Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta

dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorMurillo Rincon, Jairo Alberto
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2022-03-10T17:38:37Z
dc.date.available2022-03-10T17:38:37Z
dc.date.issued2021
dc.descriptionilustraciones, graficas
dc.description.abstractEn esta tesis se estudia el uso la técnica de control activo tipo chorro sintético en un chorro circular turbulento con Reynolds de 11e10^3 y Mach 0.1 usando simulaciones numéricas. Para determinar el efecto de aplicar la técnica de control se calcularon diferentes estadísticas turbulentas y la respuesta acústica del flujo en el campo lejano. Se utilizó la estrategia de simulación de efectos turbulentos UDNS (Under-resolved Direct Numerical Simulation) y posteriormente usando la analogía acústica de FWH (Ffowcs-Williams and Hawkings) se determinó la respuesta acústica en el campo lejano. Se realizaron simulaciones utilizando diferentes valores de operación del chorro sintético y se compararon con el caso canónico del chorro turbulento. Desde el punto de vista de la modulación de la turbulencia, se observó que dependiendo de los parámetros de operación del chorro sintético se puede incentivar la aparición de inestabilidades cerca de la boquilla, que aceleran el proceso de producción y disipación de la energía cinética turbulenta, u obtener una respuesta similar al caso canónico. Sin embargo, desde el punto de vista de la respuesta acústica en el campo lejano, se observó la aparición de un tono puro en los espectros de ruido con una frecuencia de 0.5 la frecuencia de oscilación del chorro sintético, el cual varia su amplitud para diferentes ángulos de medición. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis we study the use of the synthetic jet active control technique in a turbulent round jet with Reynolds of 11e10^3 and Mach 0.1 using numerical simulations. To determine the effect of applying the control technique different turbulent statistics and the acoustic response of the far-field were calculated. The UDNS (Under-resolved Direct Numerical Simulation)turbulent effects simulation strategy was used and then using the FWH (Ffowcs-Williams and Hawkings) acoustic analogy, the far-field acoustic response was determined. Simulations were performed using different operating values of the synthetic jet and compared with the canonical case of the turbulent jet. From the point of view of turbulence modulation, it was observed that depending on the operating parameters of the synthetic jet, instabilities near the nozzle, which accelerate the process of production and dissipation of turbulent kinetic energy, can be encouraged or a similar response to the canonical case can be obtained. However, from the point of view of the acoustic response in the far field, a pure tone was observed in the noise spectra with a frequency of 0.5 the oscillation frequency of the synthetic jet, which varies in amplitude for different measurement angles.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaDinámica de fluidos computacional y Aeroacusticaspa
dc.format.extentxv, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81180
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesBall, C., Fellouah, H., and Pollard, A. (2012). The flow field in turbulent round free jets. Progress in Aerospace Sciences, 50:1–26.spa
dc.relation.referencesBogey, C., Marsden, O., and Bailly, C. (2012). Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based reynolds number of 10 (5). Journal of Fluid Mechanics, 701:352–385.spa
dc.relation.referencesBonelli, F., Viggiano, A., and Magi, V. (2021). High-speed turbulent gas jets: an les inves- tigation of mach and reynolds number effects on the velocity decay and spreading rate. Flow, Turbulence and Combustion, pages 1–32.spa
dc.relation.referencesBosshard, C., Deville, M. O., Dehbi, A., Leriche, E., et al. (2015). Udns or les, that is the question. Open Journal of Fluid Dynamics, 5(04):339.spa
dc.relation.referencesBrès, G., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A., Towne, A., Lele, S., Colonius, T., and Schmidt, O. (2018). Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. Journal of Fluid Mechanics, 851:83–124.spa
dc.relation.referencesCaeti, R. B. and Kalkhoran, I. M. (2014). Jet noise reduction via fluidic injection. AIAA journal, 52(1):26–32.spa
dc.relation.referencesCallender, B., Gutmark, E., and Martens, S. (2007). A comprehensive study of fluidic injection technology for jet noise reduction. In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), page 3608.spa
dc.relation.referencesCamussi, R. (2013). Noise sources in turbulent shear flows: fundamentals and applications, volume 545. Springer Science & Business Media.spa
dc.relation.referencesCasalino, D., Diozzi, F., Sannino, R., and Paonessa, A. (2008). Aircraft noise reduction technologies: a bibliographic review. Aerospace Science and Technology, 12(1):1–17.spa
dc.relation.referencesCianferra, M. (2018). Acoustic analogies and large-eddy simulations of incompressible and cavitating flows around bluff bodies.spa
dc.relation.referencesColonius, T., Sinha, A., Rodrı́guez, D., Towne, A., Liu, J., Brès, G., Appelö, D., and Hags- trom, T. (2015). Simulation and modeling of turbulent jet noise. In Direct and Large-Eddy Simulation IX, pages 305–310. Springer.spa
dc.relation.referencesCurle, N. (1955). The influence of solid boundaries upon aerodynamic sound. Procee- dings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1187):505–514.spa
dc.relation.referencesDhamankar, N. S., Blaisdell, G. A., and Lyrintzis, A. S. (2016). Analysis of turbulent jet flow and associated noise with round and chevron nozzles using large eddy simulation. In 22nd AIAA/CEAS aeroacoustics conference, page 3045.spa
dc.relation.referencesEpikhin, A., Evdokimov, I., Kraposhin, M., Kalugin, M., and Strijhak, S. (2015). Develop- ment of a dynamic library for computational aeroacoustics applications using the openfoam open source package. Procedia Computer Science, 66:150–157. 4th International Young Scientist Conference on Computational Science.spa
dc.relation.referencesFfowcs Williams, J. E. and Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151):321–342.spa
dc.relation.referencesGerges, S., Sehrndt, G., and Parthey, W. (2001). 5 noise sources. Occupational Exposure to Noise.spa
dc.relation.referencesGeuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331.spa
dc.relation.referencesGlegg, S. and Devenport, W. (2017). Aeroacoustics of low Mach number flows: fundamentals, analysis, and measurement. Academic Press.spa
dc.relation.referencesHenderson, B. (2010). Fifty years of fluidic injection for jet noise reduction. International Journal of Aeroacoustics, 9(1-2):91–122.spa
dc.relation.referencesHowe, M. S. and Howe, M. S. (1998). Acoustics of fluid-structure interactions. Cambridge university press.spa
dc.relation.referencesHussein, H. J., Capp, S. P., George, W. K., et al. (1994). Velocity measurements in a high- reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258(1):31–75.spa
dc.relation.referencesJawahar, H. K., Markesteijn, A. P., Karabasov, S. A., and Azarpeyvand, M. (2021). Effects of Chevrons on Jet-installation Noise.spa
dc.relation.referencesJordan, E. L. P., Delville, J., and Bonnet, J.-P. (2008). Source-mechanism identification by nearfield-farfield pressure correlations in subsonic jets. International Journal of Aero- acoustics, 7(1):41–68.spa
dc.relation.referencesKaltenbacher, M., Escobar, M., Becker, S., and Ali, I. (2008). Computational aeroacoustics based on lighthill’s acoustic analogy. In Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods, pages 115–142. Springer.spa
dc.relation.referencesKomen, E., Shams, A., Camilo, L., and Koren, B. (2014). Quasi-dns capabilities of openfoam for different mesh types. Computers & Fluids, 96:87–104.spa
dc.relation.referencesKramer, C., Gerhardt, H., and Knoch, M. (1984). Applications of jet flows in industrial flow circuits. Journal of Wind Engineering and Industrial Aerodynamics, 16(2-3):173–188.spa
dc.relation.referencesKurbjun, M. C. (1958). Limited Investigation of Noise Suppression by Injection of Water Into Exaust of Afterburning Jet Engine, volume 40. National Advisory Committee for Aeronautics.spa
dc.relation.referencesLighthill, M. J. (1952). On sound generated aerodynamically i. general theory. Procee- dings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211(1107):564–587.spa
dc.relation.referencesLubert, C. P. (2017). Sixty years of launch vehicle acoustics. In Proceedings of Meetings on Acoustics 174ASA, volume 31, page 040004. Acoustical Society of America.spa
dc.relation.referencesManneville, P. and Rolland, J. (2011). On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane couette flow. Theoretical and Computational Fluid Dynamics, 25(6):407–420.spa
dc.relation.referencesMendez, S., Shoeybi, M., Lele, S., and Moin, P. (2013). On the use of the ffowcs williams- hawkings equation to predict far-field jet noise from large-eddy simulations. International Journal of Aeroacoustics, 12(1-2):1–20.spa
dc.relation.referencesMichael, L. G. (1961). Jet noise suppression means. US Patent 2,990,905.spa
dc.relation.referencesMoura, R. C., Sherwin, S. J., and Peiró, J. (2015). Linear dispersion–diffusion analysis and its application to under-resolved turbulence simulations using discontinuous galerkin spectral/hp methods. Journal of Computational Physics, 298:695–710.spa
dc.relation.referencesNikam, S. and Sharma, S. (2021). Mach number effect on aeroacoustic characteristics of compressible jet due to chevron. In Design and Development of Aerospace Vehicles and Propulsion Systems: Proceedings of SAROD 2018, pages 1–13. Springer Singapore.spa
dc.relation.referencesPanchapakesan, N. R. and Lumley, J. L. (1993). Turbulence measurements in axisymmetric jets of air and helium. part 1. air jet. Journal of Fluid Mechanics, 246:197–223.spa
dc.relation.referencesPope, S. B. (2001). Turbulent flows.spa
dc.relation.referencesPowell, A. (1954). The influence of the exit velocity profile on the noise of a jet. The Aeronautical Quarterly, 4(4):341–360.spa
dc.relation.referencesPrasad, C. and Morris, P. J. (2020). A study of noise reduction mechanisms of jets with fluid inserts. Journal of Sound and Vibration, 476:115331.spa
dc.relation.referencesRajput, P. and Kumar, S. (2019). Use of downstream fluid injection to reduce subsonic jet noise. International Journal of Aeroacoustics, 18(4-5):554–574.spa
dc.relation.referencesSadeghian, M. and Bandpy, M. (2020). Technologies for aircraft noise reduction: Review paper. J Aeronaut Aerospace Eng, 9:218.spa
dc.relation.referencesSautet, J. and Stepowski, D. (1995). Dynamic behavior of variable-density, turbulent jets in their near development fields. Physics of Fluids, 7(11):2796–2806.spa
dc.relation.referencesSheen, S.-C. and Hsiao, Y.-H. (2007). On using multiple-jet nozzles to suppress industrial jet noise. Journal of occupational and environmental hygiene, 4(9):669–677.spa
dc.relation.referencesShin, D.-H., Aparece-Scutariu, V., and Richardson, E. (2017). High fidelity simulation of turbulent jet and identification of acoustic sources. , (2017 03):1–9.spa
dc.relation.referencesStich, G.-D., Housman, J. A., Ghate, A. S., and Kiris, C. C. (2021). Jet noise prediction with large-eddy simulation for chevron nozzle flows. In AIAA Scitech 2021 Forum, page 1185.spa
dc.relation.referencesTam, C., Golebiowski, M., and Seiner, J. (1996). On the two components of turbulent mixing noise from supersonic jets. In Aeroacoustics conference, page 1716.spa
dc.relation.referencesTodde, V., Spazzini, P. G., and Sandberg, M. (2009). Experimental analysis of low-reynolds number free jets. Experiments in fluids, 47(2):279–294.spa
dc.relation.referencesUtzmann, J., Munz, C.-D., Dumbser, M., Sonnendrücker, E., Salmon, S., Jund, S., and Frénod, E. (2009). Fluid-acoustic coupling and wave propagation. In Numerical Simulation of Turbulent Flows and Noise Generation, pages 47–74. Springer.spa
dc.relation.referencesViswanathan, K. (2004). Aeroacoustics of hot jets. In 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, page 2481.spa
dc.relation.referencesViswanathan, K. (2008). Investigation of noise source mechanisms in subsonic jets. AIAA journal, 46(8):2020–2032.spa
dc.relation.referencesWHO et al. (2018). Environmental noise guidelines for the european region.spa
dc.relation.referencesYenigelen, E. and Morris, P. J. (2020). Numerical investigation of a noise reduction strategy for rocket launch vehicles. In AIAA Aviation 2020 Forum, page 2606.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembPROPULSION A CHORROspa
dc.subject.lembCORRIENTE EN CHORROspa
dc.subject.lembJet strameng
dc.subject.proposalRuido de chorrospa
dc.subject.proposalControl de flujospa
dc.subject.proposalAeroacústicaspa
dc.subject.proposalDinamica de fluidos computacionalspa
dc.subject.proposalJet noiseeng
dc.subject.proposalFlow controleng
dc.subject.proposalAeroacousticseng
dc.subject.proposalComputational fluid dynamicseng
dc.titleEvaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulentaspa
dc.title.translatedEvaluation of synthetic jet flow control technique for modulating turbulent jet noiseeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032470804.2021.pdf
Tamaño:
18.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: