Modelo matemático para la toma de decisiones con respecto a inversiones sostenibles

dc.contributor.advisorOlivat Tost, Gerard
dc.contributor.advisorPeña, Carlos
dc.contributor.advisorAngulo García, Fabiola
dc.contributor.authorCholo Camargo, Ingrid Milena
dc.contributor.researchgroupPercepción y Control Inteligente (Pci)
dc.date.accessioned2025-09-09T13:34:47Z
dc.date.available2025-09-09T13:34:47Z
dc.date.issued2025
dc.descriptiongraficasspa
dc.description.abstractLo ideal en cualquier sociedad es poder tener una buena calidad de vida, usar los recursos de manera adecuada sin dañar el medio ambiente y asegurar que estos recursos sean suficientes para las futuras generaciones. Una herramienta muy útil que ayuda a modelar este tipo de situaciones para entender su dinámica, es el modelo matemático. Por ello, se propone un modelo matemático que estudie la interacción entre el hombre y los recursos naturales, con el objetivo de optimizar la gestión sostenible de los recursos naturales y el crecimiento poblacional, ya que, una adecuada administración del recurso reduce el riesgo de su desaparición. Se considera una población aislada con parámetros constante para simplificar el análisis. Se usan técnicas de análisis de estabilidad, bifurcaciones, teoría de viabilidad y control óptimo para identificar condiciones iniciales bajo las cuales se puede lograr un equilibrio sostenible. Además, conociendo la condición inicial del sistema y un umbral mínimo de personas, se han encontrado umbrales sostenibles del bosque que pueden mantenerse. También se ha identificado el umbral máximo sostenible del bosque y la manera de mantenerlo. Se ha demostrado que, si se cuenta con una reserva mínima de bosque y/o una actividad económica adicional, la utilidad máxima será mayor. Los hallazgos sirven como base para diseñar políticas públicas que promuevan el uso sostenible de los recursos en sectores como la agricultura, la pesca y la silvicultura, promoviendo la regeneración de los recursos y el bienestar de las comunidades (Texto tomado de la fuente)spa
dc.description.abstractThe ideal scenario in any society is to ensure a good quality of life, use resources efficiently without harming the environment, and guarantee their availability for future generations. A powerful tool for modeling such situations and understanding their dynamics is the mathematical model. Therefore, this work proposes a mathematical model that studies the interaction between humans and natural resources, with the objective of optimizing the sustainable management of natural resources and population growth, as proper resource management reduces the risk of depletion. The model considers an isolated population with constant parameters to simplify the analysis. Stability analysis, bifurcation theory, viability theory, and optimal control techniques are used to identify initial conditions under which a sustainable equilibrium can be achieved. Additionally, by knowing the system’s initial condition and a minimum population threshold, sustainable forest thresholds that can be maintained have been determined. The maximum sustainable forest threshold and the strategies to preserve it have also been identified. It has been demonstrated that having a minimum forest reserve and/or an additional economic activity leads to higher maximum utility. The findings serve as a basis for designing public policies that promote the sustainable use of resources in sectors such as agriculture, fisheries, and forestry, fostering resource regeneration and the well-being of communitieseng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaSistemas Dinámicos, Desarrollo Sostenible
dc.format.extent119 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88661
dc.language.isospa
dc.publisherUniversida Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.relation.referencesAlex Altamirano Fernández, Alejandro Rojas-Palma y Sergio Espinoza. ((Existence of solutions for an optimal control problem in forestry management)). En: vol. 2515. Mayo de 2023, pág. 012001. doi: 10.1088/1742-6596/2515/1/012001
dc.relation.referencesJorge Amador y col. Cooperation-Based Modeling of Sustainable Development: An Approach from Filippov’s Systems. En: Complexity 2021 (sep. de 2021), págs. 1-16. doi: 10.1155/2021/4249106.
dc.relation.referencesEric Angel y col. An indicator framework to support comprehensive approaches to sustainable fisheries management. En: Ecology and Society 24 (dic. de 2019). doi: 10.5751/ES-11242-240412.
dc.relation.referencesAmador Moncada Jorge Armando. Escenarios prospectivos de sostenibilidad en la cooperación entre comunidades rurales: análisis de bifurcaciones y sistemas de Filippov. 2019-09-13. url: https://repositorio.unal.edu.co/handle/unal/77092.
dc.relation.referencesJean-Pierre Aubin, Alexandre Bayen y Patrick Saint-Pierre. Viability Theory: New Directions. Ene. de 2011. isbn: 978-3-642-16683-9. doi: 10.1007/978-3-642-16684- 6
dc.relation.referencesM. Badiale e I. Cravero. A HANDY-type model with non renewable resources. En: Nonlinear Analysis: Real World Applications 77 (jun. de 2024), pág. 104071. doi: 10.1016/j.nonrwa.2024.104071.
dc.relation.referencesMarino Badiale e Isabella Cravero. A Nonlinear ODE Model for a Society Strongly Dependent on Non-Renewable Resources. En: Preprints (ene. de 2025). doi: 10.20944/ preprints202501.0888.v1. url: https://doi.org/10.20944/preprints202501. 0888.v1.
dc.relation.referencesEdwin Barrios, Pedro Gajardo y Olga Vasilieva. Sustainable thresholds for cooperative epidemiological models. En: Mathematical Biosciences 302 (2018), p´ags. 9-18. issn: 0025-5564. doi: https://doi.org/10.1016/j.mbs.2018.05.011. url: https: //www.sciencedirect.com/science/article/pii/S0025556417305527.
dc.relation.referencesAndré Batalhao y col. Sustainability Indicators: Relevance, Public Policy Support and Challenges. En: Journal of Management and Sustainability 9 (nov. de 2019), p´ag. 173. doi: 10.5539/jms.v9n2p173.
dc.relation.referencesStefan Baumgartner y Martin F. Quaas. Ecological-economic viability as a criterion of strong sustainability under uncertainty. En: Ecological Economics 68.7 (2009). Methodological Advancements in the Footprint Analysis, págs. 2008-2020. issn: 0921- 8009. doi: https://doi.org/10.1016/j.ecolecon.2009.01.016. url: https: //www.sciencedirect.com/science/article/pii/S0921800909000342.
dc.relation.referencesBahadir Cagri Bayram. A sustainable forest management criteria and indicators assessment using fuzzy analytic hierarchy process. En: Environmental Monitoring and Assessment 193 (jul. de 2021). doi: 10.1007/s10661-021-09176-x.
dc.relation.referencesNathan J. Bennett y col. Socio-economic monitoring and evaluation in fisheries. En: Fisheries Research 239 (2021), pág. 105934. issn: 0165-7836. doi: https : / / doi . org/10.1016/j.fishres.2021.105934. url: https://www.sciencedirect.com/ science/article/pii/S016578362100062X.
dc.relation.referencesMaja Bleyer y col. Socio-economic impacts of private land use investment on rural communities: Industrial forest plantations in Niassa, Mozambique. En: Land Use Policy 51 (2016), págs. 281-289. issn: 0264-8377. doi: https://doi.org/10.1016/ j.landusepol.2015.11.011. url: https://www.sciencedirect.com/science/ article/pii/S0264837715003543.
dc.relation.referencesSilke Bothfeld y Sophie Rouault. Families Facing the Crisis: Is Social Investment a Sustainable Social Policy Strategy?. En: Social Politics (jun. de 2014). doi: 10.1093/ sp/jxu014.
dc.relation.referencesErica Cruz-Rivera y Olga Vasilieva. A control theory approach aimed at sustainable conservation of single species under human intervention. En: International Journal of Pure and Applied Mathematics 102 (ene. de 2015), págs. 653-669. doi: 10.12732/ ijpam.v102i4.6.
dc.relation.referencesKyle Davis y col. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. En: Nature Geoscience 8 (sep. de 2015), págs. 772-775. doi: 10.1038/ ngeo2540.
dc.relation.referencesMichel De Lara y Doyen Luc. Sustainable Management of Natural Resources Mathematical Models and Methods, springer, ene. de 2008. doi: 10.1007/978-3-540-79074-7.
dc.relation.referencesHesam Dehghani y col. A Mimic Model Approach for Impact Assessment of Mining Activities on Sustainable Development Indicators. En: Sustainability 15.3 (2023). issn: 2071-1050. doi: 10.3390/su15032688. url: https://www.mdpi.com/2071- 1050/15/3/2688.
dc.relation.referencesL. Doyen y V. Martinet. Maximin, viability and sustainability. En: Journal of Economic Dynamics and Control 36.9 (2012), pags. 1414-1430. issn: 0165-1889. doi: https: //doi.org/10.1016/j.jedc.2012.03.004. url: https://www.sciencedirect. com/science/article/pii/S0165188912000668.
dc.relation.referencesMarten Eppinga, Martin Reader y Maria Santos. Exploratory modeling of socialecological systems. En: Ecosphere 15 (oct. de 2024). doi: 10.1002/ecs2.70037.
dc.relation.referencesMarten Eppinga y col. Long-term transients help explain regime shifts in consumerrenewable resource systems. En: Communications Earth & Environment 2 (feb. de 2021). doi: 10.1038/s43247-021-00112-y
dc.relation.referencesColm Fitzgerald. The Forestry Investment Total Return (FITR) Index. En: The Journal of Alternative Investments 23 (feb. de 2021), jai.2021.1.125. doi: 10.3905/ jai.2021.1.125.
dc.relation.referencesChristopher Fitzpatrick y Dirk Engels. Leaving no one behind: a neglected tropical disease indicator and tracers for the Sustainable Development Goals: Box 1. En: International Health 8 (mar. de 2016), p´ags. i15-i18. doi: 10.1093/inthealth/ihw002.
dc.relation.referencesWendell Fleming y Raymond Rishel. Existence and Continuity Properties of Optimal Controls. En: Deterministic and Stochastic Optimal Control. New York, NY: Springer New York, 1975, págs. 60-79. isbn: 978-1-4612-6380-7. doi: 10.1007/978-1-4612- 6380-7_3. url: https://doi.org/10.1007/978-1-4612-6380-7_3.
dc.relation.referencesMarc Fleurbaey. On sustainability and social welfare. En: Journal of Environmental Economics and Management 71 (2015), págs. 34-53. issn: 0095-0696. doi: https : //doi.org/10.1016/j.jeem.2015.02.005. url: https://www.sciencedirect. com/science/article/pii/S0095069615000200.
dc.relation.referencesPedro Gajardo, Thomas Guilmeau y Cristopher Hermosilla. Sensitivity Analysis of the Set of Sustainable Thresholds. En: Set-Valued and Variational Analysis 32 (mayo de 2024). doi: 10.1007/s11228-024-00721-7.
dc.relation.referencesPedro Gajardo, Cristopher Hermosilla y Athena Picarelli. On the set of robust sustainable thresholds. En: Natural Resource Modeling 34.4 (2021), e12334. doi: https: //doi.org/10.1111/nrm.12334. eprint: https://onlinelibrary.wiley.com/doi/ pdf/10.1111/nrm.12334. url: https://onlinelibrary.wiley.com/doi/abs/10. 1111/nrm.12334.
dc.relation.referencesBasil Grammaticos, Ralph Willox y Junkichi Satsuma. Revisiting the Human and Nature Dynamics Model. En: Regular and Chaotic Dynamics 25 (2020), págs. 178-198.
dc.relation.referencesJuliane Griebeler y col. Sustainable development goals: a framework for deploying indicators for higher education institutions. En: International Journal of Sustainability in Higher Education ahead-of-print (sep. de 2021). doi: 10.1108/IJSHE-03-2021- 0088.
dc.relation.referencesI. Gunnarsdottir y col. Review of indicators for sustainable energy development. En: Renewable and Sustainable Energy Reviews 133 (2020), pág. 110294. issn: 1364- 0321. doi: https://doi.org/10.1016/j.rser.2020.110294. url: https://www. sciencedirect.com/science/article/pii/S1364032120305827.
dc.relation.referencesAlba Rocio Gutierrez Garzon y col. A Comparative Analysis of Five Forest Certification Programs. En: Forests 11.8 (2020). issn: 1999-4907. doi: 10.3390/f11080863. url: https://www.mdpi.com/1999-4907/11/8/863.
dc.relation.referencesTomás Hák, Svatava Janouskov´a y Bedrich Moldan. Sustainable Development Goals: A need for relevant indicators. En: Ecological Indicators 60 (2016), págs. 565-573. issn: 1470-160X. doi: https://doi.org/10.1016/j.ecolind.2015.08.003. url: https://www.sciencedirect.com/science/article/pii/S1470160X15004240.
dc.relation.referencesI.P. Handayani y C. Hale. Healthy Soils for Productivity and Sustainable Development in Agriculture. En: IOP Conference Series: Earth and Environmental Science 1018.1 (abr. de 2022), pág. 012038. doi: 10.1088/1755-1315/1018/1/012038. url: https: //dx.doi.org/10.1088/1755-1315/1018/1/012038.
dc.relation.referencesMinako Hara y col. New Key Performance Indicators for a Smart Sustainable City. En: Sustainability 8 (mar. de 2016), pág. 206. doi: 10.3390/su8030206.
dc.relation.referencesS. Hernández Aguado, I. Segado Segado y Tony J. Pitcher. Towards sustainable fisheries: A multi-criteria participatory approach to assessing indicators of sustainable fishing communities: A case study from Cartagena (Spain). En: Marine Policy 65 (2016), págs. 97-106. issn: 0308-597X. doi: https://doi.org/10.1016/j.marpol. 2015.12.024. url: https://www.sciencedirect.com/science/article/pii/ S0308597X15003942.
dc.relation.referencesJulia Horsley y col. Sustainable livelihoods and indicators for regional development in mining economies. En: The Extractive Industries and Society 2.2 (2015), págs. 368-380. issn: 2214-790X. doi: https://doi.org/10.1016/j.exis.2014.12.001. url: https://www.sciencedirect.com/science/article/pii/S2214790X1400094X.
dc.relation.referencesPat Hyder. Recycling revenue from an international carbon tax to fund an integrated investment programme in sustainable energy and poverty reduction. En: Global Environmental Change 18.3 (2008). Globalisation and Environmental Governance: Is Another World Possible?, págs. 521-538. issn: 0959-3780. doi: https://doi.org/ 10.1016/j.gloenvcha.2008.04.001. url: https://www.sciencedirect.com/ science/article/pii/S0959378008000290.
dc.relation.referencesAnarul Islam y Md. Haider Ali Biswas. Modeling the Effect of Global Warming on the Sustainable Groundwater Management: A Case Study in Bangladesh. En: WSEAS TRANSACTIONS ON MATHEMATICS 19 (ene. de 2021), págs. 639-646. doi: 10. 37394/23206.2020.19.71.
dc.relation.referencesYuri A. Kuznetsov. Elements of applied bifurcation theory (2nd ed.) Berlin, Heidelberg: Springer-Verlag, 1998. isbn: 0387983821.
dc.relation.referencesDavid Lapola y col. The drivers and impacts of Amazon forest degradation. En: Science (New York, N.Y.) 379 (ene. de 2023), eabp8622. doi: 10.1126/science. abp8622.
dc.relation.referencesChuan Liao y col. Insuffcient research on land grabbing. En: Science 353 (jul. de 2016), p´ags. 131-131. doi: 10.1126/science.aaf6565.
dc.relation.referencesStefanie Linser y Bernhard Wolfslehner. National Implementation of the Forest Europe Indicators for Sustainable Forest Management. En: Forests 13.2 (2022). issn: 1999- 4907. doi: 10.3390/f13020191. url: https://www.mdpi.com/1999-4907/13/2/191.
dc.relation.referencesV. Martinet y L. Doyen. Sustainability of an economy with an exhaustible resource: A viable control approach. En: Resource and Energy Economics 29.1 (2007), págs. 17-39. issn: 0928-7655. doi: https://doi.org/10.1016/j.reseneeco.2006.03.003. url: https://www.sciencedirect.com/science/article/pii/S0928765506000273.
dc.relation.referencesHasan Md Nazmul, Md. Haider Ali Biswas y Md Uddin. A mathematical model for fish management in the Sundarbans ecosystem. En: Open Journal of Mathematical Analysis 3 (dic. de 2019), págs. 42-49. doi: 10.30538/psrp-oma2019.0038
dc.relation.referencesDonella H. Meadows, Jorgen Randers y Dennis L. Meadows. The Limits to Growth (1972). En: Documents of Global Change. Ed. por Libby Robin, Sverker Sorlin y Paul Warde. New Haven: Yale University Press, 2013, págs. 101-116. isbn: 9780300188479. doi: doi : 10 . 12987 / 9780300188479 - 012. url: https : / / doi . org / 10 . 12987 / 9780300188479-012.
dc.relation.referencesPeter Messerli y col. From land grabbing to sustainable investments in land: potential contributions by land change science. En: Current Opinion in Environmental Sustainability 5.5 (2013). Human settlements and industrial systems, págs. 528-534. issn: 1877-3435. doi: https://doi.org/10.1016/j.cosust.2013.03.004. url: https://www.sciencedirect.com/science/article/pii/S1877343513000316.
dc.relation.referencesPeter Messerli y col. The geography of large-scale land acquisitions: Analysing socioecological patterns of target contexts in the global South. En: Applied Geography 53 (sep. de 2014), 449-459. doi: 10.1016/j.apgeog.2014.07.005.
dc.relation.referencesOscar Monsalve, Carlos Bojacá y Martha Toro. Indicadores de sostenibilidad agrícola asociados a propiedades, procesos y manejo del suelo. En: Ciencia Tecnología Agropecuaria 22 (oct. de 2021), e1919. doi: 10.21930/rcta.vol22_num3_art:1919.
dc.relation.referencesSafa Motesharrei, Jorge Rivas y Eugenia Kalnay. Human and nature dynamics (HANDY): Modeling inequality and use of resources in the collapse or sustainability of societies. En: Ecological Economics 101 (mayo de 2014), 90-102. doi: 10.1016/j.ecolecon. 2014.02.014.
dc.relation.referencesShinsuke Murakami y col. Ecological footprint and total material requirement as environmental indicators of mining activities: Case studies of copper mines. En: Environmental and Sustainability Indicators 8 (2020), pág. 100082. issn: 2665-9727. doi: https://doi.org/10.1016/j.indic.2020.100082. url: https://www. sciencedirect.com/science/article/pii/S2665972720300660.
dc.relation.referencesAnnadoma Nyanga, Aad Kessler y Albino Tenge. Key socio-economic factors influencing sustainable land management investments in the West Usambara Highlands, Tanzania. En: Land Use Policy 51 (2016), págs. 260-266. issn: 0264-8377. doi: https:// doi.org/10.1016/j.landusepol.2015.11.020. url: https://www.sciencedirect. com/science/article/pii/S0264837715003774
dc.relation.referencesGerard Olivar Tost y Jorge Amador. Non-linear and non-smooth dynamics in a sustainable development system. En: feb. de 2011, págs. 1-4. isbn: 978-1-4244-9484-2. doi: 10.1109/LASCAS.2011.5750298
dc.relation.referencesOluyemisi Oloruntuyi y col. Pathway to sustainability: the Marine Stewardship Council certification standard as an improvement framework for African fisheries. En: Frontiers in Marine Science 10 (2023). issn: 2296-7745. doi: 10 . 3389 / fmars . 2023 . 1042736. url: https://www.frontiersin.org/articles/10.3389/fmars.2023. 1042736.
dc.relation.referencesAichouche Oubraham y col. A Survey of Applications of Viability Theory to the Sustainable Exploitation of Renewable Resources. En: Ecological Economics 145 (mar. de 2018), págs. 346-367. doi: 10.1016/j.ecolecon.2017.11.008.Aichouche Oubraham y col. ((A Survey of Applications of Viability Theory to the Sustainable Exploitation of Renewable Resources ˆa˜ )). En: Ecological Economics 145 (mar. de 2018), p´ags. 346-367. doi: 10.1016/j.ecolecon.2017.11.008.
dc.relation.referencesEsther S. Parish y col. Chapter 12 - An indicator-based approach to sustainable management of natural resources. En: Data Science Applied to Sustainability Analysis. Ed. por Jennifer Dunn y Prasanna Balaprakash. Elsevier, 2021, págs. 255-280. isbn: 978-0- 12-817976-5. doi: https://doi.org/10.1016/B978-0-12-817976-5.00013-9. url: https://www.sciencedirect.com/science/article/pii/B9780128179765000139.
dc.relation.referencesKonstantinos D. Patlitzianas y col. Sustainable energy policy indicators: Review and recommendations. En: Renewable Energy 33.5 (2008), págs. 966-973. issn: 0960-1481. doi: https://doi.org/10.1016/j.renene.2007.05.003. url: https://www. sciencedirect.com/science/article/pii/S0960148107001413.
dc.relation.referencesM. C. Pegalajar y L. G. B. Ruiz. Time Series Forecasting for Energy Consumption. En: Energies 15.3 (2022). issn: 1996-1073. doi: 10.3390/en15030773. url: https: //www.mdpi.com/1996-1073/15/3/773.
dc.relation.referencesHorst Rode y Gerd Michelsen. Levels of indicator development for education for sustainable development. En: Environmental Education Research - ENVIRON EDUC RES 14 (feb. de 2008), págs. 19-33. doi: 10.1080/13504620701843327
dc.relation.referencesPavel Ryabukhin y col. Improving the efficiency of forest companies by optimizing the key indicators of sustainable forest management: a case study of the Far East. En: Forest Science and Technology 18 (oct. de 2022), págs. 1-11. doi: 10.1080/21580103. 2022.2128900.
dc.relation.referencesMeir Shillor y Thanaa Kadhim. Analysis and simulations of the HANDY model with social mobility, renewables and nonrenewables. En: Electronic Journal of Differential Equations 2023 (sep. de 2023), pág. 59. doi: 10.58997/ejde.2023.59.
dc.relation.referencesRashid Sumaila y col. Financing a sustainable ocean economy. En: Nature Communications 12 (dic. de 2021). doi: 10.1038/s41467-021-23168-y.
dc.relation.referencesSvetlana Tulaeva y col. Marine Stewardship Council Certification in Finland and Russia: Global Standards and Local Practices. En: Sustainability 15.5 (2023). issn: 2071-1050. doi: 10.3390/su15054063. url: https://www.mdpi.com/2071-1050/15/ 5/4063.
dc.relation.referencesAndrei Jean Vasile y Diego Begalli. Romania and the European Economic and Cultural Model. Changing the Paradigms. En: Procedia Economics and Finance 22 (2015). 2nd International Conference ’Economic Scientific Research - Theoretical, Empirical and Practical Approaches’, ESPERA 2014, 13-14 November 2014, Bucharest, Romania, págs. 370-379. issn: 2212-5671. doi: https : / / doi . org / 10 . 1016 / S2212 - 5671(15)00307- X. url: https://www.sciencedirect.com/science/article/ pii/S221256711500307X.
dc.relation.referencesHidekazu Yoshioka. Optimal harvesting policy for biological resources with uncertain heterogeneity for application in fisheries management. En: Natural Resource Modeling 37 (ene. de 2024). doi: 10.1111/nrm.12394.
dc.relation.referencesYaning Zhang, Lina Hao y Shan Zhang. Optimal Harvesting Strategies for Timber and Non-Timber Forest Products with Nonlinear Harvesting Terms. En: Symmetry 16 (jun. de 2024), pág. 806. doi: 10.3390/sym16070806.
dc.relation.referencesMd. Haider Ali Biswas, Md Haque y Uzzwal Kumar Mallick. Optimal control strategy for the immunotherapeutic treatment of HIV infection with state constraint. En: Optimal Control Applications and Methods 40 (mayo de 2019). doi: 10.1002/oca. 2516.
dc.relation.referencesSimone D’Alessandro. Non-linear dynamics of population and natural resources: The emergence of different patterns of development. En: Ecological Economics 62.3 (2007), p´ags. 473-481. issn: 0921-8009. doi: https : / / doi . org / 10 . 1016 / j . ecolecon . 2006 . 07 . 008. url: http : / / www . sciencedirect . com / science / article / pii / S0921800906003429.
dc.relation.referencesWendell Fleming y Raymond Rishel. Existence and Continuity Properties of Optimal Controls. En: Deterministic and Stochastic Optimal Control. New York, NY: Springer New York, 1975, págs. 60-79. isbn: 978-1-4612-6380-7. doi: 10.1007/978-1-4612- 6380-7_3. url: https://doi.org/10.1007/978-1-4612-6380-7_3.
dc.relation.referencesHarold Hotelling. The economics of exhaustible resources. En: Bulletin of Mathematical Biology 53.1 (1991), págs. 281-312. issn: 0092-8240. doi: https://doi.org/10. 1016/S0092-8240(05)80050-3. url: https://www.sciencedirect.com/science/ article/pii/S0092824005800503.
dc.relation.referencesM.I. Kamien y N.L. Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. A series of volumes in dynamic economics : theory and application. North Holland, 1981. isbn: 9780444004246. url: https://books.google.com.co/books?id=y8V9yEF_P4kC.
dc.relation.referencesIddo Kan, Arie Leizarowitz y Yacov Tsur. Dynamic-Spatial Management Of Coastal Aquifers. Discussion Papers 7131. Hebrew University of Jerusalem, Department of Agricultural Economics y Management, 2007. doi: 10.22004/ag.econ.7131. url: https://ideas.repec.org/p/ags/huaedp/7131.html.
dc.relation.referencesSuzanne Lenhart y John T Workman. Optimal control applied to biological models. Chapman y Hall/CRC, 2007.
dc.relation.referencesSajib Mandal y col. Modeling with strategies to control the adverse effects of global warming on marine ecosystems. En: Modeling Earth Systems and Environment 8 (sep. de 2022), págs. 1-16. doi: 10.1007/s40808-021-01286-2.
dc.relation.referencesTalha Manzoor y col. Optimal Control for Sustainable Consumption of Natural Resources. En: IFAC Proceedings Volumes 47.3 (2014). 19th IFAC World Congress, págs. 10725-10730. issn: 1474-6670. doi: https://doi.org/10.3182/20140824-6- ZA-1003.01474. url: https://www.sciencedirect.com/science/article/pii/ S1474667016433185.
dc.relation.referencesNirmala Nalluri y Vasavi Rama Karri. Superior effect of nature based solutions in soil and water management for sustainable agriculture. En: Plant Science Today 11.1 (2024), págs. 06-20.
dc.relation.referencesAroloye Numbere y Eberechukwu Maduike. The Impact of Unsustainable Exploitation of Forest and Aquatic Resources of the Niger Delta, Nigeria. En: ago. de 2022, págs. 239-265. isbn: 978-981-19-3325-7. doi: 10.1007/978-981-19-3326-4_9.
dc.relation.referencesAlize le Roux y Jakkie Cilliers. Global carbon tax urgently needed to manage the climate crisis. Inf. téc.
dc.relation.referencesRam Manoher Ahirwar. Studies of Some Techniques for Conservation of Forest and Wildlife. En: Perspectives on Global Biodiversity Scenarios and Environmental Services in the 21st Century. IGI Global, 2023, págs. 185-191.
dc.relation.referencesJorge Amador, H. Granada D. y Gerard Olivar Tost. Non-linear phenomena in socio-economic systems with natural resource management. En: Blucher Mechanical Engineering Proceedings 1 (mayo de 2014), págs. 3313-3325. doi: 10. 5151/meceng-wccm2012-19320.
dc.relation.referencesAzwardi y col. The Environmental Impacts of Natural Resources Depletion. En: Proceedings of the 6th International Conference on Indonesian Architecture and Planning (ICIAP 2022). Ed. por Deva Fosterharoldas Swasto y col. Singapore: Springer Nature Singapore, 2023, págs. 705-714. isbn: 978-981-99-1403-6.
dc.relation.referencesEdward B. Barbier. Scarcity and Frontiers: How Economies Have Developed Through Natural Resource Exploitation. En: The Journal of Economic History 71 (ene. de 2011). doi: 10.2307/41353871.
dc.relation.referencesTsisana Basilashvili. Forest Cover for the Safety of Biosphere and Environment. En: Biodiversity, Conservation and Sustainability in Asia: Volume 1: Prospects and Challenges in West Asia and Caucasus. Ed. por M¨unir Ozt¨urk, Volkan Altay ¨ y Recep Efe. Cham: Springer International Publishing, 2021, págs. 355-370. isbn: 978-3-030-59928-7. doi: 10 . 1007 / 978 - 3 - 030 - 59928 - 7 _ 13. url: https : //doi.org/10.1007/978-3-030-59928-7_13.
dc.relation.referencesJ Berkes, Carl Folke y Johan Colding. Navigating Social-Ecological Systems Building Resilience For Complexity And Change. Ene. de 2003. doi: 10 . 1017 / CBO9780511541957.020.
dc.relation.referencesUlrika Candolin y Tawfiqur Rahman. Behavioural responses of fishes to anthropogenic disturbances: Adaptive value and ecological consequences. En: Journal of Fish Biology 103 (ene. de 2023). doi: 10.1111/jfb.15322.
dc.relation.referencesKunal Chakraborty, Soovoojeet Jana y Tapan Kar. Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting. En: Applied Mathematics and Computation 218 (mayo de 2012), 9271ˆa¿“9290. doi: 10.1016/j.amc.2012.03.005.
dc.relation.referencesKunal Chakraborty y T.K. Kar. Economic perspective of marine reserves in fisheries: A bioeconomic model. En: Mathematical Biosciences 240.2 (2012), págs. 212-222. issn: 0025-5564. doi: https : / / doi . org / 10 . 1016 / j . mbs . 2012.07.008. url: http://www.sciencedirect.com/science/article/pii/ S0025556412001733.
dc.relation.referencesColin Clark. The Worldwide Crisis in Fisheries: Economic Models and Human Behavior. En: The Worldwide Crisis in Fisheries: Economic Models and Human Behavior (ene. de 2007), págs. 1-269. doi: 10.1017/CBO9780511617966.
dc.relation.referencesJon M Conrad y Daniel Rondeau. Natural resource economics: analysis, theory, and applications. Cambridge University Press, 2020.
dc.relation.referencesBrian Dennis. Allee Effects: Population Growth, Critical Density, and the Chance of Extinction. En: Natural Resource Modeling 3 (sep. de 1989), págs. 481-538. doi: 10.1111/j.1939-7445.1989.tb00119.x.
dc.relation.referencesI.J. Diaz-Maroto y M. Consuelo Hidalgo. Changes in forest landscape due to agricultural activities and their influence on natural ecosystems: the eastern Galician mountains. En: Change and Adaptation in Socio-Ecological Systems 4 (dic. de 2018), págs. 1-6. doi: 10.1515/cass-2018-0001.
dc.relation.referencesZachary Dockstader, Chris Bauch y Madhur Anand. Interconnections Accelerate Collapse in a Socio-Ecological Metapopulation. En: Sustainability 11 (mar. de 2019), pág. 1852. doi: 10.3390/su11071852.
dc.relation.referencesGeorge Ekonomou y George Halkos. Exploring the Impact of Economic Growth on the Environment: An Overview of Trends and Developments. En: Energies 16.11 (2023). issn: 1996-1073. doi: 10.3390/en16114497. url: https://www. mdpi.com/1996-1073/16/11/4497.
dc.relation.referencesFisheries and Aquaculture topics. Fish capture technology. Topics Fact Sheets.In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 4 January 2016. [Cited 20 December 2019], 2019.
dc.relation.referencesFood y Agriculture Organization of the United Nations. FAO Orientaciones T´ecnicas para la Pesca Responsable - Enfoque Precautorio para la Pesca de Captura y las Introducciones de Especies - 2. Food y Agriculture Organization of the United Nations, 1997. Cap. 5.
dc.relation.referencesAldina M. A. Franco. The Balance of Nature and Human Impact.Klaus Rohde, editor. En: Integrative and Comparative Biology 53.6 (oct. de 2013), p´ags. 1017-1019. issn: 1540-7063. doi: 10.1093/icb/ict099. eprint: https://academic.oup. com / icb / article - pdf / 53 / 6 / 1017 / 2181481 / ict099 . pdf. url: https : //doi.org/10.1093/icb/ict099.
dc.relation.referencesEric Galbraith, D. Carozza y D. Bianchi. A coupled human-Earth model perspective on long-term trends in the global marine fishery. En: Nature Communications 8 (mar. de 2017), pág. 14884. doi: 10.1038/ncomms14884.
dc.relation.referencesHedley Grantham y col. The Emerging Threat of Extractives Sector to Intact Forest Landscapes. En: Frontiers in Forests and Global Change 4 (jul. de 2021), pág. 692338. doi: 10.3389/ffgc.2021.692338.
dc.relation.referencesMatthew Holden, Sharon Lee y Wen-Hsi Yang. Foreword to the Special Issue on Natural Resource Mathematics. En: Environmental Modeling Assessment 24 (jul. de 2019). doi: 10.1007/s10666-019-09677-7.
dc.relation.referencesMd. Saiful Islam. Influence of economic growth on environmental pollution in South Asia: a panel cointegration analysis. En: Asia-Pacific Journal of Regional Science 5.3 (oct. de 2021), págs. 951-973. doi: 10.1007/s41685-021-00208-. url: https://ideas.repec.org/a/spr/apjors/v5y2021i3d10.1007_s41685- 021-00208-5.html.
dc.relation.referencesS. Kanthimathinathan. Deforestation and Applicable Related Act in India. En: Novel Perspectives of Geography, Environment and Earth Sciences Vol. 1 (dic. de 2022), págs. 66-78. doi: 10.9734/bpi/npgees/v1/17588D. url: https: //stm.bookpi.org/NPGEES-V1/article/view/8945.
dc.relation.referencesKrishna Khobragade. Impact of Mining Activity on environment: An Overview. En: International Journal of Scientific and Research Publications (IJSRP) 10 (mayo de 2020), págs. 784-791. doi: 10.29322/IJSRP.10.05.2020.p10191.
dc.relation.referencesPushpendra Kumar, Sangeeta Gupta y Neelma Kunwar. Impact of climate change on various agricultural activities in India. En: International Journal of Chemical Studies 8 (2020), págs. 2573-2575. url: https://api.semanticscholar. org/CorpusID:234663502.
dc.relation.referencesZhilin Li, Zhonghua Qiao y Tao Tang. Numerical Solution of Differential Equations: Introduction to Finite Difference and Finite Element Methods. Cambridge University Press, 2017. doi: 10.1017/9781316678725.
dc.relation.referencesSebastián Michel-Mata y col. Towards a Social-Ecological-Entropy Perspective of Sustainable Exploitation of Natural Resources. En: Foundations 2.4 (2022), págs. 999-1021. doi: https://doi.org/10.3390/foundations2040067.
dc.relation.referencesVladimir Mikhailov, Andrey Yu. Perevaryukha y Yu. S. Reshetnikov. Model of fish population dynamics with calculation of individual growth rate and hydrological situation scenarios. En: Information and Control Systems (2018). url: https://api.semanticscholar.org/CorpusID:135443040.
dc.relation.referencesA.K. Misra y Kusum Lata. A Mathematical Model to Achieve Sustainable Forest Management. En: International Journal of Modeling, Simulation, and Scientific Computing 6 (oct. de 2015). doi: 10.1142/S1793962315500403.
dc.relation.referencesSonja Radosavljevic y col. Dynamical systems modeling for structural understanding of social-ecological systems: A primer. En: Ecological Complexity 56 (ago. de 2023), pág. 101052. doi: 10.1016/j.ecocom.2023.101052.
dc.relation.referencesJuliana Ribeiro, André Nunes-Freitas y Mariella Uzeda. Forest fragmentation and impacts of intensive agriculture: responses from functional groups of the tree community. En: (feb. de 2019). doi: 10.1101/546796.
dc.relation.referencesSabin Roman, Seth Bullock y Markus Brede. Coupled societies are more robust against collapse: A hypothetical look at Easter Island. En: Ecological Economics 132 (2017), págs. 264-278.
dc.relation.referencesMilner B. Schaefer. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. En: Inter-American Tropical Tuna Commission Bulletin 1.2 (1954), págs. 23-56. issn: 0092-8240. doi: https : / / doi . org / 10 . 1016 / S0092 - 8240(05 ) 80049 - 7. url: http : //aquaticcommons.org/id/eprint/3530.
dc.relation.referencesIstván Scheuring. Allee Effect Increases the Dynamical Stability of Populations. En: Journal of Theoretical Biology 199.4 (1999), págs. 407-414. issn: 0022-5193. doi: https://doi.org/10.1006/jtbi.1999.0966. url: http: //www.sciencedirect.com/science/article/pii/S0022519399909669.
dc.relation.referencesVijay P Singh y col. An Interdisciplinary Modeling Approach for Dynamic Adaptive Policy Pathways. En: Modeling and Simulation of Environmental Systems. CRC Press, 2022, págs. 343-353. doi: https : / / doi . org / 10 . 1201 / 9781003203445-22.
dc.relation.referencesPhilip A. Stephens y William J. Sutherland. Consequences of the Allee effect for behaviour, ecology and conservation. En: Trends in Ecology & Evolution 14.10 (1999), págs. 401-405. issn: 0169-5347. doi: https://doi.org/10.1016/S0169- 5347(99)01684-5. url: http://www.sciencedirect.com/science/article/ pii/S0169534799016845.
dc.relation.referencesYe Tian, Qian Wan y Yao Tan. Exploration on Inter-Relation of Environmental Regulation, Economic Structure, and Economic Growth: Provincial Evidence from China. En: Sustainability 15.1 (2023). issn: 2071-1050. doi: 10.3390/ su15010248. url: https://www.mdpi.com/2071-1050/15/1/248.
dc.relation.referencesJuan F Velasco-Muñoz y col. Sustainable land use and management. En: Sustainable Resource Management. Elsevier, 2021, págs. 179-197.
dc.relation.referencesChangjin Xu, Maoxin Liao y Xiaofei He. Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays. En: Applied Mathematics and Computer Science 21 (mar. de 2011), págs. 97-107. doi: 10.2478/ v10006-011-0007-0.
dc.relation.referencesFan Yang, Hang Yuan y Nuo Yi. Natural resources, environment and the sustainable development. En: Urban Climate 42 (2022), pág. 101111. issn: 2212- 0955. doi: https://doi.org/10.1016/j.uclim.2022.101111. url: https: //www.sciencedirect.com/science/article/pii/S2212095522000293.
dc.relation.referencesMing-Chun Zhou y Zong-Yu Liu. Hopf bifurcations in a Ricardo-Malthus model. En: Applied Mathematics and Computation 217.6 (2010), págs. 2425-2432. issn: 0096-3003. doi: https://doi.org/10.1016/j.amc.2010.07.043. url: http://www.sciencedirect.com/science/article/pii/S0096300310007885.
dc.relation.referencesA. Baccini y col. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. En: Science 358 (sep. de 2017), eaam5962. doi: 10. 1126/science.aam5962.
dc.relation.referencesJonathan Bendor. Rules, Games, and Common-Pool Resources. By Elinor Ostrom, Roy Gardner, and James Walker. Ann Arbor: University of Michigan Press, 1994. 392p. 55,00cloth,18.95 paper. En: American Political Science Review 89.1 (1995), 188-189. doi: 10.2307/2083092.
dc.relation.referencesJames A. Brander y M. Scott Taylor. The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use. En: The American Economic Review 88.1 (1998), págs. 119-138. issn: 00028282. url: http://www.jstor.org/ stable/116821 (visitado 09-05-2024).
dc.relation.referencesL. Doyen y V. Martinet. Maximin, viability and sustainability. En: Journal of Economic Dynamics and Control 36.9 (2012), págs. 1414-1430. issn: 0165-1889. doi: https: //doi.org/10.1016/j.jedc.2012.03.004. url: https://www.sciencedirect. com/science/article/pii/S0165188912000668.
dc.relation.referencesKalifi Ferretti-Gallon y Jonah Busch. What Drives Deforestation and What Stops it? A Meta-Analysis of Spatially Explicit Econometric Studies. En: SSRN Electronic Journal (ene. de 2014). doi: 10.2139/ssrn.2458040.
dc.relation.referencesTatiana Filatova, J. Gary Polhill y Stijn van Ewijk. Regime shifts in coupled socioenvironmental systems: Review of modelling challenges and approaches. En: Environmental Modelling Software 75 (2016), págs. 333-347. issn: 1364-8152. doi: https: //doi.org/10.1016/j.envsoft.2015.04.003. url: https://www.sciencedirect. com/science/article/pii/S1364815215001127.
dc.relation.referencesCarl Folke. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience. Vol. 24. Ene. de 2000. isbn: 0521785626.
dc.relation.referencesPedro Gajardo y Cristopher Hermosilla. Pareto Fronts of the Set of Sustainable Thresholds for Constrained Control Systems. En: Applied Mathematics Optimization 83 (abr. de 2021). doi: 10.1007/s00245-019-09580-3.
dc.relation.referencesPedro Gajardo y Cristopher Hermosilla. Pareto Fronts of the Set of Sustainable Thresholds for Constrained Control Systems. En: Applied Mathematics Optimization 83 (abr. de 2021). doi: 10.1007/s00245-019-09580-3.
dc.relation.referencesClinton Innes, Madhur Anand y Chris Bauch. The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems. En: Scientific reports 3 (sep. de 2013), pág. 2689. doi: 10.1038/srep02689.
dc.relation.referencesV. Martinet y L. Doyen. Sustainability of an economy with an exhaustible resource: A viable control approach. En: Resource and Energy Economics 29.1 (2007), págs. 17-39. issn: 0928-7655. doi: https://doi.org/10.1016/j.reseneeco.2006.03.003. url: https://www.sciencedirect.com/science/article/pii/S0928765506000273.
dc.relation.referencesVincent Martinet. A characterization of sustainability with indicators. En: Journal of Environmental Economics and Management 61.2 (2011), págs. 183-197. issn: 0095- 0696. doi: https://doi.org/10.1016/j.jeem.2010.10.002. url: https://www. sciencedirect.com/science/article/pii/S009506961000104X.
dc.relation.referencesElinor Ostrom. A General Framework for Analyzing Sustainability of Social-Ecological Systems. En: Science (New York, N.Y.) 325 (ago. de 2009), págs. 419-22. doi: 10. 1126/science.1172133.
dc.relation.referencesElinor Ostrom. Challenges and Growth: The Development of the Interdisciplinary Field of Institutional Analysis. En: Journal of Institutional Economics 3 (feb. de 2007), págs. 239-264. doi: 10.1017/S1744137407000719
dc.relation.referencesSimone Pulver y col. Frontiers in socio-environmental research: components, connections, scale, and context. En: Ecology and Society 23.3 (2018). issn: 17083087. url: https://www.jstor.org/stable/26799146 (visitado 09-05-2024).
dc.relation.referencesFred Saunders. The promise of common pool resource theory and the reality of commons projects. En: International Journal of the Commons 8 (sep. de 2014), 636-656. doi: 10.18352/ijc.477.
dc.relation.referencesMilner B. Schaefer. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries)). En: Inter-American Tropical Tuna Commission Bulletin 1.2 (1954), págs. 23-56. issn: 0092-8240. doi: https://doi. org/10.1016/S0092-8240(05)80049-7. url: http://aquaticcommons.org/id/ eprint/3530.
dc.relation.referencesRam Sigdel, Madhur Anand y Chris Bauch. Convergence of socio-ecological dynamics in disparate ecological systems under strong coupling to human social systems. En: Theoretical Ecology 12 (sep. de 2019). doi: 10.1007/s12080-018-0394-z.
dc.relation.referencesR. M. Solow. Intergenerational Equity and Exhaustible Resources. En: The Review of Economic Studies 41 (1974), págs. 29-45. issn: 00346527, 1467937X. url: http: //www.jstor.org/stable/2296370 (visitado 28-05-2024).
dc.relation.referencesRobert M. Solow. Neoclassical growth theory. En: Handbook of Macroeconomics. Ed. por J. B. Taylor y M. Woodford. Vol. 1. Handbook of Macroeconomics. Elsevier, 1999. Cap. 9, págs. 637-667. url: https://ideas.repec.org/h/eee/macchp/1-09.html.
dc.relation.referencesXiao-Peng Song y col. Global land change from 1982 to 2016. En: Nature 560 (ago. de 2018). doi: 10.1038/s41586-018-0411-9.
dc.relation.referencesM. Scott Taylor. Environmental Crises: Past, Present and Future. En: Department of Economics, University of Calgary, Working Papers (ene. de 2009).
dc.relation.referencesArild Vatn y col. ECECMOD: an interdisciplinary modelling system for analyzing nutrient and soil losses from agriculture. En: Ecological Economics 30.2 (ago. de 1999), págs. 189-206. url: https://ideas.repec.org/a/eee/ecolec/v30y1999i2p189- 206.html.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.armarcDecision making
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.subject.proposalSistemas dinámicosspa
dc.subject.proposalBifurcacionesspa
dc.subject.proposalTeoría de viabilidadspa
dc.subject.proposalTeoría de control óptimospa
dc.subject.proposalUmbrales sosteniblesspa
dc.subject.proposalDynamic systemseng
dc.subject.proposalBifurcations
dc.subject.proposalViability theoryeng
dc.subject.proposalOptimal control theoryeng
dc.subject.proposalSustainable thresholdseng
dc.subject.unescoDesarrollo sostenible
dc.subject.unescoSustainable development
dc.subject.unescoToma de decisiones
dc.titleModelo matemático para la toma de decisiones con respecto a inversiones sosteniblesspa
dc.title.translatedMathematical model for decision-making regarding sustainable investmentseng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ingeniería - Automática.pdf
Tamaño:
28.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: