spa
dc.relation.referencesJendoubi, T. (2021). Approaches to integrating metabolomics and multi-omics data: A primer. Metabolites, 11(3). https://doi.org/10.3390/metabo11030184spa
dc.relation.referencesJiang, P., Wang, H., Li, W., Zang, C., Li, B., Wong, Y. J., Meyer, C., Liu, J. S., Aster, J. C., & Liu, X. S. (2015). Network analysis of gene essentiality in functional genomics experiments. Genome Biology, 16(1), 1–10. https://doi.org/10.1186/s13059-015-0808-9spa
dc.relation.referencesJones, L. L., & Tuszynski, M. H. (2002). Spinal Cord Injury Elicits Expression of Keratan Sulfate Proteoglycans by Macrophages, Reactive Microglia, and Oligodendrocyte Progenitors. Journal of Neuroscience, 22(11), 4611–4624. https://doi.org/10.1523/jneurosci.22-11-04611.2002spa
dc.relation.referencesKanhaiya, K. (2020). Target Controllability of Cancer Networks. Åbo Akademi University, 1, 1–68.spa
dc.relation.referencesKarahalil, B. (2017). Overview of Systems Biology and Omics Technologies Overview of Systems Biology and Omics Technologies. September 2016. https://doi.org/10.2174/0929867323666160926spa
dc.relation.referencesKawabata, T. (2009). Detection of multiscale pockets on protein surfaces using mathematical morphology. 1195–1211. https://doi.org/10.1002/prot.22639spa
dc.relation.referencesKim, M., Rai, N., Zorraquino, V., & Tagkopoulos, I. (2016). state in unexplored conditions for Escherichia coli. Nature Communications, 7, 1–12. https://doi.org/10.1038/ncomms13090spa
dc.relation.referencesKim, Y., Park, J., & Choi, Y. K. (2019). The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants, 8(5), 7–13. https://doi.org/10.3390/antiox8050121spa
dc.relation.referencesKohl, P., Crampin, E. J., Quinn, T. A., & Noble, D. (2010). Systems biology: An approach. Clinical Pharmacology and Therapeutics, 88(1), 25–33. https://doi.org/10.1038/clpt.2010.92spa
dc.relation.referencesLarhlimi, A., David, L., Selbig, J., & Bockmayr, A. (2012). F2C2 : a fast tool for the computation of flux coupling in genome-scale metabolic networks.spa
dc.relation.referencesLe Foll, C., & Levin, B. E. (2016). Fatty acid-induced astrocyte ketone production and the control of food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 310(11), R1186–R1192. https://doi.org/10.1152/ajpregu.00113.2016spa
dc.relation.referencesLeanza, L., Ferraro, P., Reichard, P., & Bianchi, V. (2008). Metabolic interrelations within guanine deoxynucleotide pools for mitochondrial and nuclear DNA maintenance. Journal of Biological Chemistry, 283(24), 16437–16445. https://doi.org/10.1074/jbc.M801572200spa
dc.relation.referencesLee, W., Reyes, R. C., Gottipati, M. K., Lewis, K., Lesort, M., Parpura, V., & Gray, M. (2013). Enhanced Ca2+-dependent glutamate release from astrocytes of the BACHD Huntington’file:///D:/Escritorio/MAestria/profundización1/artículos/10.1016@j.neuint.2018.08.010.pdfs disease mouse model. Neurobiology of Disease, 58, 192–199. https://doi.org/10.1016/j.nbd.2013.06.002spa
dc.relation.referencesLewis, N. E., & Abdel-Haleem, A. M. (2013). The evolution of genome-scale models of cancer metabolism. Frontiers in Physiology, 4 SEP(September), 1–7. https://doi.org/10.3389/fphys.2013.00237spa
dc.relation.referencesLewis, N. E., Nagarajan, H., & Palsson, B. O. (2012). Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology, 10(4), 291–305. https://doi.org/10.1038/nrmicro2737spa
dc.relation.referencesLi, J., Wei, Z., Zheng, M., Gu, X., Deng, Y., Qiu, R., Chen, F., Ji, C., Gong, W., Xie, Y., & Mao, Y. (2006). Crystal Structure of Human Guanosine Monophosphate Reductase 2 ( GMPR2 ) in Complex with GMP. 2, 980–988. https://doi.org/10.1016/j.jmb.2005.11.047spa
dc.relation.referencesLi, K., Li, J., Zheng, J., & Qin, S. (2019). Reactive Astrocytes in Neurodegenerative Diseases. Aging and Disease, 10(3), 664. https://doi.org/10.14336/ad.2018.0720spa
dc.relation.referencesLi, X., Li, M., Tian, L., Chen, J., Liu, R., & Ning, B. (2020). Review Article Reactive Astrogliosis : Implications in Spinal Cord Injury Progression and Therapy. 2020.spa
dc.relation.referencesLi, Y. X., & Rinzel, J. (1994). Equations for InsP3 receptor-mediated [Ca2+](i) oscillations derived from a detailed kinetic model: A hodgkin-huxley like formalism. In Journal of Theoretical Biology (Vol. 166, Issue 4, pp. 461–473). https://doi.org/10.1006/jtbi.1994.1041spa
dc.relation.referencesLiu, H., Luo, K., & Luo, D. (2018). Guanosine monophosphate reductase 1 is a potential therapeutic target for Alzheimer ’ s disease. Scientific Reports, November 2017, 1–10. https://doi.org/10.1038/s41598-018-21256-6spa
dc.relation.referencesLiu, X., & Pan, L. (2014). Detection of driver metabolites in the human liver metabolic network using structural controllability analysis. BMC Systems Biology, 8(1), 1–17. https://doi.org/10.1186/1752-0509-8-51spa
dc.relation.referencesLiu, Y. Y., Slotine, J. J., & Barabási, A. L. (2011). Controllability of complex networks. Nature, 473(7346), 167–173. https://doi.org/10.1038/nature10011spa
dc.relation.referencesLuterman, J. D., Haroutunian, V., Yemul, S., Ho, L., Purohit, D., Aisen, P. S., Mohs, R., & Pasinetti, G. M. (2000). Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Archives of Neurology, 57(8), 1153–1160. https://doi.org/10.1001/archneur.57.8.1153spa
dc.relation.referencesMa, H., & Zhao, H. (2013). Drug target inference through pathway analysis of genomics data. Advanced Drug Delivery Reviews, 65(7), 966–972. https://doi.org/10.1016/j.addr.2012.12.004spa
dc.relation.referencesMaarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., & Bruggeman, F. J. (2013). Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnology Journal, 8(9), 997–1008. https://doi.org/10.1002/biot.201200291spa
dc.relation.referencesMahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. 1–27. https://doi.org/10.3390/cells8020184spa
dc.relation.referencesManninen, T., Havela, R., & Linne, M.-L. (2019). Computational Models of Astrocytes and Astrocyte–Neuron Interactions: Characterization, Reproducibility, and Future Perspectives (pp. 423–454). https://doi.org/10.1007/978-3-030-00817-8_16spa
dc.relation.referencesMardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., Walley, A. J., Froguel, P., Carlsson, L. M., Uhlen, M., & Nielsen, J. (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Molecular Systems Biology, 9(649), 1–16. https://doi.org/10.1038/msb.2013.5spa
dc.relation.referencesMardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., & Nielsen, J. (2014). non-alcoholic fatty liver disease. Nature Communications, 5(May 2013), 1–11. https://doi.org/10.1038/ncomms4083spa
dc.relation.referencesMartín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E., & González, J. (2017). Genome-scale reconstruction of the human astrocyte metabolic network. Frontiers in Aging Neuroscience, 9(FEB), 1–17. https://doi.org/10.3389/fnagi.2017.00023spa
dc.relation.referencesMartin-jiménez, C., & González, J. (2020). Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes.spa
dc.relation.referencesMarttinen, M., Paananen, J., Neme, A., Mitra, V., Takalo, M., Natunen, T., Paldanius, K. M. A., Mäkinen, P., Bremang, M., Kurki, M. I., Rauramaa, T., Leinonen, V., Soininen, H., Haapasalo, A., Pike, I., & Hiltunen, M. (2019). A multiomic approach to characterize the temporal sequence in Alzheimer’s disease-related pathology. Neurobiology of Disease, 124, 454–468. https://doi.org/10.1016/j.nbd.2018.12.009spa
dc.relation.referencesMasid, M., Ataman, M., & Hatzimanikatis, V. (2020). Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-16549-2spa
dc.relation.referencesMatias, I., Morgado, J., & Gomes, F. C. A. (2019). Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Frontiers in Aging Neuroscience, 11(March), 1–18. https://doi.org/10.3389/fnagi.2019.00059spa
dc.relation.referencesMatyash, V., & Kettenmann, H. (2009). Heterogeneity in astrocyte morphology and physiology. Brain Research Reviews, 63(1–2), 2–10. https://doi.org/10.1016/j.brainresrev.2009.12.001spa
dc.relation.referencesMcCloskey, D., Palsson, B., & Feist, A. M. (2013). Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology, 9(1), 1–15. https://doi.org/10.1038/msb.2013.18spa
dc.relation.referencesMelo, H. M., Santos, L. E., & Ferreira, S. T. (2019). Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Frontiers in Neuroscience, 13(March), 1–12. https://doi.org/10.3389/fnins.2019.00265spa
dc.relation.referencesMenara, T., Bianchin, G., Innocenti, M., & Pasqualetti, F. (2017). On the number of strongly structurally controllable networks. Proceedings of the American Control Conference, 340–345. https://doi.org/10.23919/ACC.2017.7962976spa
dc.relation.referencesMichael Hay, David W Thomas, John L Craighead, C. E. & J. R. (2009). Clinical development success rates for investigational drugs. Gastrointestinal Cancer Research, 3(1), 20–28.spa
dc.relation.referencesModelska, K., & Cummings, S. (2015). CLINICAL REVIEW 140 Tibolone for Postmenopausal Women : Systematic Review of Randomized Trials. 87(November), 16–23.spa
dc.relation.referencesMoncada, S. & Higgs, A. (1993). The L-arginine-nitric oxide pathway. N. Engl. J. Med., 329, 2002–2012.spa
dc.relation.referencesNagelhus, E. A., & Ottersen, O. P. (2013). Physiological roles of Aquaporin-4 in brain. Physiological Reviews, 93(4), 1543–1562. https://doi.org/10.1152/physrev.00011.2013spa
dc.relation.referencesNielsen, J. (2017a). Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism, 25(3), 572–579. https://doi.org/10.1016/j.cmet.2017.02.002spa
dc.relation.referencesNielsen, J. (2017b). Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism, 25(3), 572–579. https://doi.org/10.1016/j.cmet.2017.02.002spa
dc.relation.referencesNielsen, J. (2017c). Systems Biology of Metabolism. Annual Review of Biochemistry, 86(1), 245–275. https://doi.org/10.1146/annurev-biochem-061516-044757spa
dc.relation.referencesNiu, Y. C., Feng, R. N., Hou, Y., Li, K., Kang, Z., Wang, J., Sun, C. H., & Li, Y. (2012). Histidine and arginine are associated with inflammation and oxidative stress in obese women. British Journal of Nutrition, 108(1), 57–61. https://doi.org/10.1017/S0007114511005289spa
dc.relation.referencesNurse, P., & Hayles, J. (2011). The cell in an era of systems biology. Cell, 144(6), 850–854. https://doi.org/10.1016/j.cell.2011.02.045spa
dc.relation.referencesNussinov, R., & Tsai, C. (2013). Review Allostery in Disease and in Drug Discovery. Cell, 153(2), 293–305. https://doi.org/10.1016/j.cell.2013.03.034spa
dc.relation.referencesOliveira, A. de A. B., Melo, N. de F. M., Vieira, É. dos S., Nogueira, P. A. S., Coope, A., Velloso, L. A., Dezonne, R. S., Ueira-Vieira, C., Botelho, F. V., Gomes, J. de A. S., & Zanon, R. G. (2018). Palmitate treated-astrocyte conditioned medium contains increased glutathione and interferes in hypothalamic synaptic network in vitro. Neurochemistry International, 120, 140–148. https://doi.org/10.1016/j.neuint.2018.08.010spa
dc.relation.referencesOrth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., & Palsson, B. (2011). A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Molecular Systems Biology, 7(535), 1–9. https://doi.org/10.1038/msb.2011.65spa
dc.relation.referencesOrth, J. D., Thiele, I., & Palsson, B. O. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245–248. https://doi.org/10.1038/nbt.1614spa
dc.relation.referencesOrtiz-Rodriguez, A., Acaz-Fonseca, E., Boya, P., Arevalo, M. A., & Garcia-Segura, L. M. (2019). Lipotoxic Effects of Palmitic Acid on Astrocytes Are Associated with Autophagy Impairment. Molecular Neurobiology, 56(3), 1665–1680. https://doi.org/10.1007/s12035-018-1183-9spa
dc.relation.referencesOrtiz-Rodriguez, A., & Arevalo, M. A. (2020). The contribution of astrocyte autophagy to systemic metabolism. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072479spa
dc.relation.referencesOsorio, D., Botero, K., Gonzalez, J., and Pinzon, A. (2016). “exp2flux” Convierte datos de Gene EXPression a FBA FLUXes. Package Version 0.1. https://doi.org/10.13140/RG.2.2.14401.56168spa
dc.relation.referencesOsorio, D., Pinzón, A., Martín-Jiménez, C., Barreto, G. E., & González, J. (2020a). Multiple Pathways Involved in Palmitic Acid-Induced Toxicity: A System Biology Approach. Frontiers in Neuroscience, 13(January), 1–14. https://doi.org/10.3389/fnins.2019.01410spa
dc.relation.referencesPalsson, B. (2009). Metabolic systems biology. FEBS Letters, 583(24), 3900–3904. https://doi.org/10.1016/j.febslet.2009.09.031spa
dc.relation.referencesPandey, V., Gardiol, D. H., & Chiappino-pepe, A. (2019). Running head : TEX-FBA TEX-FBA : A constraint-based method for integrating gene expression , thermodynamics , and metabolomics data into genome-scale metabolic models 1 Laboratory of Computational Systems Biotechnology , École Polytechnique Fédérale de La. 1–30.spa
dc.relation.referencesPapin, J. A., Hunter, T., Palsson, B. O., & Subramaniam, S. (2005). Reconstruction of cellular signalling networks and analysis of their properties. Nature Reviews Molecular Cell Biology, 6(2), 99–111. https://doi.org/10.1038/nrm1570spa
dc.relation.referencesParaiso, W. K. D., Garcia-chica, J., Ariza, X., Zagmutt, S., Fukushima, S., Garcia, J., Mochida, Y., Serra, D., Herrero, L., Kinoh, H., Casals, N., Kataoka, K., Rodríguez-rodríguez, R., & Quader, S. (2021). Biomaterials Science conjugated CPT1A inhibitors to modulate lipid metabolism in brain cells †. https://doi.org/10.1039/d1bm00689dspa
dc.relation.referencesPardo, B., Contreras, L., & Satrústegui, J. (2013). De novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1. Frontiers in Endocrinology, 4(October), 15–18. https://doi.org/10.3389/fendo.2013.00149spa
dc.relation.referencesPatil, S., Melrose, J., & Chan, C. (2007). Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. European Journal of Neuroscience, 26(8), 2131–2141. https://doi.org/10.1111/j.1460-9568.2007.05797.xspa
dc.relation.referencesPatil, S., Sheng, L., Masserang, A., & Chan, C. (2006). Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neuroscience Letters, 406(1–2), 55–59. https://doi.org/10.1016/j.neulet.2006.07.015spa
dc.relation.referencesPeracchi, A., & Mozzarelli, A. (2011). Biochimica et Biophysica Acta Exploring and exploiting allostery : Models , evolution , and drug targeting ☆. BBA - Proteins and Proteomics, 1814(8), 922–933. https://doi.org/10.1016/j.bbapap.2010.10.008spa
dc.relation.referencesPiccolis, M., Bond, L. M., Kampmann, M., Pulimeno, P., Chitraju, C., Jayson, C. B. K., Vaites, L. P., Boland, S., Lai, Z. W., Gabriel, K. R., Elliott, S. D., Paulo, J. A., Harper, J. W., Weissman, J. S., Walther, T. C., & Farese, R. V. (2019). Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids. Molecular Cell, 74(1), 32-44.e8. https://doi.org/10.1016/j.molcel.2019.01.036spa
dc.relation.referencesPietzke, M., Meiser, J., & Vazquez, A. (2020). Formate metabolism in health and disease. Molecular Metabolism, 33(xxxx), 23–37. https://doi.org/10.1016/j.molmet.2019.05.012spa
dc.relation.referencesPinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D. (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9(4), 1–31. https://doi.org/10.3390/metabo9040076spa
dc.relation.referencesPrice, N. D., Reed, J. L., & Palsson, B. (2004). Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nature Reviews Microbiology, 2(11), 886–897. https://doi.org/10.1038/nrmicro1023spa
dc.relation.referencesRamon, C., Gollub, M. G., & Stelling, J. (2018). Integrating -omics data into genome-scale metabolic network models: Principles and challenges. Essays in Biochemistry, 62(4), 563–574. https://doi.org/10.1042/EBC20180011spa
dc.relation.referencesRavindran, V., Nacher, J. C., Akutsu, T., Ishitsuka, M., Osadcenco, A., Sunitha, V., Bagler, G., Schwartz, J. M., & Robertson, D. L. (2019). Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-38224-9spa
dc.relation.referencesRezola, A., Pey, J., Tobalina, L., Rubio, Á., Beasley, J. E., & Planes, F. J. (2015). Advances in network-basedmetabolic pathway analysis and gene expression data integration. Briefings in Bioinformatics, 16(2), 1–15. https://doi.org/10.1093/bib/bbu009spa
dc.relation.referencesRobertson, J. M. (2018). The gliocentric brain. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103033spa
dc.relation.referencesRonneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Ballard, A. J., Cowie, A., Romera-paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., … Kavukcuoglu, K. (2021). Highly accurate protein structure prediction with AlphaFold. May, 1–12. https://doi.org/10.1038/s41586-021-03819-2spa
dc.relation.referencesRose, J., Brian, C., Pappa, A., Panayiotidis, M. I., & Franco, R. (2020). Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Frontiers in Neuroscience, 14(November), 1–20. https://doi.org/10.3389/fnins.2020.536682spa
dc.relation.referencesSajitz-Hermstein, M., & Nikoloski, Z. (2013). Structural Control of Metabolic Flux. PLoS Computational Biology, 9(12). https://doi.org/10.1371/journal.pcbi.1003368spa
dc.relation.referencesSalvatore, D., Bartha, T., & Larsen, P. R. (1998). The Guanosine Monophosphate Reductase Gene Is Conserved in Rats and Its Expression Increases Rapidly in Brown Adipose Tissue during Cold Exposure *. Journal of Biological Chemistry, 273(47), 31092–31096. https://doi.org/10.1074/jbc.273.47.31092spa
dc.relation.referencesSchafer, J. R. A., Fell, D. A., Rothman, D., & Shulman, R. G. (2004). Protein phosphorylation can regulate metabolite concentrations rather than control flux: The example of glycogen synthase. Proceedings of the National Academy of Sciences of the United States of America, 101(6), 1485–1490. https://doi.org/10.1073/pnas.0307299101spa
dc.relation.referencesSchousboe, A., Bak, L. K., & Waagepetersen, H. S. (2013). Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Frontiers in Endocrinology, 4(AUG), 1–11. https://doi.org/10.3389/fendo.2013.00102spa
dc.relation.referencesSchrödinger, L. (2015). The {PyMOL} Molecular Graphics System, Version~2.4. February. https://doi.org/10.13140/RG.2.2.33676.64641spa
dc.relation.referencesSchuetz, R., Kuepfer, L., & Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Molecular Systems Biology, 3(119). https://doi.org/10.1038/msb4100162spa
dc.relation.referencesSchwartz, J. M., Otokuni, H., Akutsu, T., & Nacher, J. C. (2019). Probabilistic controllability approach to metabolic fluxes in normal and cancer tissues. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-10616-zspa
dc.relation.referencesSegrè, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 15112–15117. https://doi.org/10.1073/pnas.232349399spa
dc.relation.referencesSertbaş, M., Ülgen, K., & Çakir, T. (2014). Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio, 4, 542–553. https://doi.org/10.1016/j.fob.2014.05.006spa
dc.relation.referencesShi, L. F., Zhang, Q., Shou, X. Y., & Niu, H. J. (2021). Expression and prognostic value identification of methylenetetrahydrofolate dehydrogenase 2 (Mthfd2) in brain low-grade glioma. International Journal of General Medicine, 14, 4517–4527. https://doi.org/10.2147/IJGM.S323858spa
dc.relation.referencesShlomi, T., Berkman, O., & Ruppin, E. (2005). Regulatory on ͞ off minimization of metabolic flux. Pnas, 102(21), 7695–7700. https://doi.org/10.1073/pnas.0406346102spa
dc.relation.referencesSingh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 24(8), 1–20. https://doi.org/10.3390/molecules24081583spa
dc.relation.referencesSingh, D., & Lercher, M. J. (2020). Network reduction methods for genome-scale metabolic models. Cellular and Molecular Life Sciences, 77(3), 481–488. https://doi.org/10.1007/s00018-019-03383-zspa
dc.relation.referencesSiracusa, R., Fusco, R., & Cuzzocrea, S. (2019). Astrocytes: Role and functions in brain pathologies. Frontiers in Pharmacology, 10(SEP), 1–10. https://doi.org/10.3389/fphar.2019.01114spa
dc.relation.referencesSofroniew M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neuroscience, 32(12), 638–647. https://doi.org/10.1016/j.tins.2009.08.002.Molecularspa
dc.relation.referencesSofroniew, J. E. B. and M. V. (2015). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 81(2), 229–248. https://doi.org/10.1016/j.neuron.2013.12.034.Reactivespa
dc.relation.referencesSofroniew, M. V. (2014). Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist, 20(2), 160–172. https://doi.org/10.1177/1073858413504466spa
dc.relation.referencesSon, D. O., Satsu, H., & Shimizu, M. (2005). Histidine inhibits oxidative stress- and TNF- a -induced interleukin-8 secretion in intestinal epithelial cells. 579, 4671–4677. https://doi.org/10.1016/j.febslet.2005.07.038spa
dc.relation.referencesSonnewald, U., Akiho, H., Koshiya, K., & Iwai, A. (1998). Effect of orotic acid on the metabolism of cerebral cortical astrocytes during hypoxia and reoxygenation: An NMR spectroscopy study. Journal of Neuroscience Research, 51(1), 103–108. https://doi.org/10.1002/(SICI)1097-4547(19980101)51:1<103::AID-JNR11>3.0.CO;2-Cspa
dc.relation.referencesSouders, C. L., Zubcevic, J., & Martyniuk, C. J. (2021). Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cellular and Molecular Neurobiology, 0123456789. https://doi.org/10.1007/s10571-021-01044-zspa
dc.relation.referencesSouza, D. G., Almeida, R. F., Souza, D. O., & Zimmer, E. R. (2019). The astrocyte biochemistry. Seminars in Cell and Developmental Biology, 95(April), 142–150. https://doi.org/10.1016/j.semcdb.2019.04.002spa
dc.relation.referencesStank, A., Kokh, D. B., Fuller, J. C., & Wade, R. C. (2016). Protein Binding Pocket Dynamics. https://doi.org/10.1021/acs.accounts.5b00516spa
dc.relation.referencesSuthers, P. F., Zomorrodi, A., & Maranas, C. D. (2009). Genome-scale gene/reaction essentiality and synthetic lethality analysis. Molecular Systems Biology, 5(301), 1–17. https://doi.org/10.1038/msb.2009.56spa
dc.relation.referencesSweetlove, L. J., & George Ratcliffe, R. (2011). Flux-balance modeling of plant metabolism. Frontiers in Plant Science, 2(AUG), 1–10. https://doi.org/10.3389/fpls.2011.00038spa
dc.relation.referencesTerzer, M., & Stelling, J. (2008). Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics, 24(19), 2229–2235. https://doi.org/10.1093/bioinformatics/btn401spa
dc.relation.referencesThiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., Rolfsson, O., Stobbe, M. D., Thorleifsson, S. G., Agren, R., Bölling, C., Bordel, S., Chavali, A. K., Dobson, P., Dunn, W. B., Endler, L., Hala, D., … Palsson, B. O. (2013a). A community-driven global reconstruction of human metabolism. Nature Biotechnology, 31(5), 419–425. https://doi.org/10.1038/nbt.2488spa
dc.relation.referencesThiele, I., Swainston, N., Fleming, R. M. T., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., Rolfsson, O., Stobbe, M. D., Thorleifsson, S. G., Agren, R., Bölling, C., Bordel, S., Chavali, A. K., Dobson, P., Dunn, W. B., Endler, L., Hala, D., … Palsson, B. O. (2013b). A community-driven global reconstruction of human metabolism. Nature Biotechnology, 31(5), 419–425. https://doi.org/10.1038/nbt.2488spa
dc.relation.referencesTong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., Anderson, M. A., Mody, I., Olsen, M. L., Sofroniew, M. V, & Khakh, B. S. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nature Neuroscience, 17(5), 694–703. https://doi.org/10.1038/nn.3691spa
dc.relation.referencesTrott, O. and Olson, A. J. (2011). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. 31(2), 455–461. https://doi.org/10.1002/jcc.21334.AutoDockspa
dc.relation.referencesUssher, J. R., Keung, W., Fillmore, N., Koves, T. R., Mori, J., Zhang, L., Lopaschuk, D. G., Ilkayeva, O. R., Wagg, C. S., Jaswal, J. S., Muoio, D. M., & Lopaschuk, G. D. (2014). Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice. June, 487–496.spa
dc.relation.referencesValenza, G., Pioggia, G., Armato, A., Ferro, M., Scilingo, E. P., & De Rossi, D. (2011). A neuron-astrocyte transistor-like model for neuromorphic dressed neurons. Neural Networks, 24(7), 679–685. https://doi.org/10.1016/j.neunet.2011.03.013spa
dc.relation.referencesVerkhratsky, A., and Nedergaard, M. (2018). PHYSIOLOGY OF ASTROGLIA. Physiol. Rev, 98, 239–389. https://doi.org/10.1152/physrev.00042.2016spa
dc.relation.referencesVerkhratsky, A., & Butt, A. (2018). The History of the Decline and Fall of the Glial Numbers Legend. Neuroglia, 1(1), 188–192. https://doi.org/10.3390/neuroglia1010013spa
dc.relation.referencesVicente-Gutierrez, C., Bonora, N., Bobo-Jimenez, V., Jimenez-Blasco, D., Lopez-Fabuel, I., Fernandez, E., Josephine, C., Bonvento, G., Enriquez, J. A., Almeida, A., & Bolaños, J. P. (2019). Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nature Metabolism, 1(2), 201–211. https://doi.org/10.1038/s42255-018-0031-6spa
dc.relation.referencesVoillet, V., Besse, P., Liaubet, L., Cristobal, M. S., & González, I. (2016). Handling missing rows in multi-omics data integration : multiple imputation in multiple factor analysis framework. BMC Bioinformatics, 1–17. https://doi.org/10.1186/s12859-016-1273-5spa
dc.relation.referencesVolkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). DoGSiteScorer : a web server for automatic binding site prediction , analysis and druggability assessment. 28(15), 2074–2075. https://doi.org/10.1093/bioinformatics/bts310spa
dc.relation.referencesVolterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The revolution continues. Nature Reviews Neuroscience, 6(8), 626–640. https://doi.org/10.1038/nrn1722spa
dc.relation.referencesWang, W., Jiang, Z., Hu, C., Chen, C., Hu, Z., Wang, A., Wang, L., & Liu, J. (2020). Pharmacologically inhibiting phosphoglycerate kinase 1 for glioma with NG52. Acta Pharmacologica Sinica, July. https://doi.org/10.1038/s41401-020-0465-8spa
dc.relation.referencesWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics in Western Equatoria State. Nature Reviews Genetics, 10(1), 57.spa
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., Beer, T. A. P. De, Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL : homology modelling of protein structures and complexes. May, 1–8. https://doi.org/10.1093/nar/gky427spa
dc.relation.referencesWong, K. L., Wu, Y. R., Cheng, K. S., Chan, P., Cheung, C. W., Lu, D. Y., Su, T. H., Liu, Z. M., & Leung, Y. M. (2014a). Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacological Reports, 66(6), 1106–1113. https://doi.org/10.1016/j.pharep.2014.07.009spa
dc.relation.referencesWong, K. L., Wu, Y. R., Cheng, K. S., Chan, P., Cheung, C. W., Lu, D. Y., Su, T. H., Liu, Z. M., & Leung, Y. M. (2014b). Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacological Reports, 66(6), 1106–1113. https://doi.org/10.1016/j.pharep.2014.07.009spa
dc.relation.referencesWörheide, M. A., Krumsiek, J., Kastenmüller, G., & Arnold, M. (2021). Multi-omics integration in biomedical research – A metabolomics-centric review. Analytica Chimica Acta, 1141, 144–162. https://doi.org/10.1016/j.aca.2020.10.038spa
dc.relation.referencesWu, Z., Li, W., Liu, G., & Tang, Y. (2018). Network-Based Methods for Prediction of Drug-Target Interactions. 9(October), 1–14. https://doi.org/10.3389/fphar.2018.01134spa
dc.relation.referencesWuchty, S. (2019). Controllability of molecular pathways. BioRxiv, 560375. https://doi.org/10.1101/560375spa
dc.relation.referencesXia, C., Fu, Z., Battaile, K. P., & Kim, J. P. (2019). Crystal structure of human mitochondrial trifunctional protein , a fatty acid β -oxidation metabolon. 116(13), 6069–6074. https://doi.org/10.1073/pnas.1816317116spa
dc.relation.referencesXiao, Q., Yan, P., Ma, X., Liu, H., Perez, R., Zhu, A., Gonzales, E., Burchett, J. M., Schuler, D. R., Cirrito, J. R., Diwan, A., & Lee, J. M. (2014). Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. Journal of Neuroscience, 34(29), 9607–9620. https://doi.org/10.1523/JNEUROSCI.3788-13.2014spa
dc.relation.referencesXu, Y., Wang, S., Hu, Q., Gao, S., Ma, X., Zhang, W., Shen, Y., Chen, F., Lai, L., Pei, J., & Cavpharmer, C. (2018). CavityPlus : a web server for protein cavity detection with pharmacophore modelling , allosteric site identification and covalent ligand binding ability prediction. 46(May), 374–379. https://doi.org/10.1093/nar/gky380spa
dc.relation.referencesYang, M., & Vousden, K. H. (2016). Serine and one-carbon metabolism in cancer. Nature Reviews Cancer, 16(10), 650–662. https://doi.org/10.1038/nrc.2016.81spa
dc.relation.referencesYang, S. Y., He, X. Y., & Schulz, H. (1987). Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. The Journal of Biological Chemistry, 262(27), 13027–13032. https://doi.org/10.1016/s0021-9258(18)45161-7spa
dc.relation.referencesYin, K. (2015). Positive correlation between expression level of mitochondrial serine hydroxymethyltransferase and breast cancer grade. OncoTargets and Therapy, 8, 1069–1074. https://doi.org/10.2147/OTT.S82433spa
dc.relation.referencesYing, L., Tippetts, T. S., & Chaurasia, B. (2019). Ceramide dependent lipotoxicity in metabolic diseases. Nutrition and Healthy Aging, 5(1), 1–12. https://doi.org/10.3233/NHA-170032spa
dc.relation.referencesYoung, F. B., Butland, S. L., Sanders, S. S., Sutton, L. M., & Hayden, M. R. (2012). Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Progress in Neurobiology, 97(2), 220–238. https://doi.org/10.1016/j.pneurobio.2011.11.002spa
dc.relation.referencesYousofshahi, M., Ullah, E., Stern, R., & Hassoun, S. (2013). MC3: A steady-state model and constraint consistency checker for biochemical networks. BMC Systems Biology, 7. https://doi.org/10.1186/1752-0509-7-129spa
dc.relation.referencesYu, J., Zhou, Y., Tanaka, I., & Yao, M. (2010). Roll : a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. 26(1), 46–52. https://doi.org/10.1093/bioinformatics/btp599spa
dc.relation.referencesYuan, Z., Zhao, C., Di, Z., Wang, W. X., & Lai, Y. C. (2013). Exact controllability of complex networks. Nature Communications, 4. https://doi.org/10.1038/ncomms3447spa
dc.relation.referencesZahra, W., Rai, S. N., Birla, H., Singh, S. Sen, Rathore, A. S., Dilnashin, H., Keswani, C., & Singh, S. P. (2019). Economic importance of medicinal plants in Asian countries. In Bioeconomy for Sustainable Development. https://doi.org/10.1007/978-981-13-9431-7_19spa
dc.relation.referencesZhang, H., Muramatsu, T., Murase, A., Yuasa, S., Uchimura, K., & Kadomatsu, K. (2006). N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology, 16(8), 702–710. https://doi.org/10.1093/glycob/cwj115spa
dc.relation.referencesZhang, H., Uchimura, K., & Kadomatsu, K. (2006). Brain keratan sulfate and glial scar formation. Annals of the New York Academy of Sciences, 1086, 81–90. https://doi.org/10.1196/annals.1377.014spa
dc.relation.referencesZhang, N., Qi, M., Gao, X., Zhao, L., Liu, J., Gu, C., Song, W., Steven, C., Sun, L., & Qi, D. (2016). Response of the hepatic transcriptome to a fl atoxin B 1 in ducklings. 111, 69–76. https://doi.org/10.1016/j.toxicon.2015.12.022spa
dc.relation.referencesZierer, J., Pallister, T., Tsai, P. C., Krumsiek, J., Bell, J. T., Lauc, G., Spector, T. D., Menni, C., & Kastenmüller, G. (2016). Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. Scientific Reports, 6(October), 1–10. https://doi.org/10.1038/srep37646spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.lembNeurogliaspa
dc.subject.lembCélulasspa
dc.subject.lembCellseng
dc.subject.proposalAstrocitosspa
dc.subject.proposalIntegración de datosspa
dc.subject.proposalÁcido palmíticospa
dc.subject.proposalModelo computacionalspa
dc.subject.proposalMulti-ómicospa
dc.subject.proposalTeoría de controlspa
dc.subject.proposalCavidades farmacológicasspa
dc.subject.proposalAstrocyteseng
dc.subject.proposalData integrationeng
dc.subject.proposalPalmitic acideng
dc.subject.proposalComputational modeleng
dc.subject.proposalMulti-omicseng
dc.subject.proposalControl theoryeng
dc.subject.proposalDrugable cavitieseng
dc.titleIdentificación de reacciones controladoras en un modelo computacional multi­-ómico astrocitario de lipotoxicidad inducida por ácido palmíticospa
dc.title.translatedIdentification of controlling reactions in a astrocytic multi-omics computational model of palmitic acid-induced lipotoxicityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleIdentificación de reacciones controladoras en un modelo computacional multi­ómico astrocitario de lipotoxicidad inducida por ácido palmíticospa
oaire.fundernameMincienciasspa
oaire.fundernamePontificia Universidad Javeriana- Sede Bogotáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075676303.2022.pdf
Tamaño:
3.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: