En 6 día(s), 21 hora(s) y 44 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Mezclas eficientes de mineral de hierro destinado a la corrección química del cemento a partir de pilas longitudinales tipo Chevron

dc.contributor.advisorJaramillo-Álvarez, Gloria Patriciaspa
dc.contributor.advisorFranco-Sepúlveda, Giovannispa
dc.contributor.authorRestrepo-Potes, Rodrigo Albertospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupGIPLAMINspa
dc.date.accessioned2020-06-01T22:07:51Zspa
dc.date.available2020-06-01T22:07:51Zspa
dc.date.issued2019-11-14spa
dc.description.abstractThe chemical composition of iron ore makes that this raw material is used in the cement industry as a correction agent. In addition to iron, iron ore also includes elements such as silica, aluminum, phosphorous and calcium, among others. The efficiency of an iron ore blending is a bottleneck for blast furnace performance quality indices, hence the need to understand the behavior chemical components of this mineral to support blending planning in an operation mining, with the purpose of maintain a stable process in cement plants. Statistical and mathematical tools, such as Linear Regression and Geostatistical Simulation, are often used to analyze the variance and quality of the iron ore blending. Goal Programming, Genetic Algorithms and Multi-Objective Stochastic Programming are used commonly to minimize the standard deviation of each of the chemical components in a blending. Although these tools establish the quality of the blending, they do not relate and optimize the mining sequence, the storage system and the distribution of mineral resources to form an efficient and satisfactory blending for the decision-maker. The proper identification of the resulting chemical composition in the iron ore blending can be accomplished by applying decision analysis strategies such as Operations Research. The current thesis proposes the development of a Mixed Integer Programming Model to analyze the iron ore blending to chemical correction of cement. The analyzed material come from Chevron piles from different mining fronts and different Fe2O3 content. Mixed Integer Programming correlates parameters, restrictions of the mining blocks, work fronts, storage system and iron ore demand under a timing-planning scheme. The model also designs the sequence of extraction of mineral blocks contained in different mining fronts, structures a system that allows to punish or financially reward the resulting blending according to the content of SiO2 and Al2O3; and it establishes hypothetical scenarios that allow make the best decision, in financial terms, according to the chemical composition of the blending. The objective function of the model maximizes the income of the operation from the demand in a time horizon, according to the quality specifications requested by the client. Finally, the model was optimized in the AIMMS software and the respective results were analyzed. As a main conclusion, it is had that, in some cases, the mining sequence produced unintuitive decisions for the decision maker, but decisive for the maximization of the benefits of the mining activity, such as the mining of blocks partially in different periods; decisions that in reality and in a discretionary way, are difficult to foresee.spa
dc.description.abstractLa composición química del mineral de hierro hace que esta materia prima sea empleada en la industria del cemento como agente corrector. Sus componentes están dados no solo por el hierro, sino por otros elementos como la sílice, el aluminio, el fósforo y el calcio, entre otros. La eficiencia de una mezcla de mineral de hierro es un cuello de botella para los índices de calidad en el rendimiento del alto horno, por lo que es necesario comprender el comportamiento de los componentes químicos de este mineral para apoyar la planificación de las mezclas en una operación minera, con el fin de mantener un proceso estable en las plantas cementeras. Para el análisis de mezclas de mineral de hierro se usan con regularidad herramientas estadísticas y matemáticas, como la Regresión Lineal y la Simulación Geoestadística para relacionar las variables y medir la varianza de las calidades resultantes. Con frecuencia se utiliza la Programación por Metas, los Algoritmos Genéticos y la Programación Estocástica Multiobjetivo para minimizar la desviación estándar de cada uno de los componentes químicos en una mezcla de mineral. Si bien estas herramientas establecen la calidad de las mezclas, no relacionan y optimizan la secuencia de explotación, el sistema de almacenamiento y la distribución de recursos minerales para conformar mezclas eficientes y satisfactorias para el decisor. La adecuada identificación de la composición química resultante en este tipo de mezclas, puede llevarse a cabo con herramientas para el análisis de decisiones como la Investigación de Operaciones, razón por la cual esta tesis planteó como desafío el desarrollo de un modelo basado en Programación Entera Mixta para analizar mezclas de mineral de hierro destinado a la corrección química del cemento, a partir de pilas longitudinales tipo Chevron, creadas con mineral proveniente de diferentes frentes de explotación y clasificadas según el contenido de Fe2O3. El modelo de Programación Entera Mixta relaciona parámetros, variables y restricciones de los bloques de explotación, los frentes de trabajo, el sistema de almacenamiento y la demanda de mineral; en un horizonte de planificación. El modelo también diseña la secuencia de extracción de bloques de mineral contenidos en diferentes frentes de explotación, estructura un sistema que permite castigar o premiar financieramente las mezclas resultantes según el contenido de SiO2 y Al2O3; y establece escenarios hipotéticos que permiten tomar la mejor decisión, en términos financieros, según la composición química de la mezcla. La función objetivo del modelo maximiza los ingresos de la operación a partir de la demanda en un horizonte de tiempo, de acuerdo a las especificaciones de calidad solicitadas por el cliente. Finalmente, el modelo fue optimizado en el software AIMMS y se analizaron los respectivos resultados. Como conclusión principal, se tiene que, en algunos casos, la secuencia de explotación arrojó decisiones poco intuitivas para el decisor, pero determinantes para la maximización de los beneficios de la actividad minera, como la explotación de bloques de forma parcial en periodos diferentes; decisiones que en la realidad y de forma discrecional, son difíciles de prever.spa
dc.description.degreelevelMaestríaspa
dc.format.extent109spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77588
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.referencesAFCP (2015). Asociación de Fabricantes de Cemento Portland - Argentina. Retrieved October 12, 2015, from www.afcp.org.ar.spa
dc.relation.referencesAlmgren, T. (1994). An approach to long range production and development planning with application to the Kiruna Mine (Sweden).spa
dc.relation.referencesAmerica’s cement manufacturers (2015). Retrieved August 30, 2015, from http://www.cement.org.spa
dc.relation.referencesAranda, J., & De la Torre, C. (1997). Control de la fabricación del cemento por fluorescencia de rayos x. In XX Congreso de Química.spa
dc.relation.referencesAsad, M. W. A. (2010). Implementing a blending optimization model for short range production planning of cement quarry operation. Journal of Mining Science, 46(5), 525–536.spa
dc.relation.referencesAstier, J. E. (2002). Main development in iron ore preparation. In The Second International Conference on the Iron Ore Industry. Kiruna - Sweden.spa
dc.relation.referencesBarbudo, S., & Yepes, C. (2014). Introducción a la fabricación y normalización del cemento portland.spa
dc.relation.referencesBastan, P., & Shreiber, K. (1973). Homogenizing ore at the Satkinsk magnesite quarries. Refractories, 14(1–2), 28–29.spa
dc.relation.referencesBenndorf, J. (2013a). Application of efficient methods of conditional simulation for optimising coal blending strategies in large continuous open pit mining operations. International Journal of Coal Geology, 112, 141–153.spa
dc.relation.referencesBenndorf, J. (2013b). Investigating in situ variability and homogenisation of key quality parameters in continuous mining operations. Mining Technology, 122(2), 78–85.spa
dc.relation.referencesBeretta, F., Costa, J., & Koppe. (2010). Reducing coal quality attributes variability using properly designed blending piles helped by geostatistical simulation. International Journal of Coal Geology, 84(2), 83–93.spa
dc.relation.referencesBi, X., Zhou, G., Xiong, W., Zhang, S., Yao, Z., Zhang, W., & Wang, G. (2003). Investigation and technological optimisation of iron ore bedding and blending process. Ironmaking and Steelmaking, 30(6), 461–466.spa
dc.relation.referencesBinkowski, M., & McCarragher, B. (1999). A queueing model for the design and analysis of a mining stockyard. Discrete Event Dynamic Systems, 9(1), 75–98.spa
dc.relation.referencesBley, A., Gleixner, A., Koch, T., & Vigerske, S. (2012). Comparing MIQCP solvers to a specialised algorithm for mine production scheduling. Modeling, Simulation and Optimization of Complex Processes, 32(October), 25–44.spa
dc.relation.referencesBond, J, Coursaux, R., & Worthington, R. (1998). Review on blending systems and control technologies for cement raw materials. In IEEE/PCA Cement Industry Technical Conference (pp. 189–209).spa
dc.relation.referencesBond, James, Coursaux, R., & Worthington, R. (2000). Blending systems and control technologies for cement raw materials. IEEE Industry Applications Magazine, (Novembre/December), 49–59.spa
dc.relation.referencesCEMEX S.A.B. de C.V. (2015). CEMEX. Retrieved October 12, 2015, from http://www.cemex.com/.spa
dc.relation.referencesChakraborty, A., & Chakraborty, M. (2012). Multi criteria genetic algorithm for optimal blending of coal. Opsearch, 49(4), 386–399.spa
dc.relation.referencesChang, P.-K. (2004). An approach to optimizing mix design for properties of high performance concrete. Cement and Concrete Research, 34(4), 623–629.spa
dc.relation.referencesCook, R., & Cowley, R. (1997). Knowledge based ore control systems for associated manganese mines in south africa. In Society for Mining, Metallurgy and Exploration.spa
dc.relation.referencesDagdelen, K. (1986). Optimum multi period open pit mine production scheduling. Dissertation Abstracts International Part B: Science and Engineering, 47(2).spa
dc.relation.referencesDagdelen, K., & Asad, M. (2002). Optimum cement quarry scheduling algorithm. In APCOM 2002: 30 th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (pp. 697–709).spa
dc.relation.referencesDagdelen, K., Kuchta, M., & Topal, E. (2002). Linear integer programming model applied to scheduling of iron ore production at the Kiruna Mine (Kiruna - Sweden).spa
dc.relation.referencesDonskoi, E. (2007). Mathematical modeling and optimization of iron ore sinter properties. Israel Journal of Chemistry, 47, 373–379.spa
dc.relation.referencesDuda, W. (1977). Manual tecnológico del cemento. (E. T. Asociados, Ed.) (26th ed.). Barcelona.spa
dc.relation.referencesEverett, J. (1996). Iron ore handling procedures enhance export quality. Interfaces, 26(6), 82–94.spa
dc.relation.referencesEverett, J. (2001). Iron ore production scheduling to improve product quality. European Journal of Operational Research, 129, 355–361.spa
dc.relation.referencesEverett, J. E., Howard, T. J., & Jupp, K. (2010). Simulation modelling of grade variability for iron ore mining, crushing, stockpiling and ship loading operations. Mining Technology, 119(1), 22–30.spa
dc.relation.referencesEverett, J., & Ziegelaar, B. (2011). Estimating sampling and analytical errors of multiple source mine output blended into shipping product. Mining Technology, 120(1), 14–17.spa
dc.relation.referencesFan, X., Huang, X., Chen, X., & Min, G. (2014). Optimization system of iron ores proportion for sintering process. In 5th International Symposium on High Temperature Metallurgical Processing (p. 475).spa
dc.relation.referencesGerstel, A., & Werner, J. (1996). Computer simulation program for blending piles. Bulk Solids Handling, 16(1), 49–58.spa
dc.relation.referencesGholamnejad, J., & Kasmaee, S. (2012). Optimum blending of iron ore from choghart stockpiles by using goal programming. Journal of Central South University, 19(4), 1081–1085.spa
dc.relation.referencesGy, P. M. (1981). A new theory of bed blending derived from the theory of sampling. Development and full scale experimental check. International Journal of Mineral Processing, 8(3), 201–238.spa
dc.relation.referencesHengyuan International Engineering Group. (2012). Scientific research and development - Hengyuan Cement Equipments. Retrieved November 4, 2015, from http://www.hengyuangroup.com.spa
dc.relation.referencesHolcim S.A. (2015). Holcim Colombia. Retrieved October 12, 2015, from http://www.holcim.com.co/.spa
dc.relation.referencesHoward, T., Carson, M., & Everett, J. (2005). Simulation modeling of iron ore product quality for process and infrastructure development. International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making.spa
dc.relation.referencesHuang, S., Li, G., Ben-Awuah, E., Afum, B. O., & Hu, N. (2019). A robust mixed integer linear programming framework for underground cut-and-fill mining production scheduling. International Journal of Mining, Reclamation and Environment, 1–18. https://doi.org/10.1080/17480930.2019.1576576.spa
dc.relation.referencesJi, T., Lin, T., & Lin, X. (2006). A concrete mix proportion design algorithm based on artificial neural networks. Cement and Concrete Research, 36(7), 1399–1408.spa
dc.relation.referencesJupp, K., Howard, T., & Everett, J. (2013). Role of pre-crusher stockpiling for grade control in iron ore mining. Applied Earth Science, 122(4), 242–255.spa
dc.relation.referencesKawahata, K., Schumacher, P., & Criss, K. (2016). Large-scale mine production scheduling optimisation with mill blending constraints at Newmont’s Twin Creeks Operation. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 125(4), 249–253. https://doi.org/10.1080/14749009.2016.1212510.spa
dc.relation.referencesKizilaslan, K., Ertugrul, S., Kural, A., & Ozsoy, C. (2003). A comparative study on modeling of a raw materials blending process in cement industry using conventional and intelligent technicques. In IEEE Conference on Control Applications (pp. 736–741).spa
dc.relation.referencesKlaus, M. (2010). Stacking, reclaiming and blending effects. Materials Handling and Logistics, 65(Noviembre), 17.spa
dc.relation.referencesKuchta, M., Newman, A., & Topal, E. (2002). Production scheduling at Lkab´s Kiruna mine using mixed integer programming. SME Annual Meeting, Feb, 1–4.spa
dc.relation.referencesKumral, M. (2003). Application of chance constrained programming based on multiobjective simulated annealing to solve a mineral blending problem. Engineering Optimization, 35(6), 661–673.spa
dc.relation.referencesKumral, M. (2005). Quadratic programming for the multivariable pre homogenization and blending problem. The Journal of the South African Institute of Mining and Metallurgy, 105(Mayo/Junio), 317–322.spa
dc.relation.referencesKumral, M. (2006). Bed blending design incorporating multiple regression modelling and genetic algorithms. The Journal of the South African Institute of Mining and Metallurgy, 106(March), 229–237.spa
dc.relation.referencesKural, A., & Özsoy, C. (2004). Identification and control of the raw material blending process in cement industry. International Journal of Adaptive Control and Signal Processing, 18(5), 427–442.spa
dc.relation.referencesLabahn, O., & Kohlhaas, B. (1985). Prontuario del cemento.spa
dc.relation.referencesLi, L., & Xu, T. (2009). A fuzzy multiobjective optimization algorithm in mine ore blending. In International Joint Conference on Computacional Sciences and Optimization (pp. 773–776).spa
dc.relation.referencesLim, C., Yoon, Y., & Kim, J. (2004). Genetic algorithm in mix proportioning of high performance concrete. Cement and Concrete Research, 34(3), 409–420.spa
dc.relation.referencesLin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255–268.spa
dc.relation.referencesLin, L. I.-K. (2000). Correction: A note on the concordance correlation coefficient. Biometrics, 56(1), 324–325.spa
dc.relation.referencesLindstrom, B. (1971). Production scheduling by computer. C.I.M Special, 12, 368–378.spa
dc.relation.referencesLiu, W, & Li, F. (2014). Iron ore blending based on linear programming. Applied Mechanics and Materials, 443(1), 657–661.spa
dc.relation.referencesLiu, Wenbo, Sun, D., & Xu, T. (2019). Integrated Production and Distribution Planning for the Iron Ore Concentrate. Mathematical Problems in Engineering, 2019, 1–10. https://doi.org/10.1155/2019/7948349.spa
dc.relation.referencesLu, T.-F., & Xu, S. (2010). SPSim: A stockpile simulator for analyzing material quality distribution in mining. In International Conference on Mechatronics and Automation (pp. 299–304).spa
dc.relation.referencesLu, T., & Myo, M. (2011). Optimal stockpile voxel identification based on reclaimer minimum movement for target grade. International Journal of Mineral Processing, 98(1–2), 74–81.spa
dc.relation.referencesLuster, G. (1986). Homogenization and proportioning of mined materials: Applications of conditional simulation of coregionalization. In 19th International Symposium - Application of Computers and Operations Research (pp. 163–172).spa
dc.relation.referencesLyu, J., Gunasekaran, A., & Chen, C. (1995). A goal programming model for the cola blending problem. Computers & Industrial Engineering, 28(4), 861–868.spa
dc.relation.referencesMarques, D., & Costa, J. (2013). An algorithm to simulate ore grade variability in blending and homogenization piles. International Journal of Mineral Processing, 120, 48–55.spa
dc.relation.referencesMarques, D., & Costa, J. (2014). Analysis of the dispersion variance using geostatistical simulation and blending piles. The Journal of The Southern African Institute of Mining and Metallurgy, 114(August), 599–604.spa
dc.relation.referencesMarques, D., Costa, J., Ribeiro, D., & Koppe, J. (2009). The evidence of volume variance relationship in blending and homogenization piles using stochastic simulations. In Fourth World Conference on Sampling and Blending (pp. 235–242).spa
dc.relation.referencesMetallurgist. (2012). Your practical mineral processing testing & research infocenter. Retrieved November 4, 2015, from http://www.911metallurgist.com/.spa
dc.relation.referencesMingshun, Z. (2004). Study and practices on optimization of ores proportioning for sintering and pelletizing. Sintering and Pelletizing, Vol 4.spa
dc.relation.referencesMontiel, L., & Dimitrakopoulos, R. (2018). Simultaneous stochastic optimization of production scheduling at Twin Creeks Mining Complex, Nevada. Mining Engineering, 70(12), 48–56. Retrieved from https://doi.org/10.19150/me.8645.spa
dc.relation.referencesPavloudakis, F., & Agioutantis, Z. (2003). Simulation of bulk solids blending in longitudinal stockpiles. International Journal of Surface Mining, Reclamation and Environment, 17(2), 98–112.spa
dc.relation.referencesPendharkar, P., & Rodger, J. (2000). Nonlinear programming and genetic search application for production scheduling in coal mines. Annals of Operations Research, 95(1–4), 251–267.spa
dc.relation.referencesPetersen, I. F. (2004). Blending in circular and longitudinal mixing piles. Chemometrics and Intelligent Laboratory Systems, 74(1), 135–141.spa
dc.relation.referencesReimer, H., & Wilke, F. (1977). Optimizing the short term production schedule for an open pit iron ore mining operation. In 15th APCOM Symposium (Brisbane - Australia) (pp. 425–433).spa
dc.relation.referencesRobinson, G. (2004). How much would a blending stockpile reduce variation? Chemometrics and Intelligent Laboratory Systems, 74(1), 121–133.spa
dc.relation.referencesRobinson, G., & Ross, K. (1991). Blending in the Ends of Chevron Stockpiles. Bulk Solids Handling.spa
dc.relation.referencesSchofield, C. (1983). Homogenization/blending systems design and control for minerals processing.spa
dc.relation.referencesSerra, J., Huijbregets, C., & Ivanier, L. (1975). Laws of linear homogenization in ore stockyards. In International Mineral Processing Congress (pp. 263–291).spa
dc.relation.referencesSherali, H., & Puri, R. (1993). Models for a coal blending and distribution problem. Omega, 21(2), 235–243.spa
dc.relation.referencesSong, C., Hu, K., & Li, P. (2012). Modeling and scheduling optimization for bulk ore blending process. Journal of Iron and Steel Research, International, 19(9), 20–28.spa
dc.relation.referencesSu, B., Zhang, J., & Chang, J. (2011). Sintering characteristics of iron ores and experiment study on optimizing ore blending. Iron and Steel, 46(9), 22–28.spa
dc.relation.referencesSu, N., & Chai, H. (2001). A simple mix design method for self-compacting concrete. Cement and Concrete Research, 31(12), 1799–1807.spa
dc.relation.referencesTaylor, P., Chanda, E. K. C., & Dagdelen, K. (2007). Optimal blending of mine production using goal programming and interactive graphics systems. International Journal of Surface Mining, Reclamation and Environment, 9(4), 37–41.spa
dc.relation.referencesTobón, J., & Montoya, L. (2006). Análisis comparativo entre algunas materias primas minerales nacionales e importadas utilizadas en la industria del cemento. Boletín Ciecias de La Tierra, 19, 55–72.spa
dc.relation.referencesTopal, E. (1999). Long and short term production scheduling of Kiruna iron ore mine (Sweden).spa
dc.relation.referencesWan, Z., Teo, K. L., Kong, L., & Yang, C. (2009). A class of mix design problems: Formulation, solution methods and applications. ANZIAM, 50(4), 455.spa
dc.relation.referencesWang, D. (2005). Application of linear programming in production of mixing materials to sinter. China Metallurgy, 15(8), 19–22.spa
dc.relation.referencesWang, Y., Ma, J., Gui, W., Yang, C., & Zhang, C. (2006). Multiobjective intelligent coordinating optimization blending system based on qualitative and quantitative synthetic model. Journal of Central South University of Technology, 13(5), 552–557.spa
dc.relation.referencesWhite, J., Olson, J., & Vohnout, S. (1992). On improving truck/shovel productivity in open pit mines. In 23rd International Symposium 1992 - Application of Computers and Operations Research (p. 8).spa
dc.relation.referencesWinkler, B., & Griffin, P. (1998). Mine production scheduling with linear programming development of a practical tool. In In Computer Applications in the Minerals Industries. International Symposium (pp. 673–679).spa
dc.relation.referencesWu, M., Chen, X., Cao, W., She, J., & Wang, C. (2014). An intelligent integrated optimization system for the proportioning of iron ore in a sintering process. Journal of Process Control, 24(1), 182–202.spa
dc.relation.referencesWu, S., Oliveira, D., Dai, Y., & Xu, J. (2012). Ore blending optimization model for sintering process based on characteristics of iron ores. International Journal of Minerals, Metallurgy and Materials, 19(3), 217–224.spa
dc.relation.referencesXirokostas, D. A., & Zoppas, C. E. (1977). Mathematical programming approach to the problem of cement blending optimization. Cement and Concrete Research, 7, 503–514.spa
dc.relation.referencesYan, B., Zhang, J., Guo, H., Chen, L., & Li, W. (2014). High temperature performance prediction of iron ore fines and the ore blending programming problem in sintering. International Journal of Minerals, Metallurgy and Materials, 21(8), 741–747.spa
dc.relation.referencesYin, C., Luo, Z., Zhou, J., & Cen, K. (2000). A novel non linear programming based coal blending technology por power plants. Chemical Engineering Research and Design, 78(1), 118–124.spa
dc.relation.referencesZain, M., Islam, M., & Basri, I. (2005). An expert system for mix design of high performance concrete. Advances in Engineering Software, 36(5), 325–337.spa
dc.relation.referencesZhang, J., Hu, Z., Zuo, H., Liu, Z., Zhao, Z., & Yang, T. (2014). Ore blending ratio optimization for sintering based on iron ore properties and cost. Ironmaking and Steelmaking, 41(4), 279–285.spa
dc.relation.referencesZhao, S., & Lu, T. (2013). Dynamic modelling of 3D stockpile for life-cycle management through sparse range point clouds. International Journal of Mineral Processing, 125, 61–77.spa
dc.relation.referencesZhukovskii, N., & Kazanskii, K. (1972). A method of calculation for multicomponent ore blending. Journal of Mining Science, 8(1), 69-72.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.proposalOre blendingeng
dc.subject.proposalMezclas de mineralspa
dc.subject.proposalPilas Chevronspa
dc.subject.proposalChevron pileseng
dc.subject.proposalCement correctioneng
dc.subject.proposalCorrección del cementospa
dc.subject.proposalIron oreeng
dc.subject.proposalMineral de hierrospa
dc.subject.proposalBlending planningeng
dc.subject.proposalPlanificación de mezclasspa
dc.titleMezclas eficientes de mineral de hierro destinado a la corrección química del cemento a partir de pilas longitudinales tipo Chevronspa
dc.title.alternativeIron ore efficient blending for chemical correction of cement based on Chevron pilesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_dc82b40f9837b551spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71266036.2019.pdf
Tamaño:
5.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: