Design and analysis of a multi-stage control for power multi-converters in a DC microgrid

dc.contributor.advisorHoyos Velasco, Fredy Edimer
dc.contributor.advisorCandelo Becerra, John Edwin
dc.contributor.authorMonsalve Rueda, Miguel Eduardo
dc.contributor.orcidMonsalve Rueda, Miguel Eduardo [0000-0003-2401-8822]spa
dc.contributor.orcidCandelo Becerra, John Edwin [0000-0002-9784-9494]spa
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señalesspa
dc.date.accessioned2023-11-07T19:02:48Z
dc.date.available2023-11-07T19:02:48Z
dc.date.issued2023-11-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractMicrogrids are designed to connect different types of ac and dc loads, which require robust power controllers to achieve efficient energy transfer. However, the effects of AC and DC disturbances on a single type of controller make achieving such stability in a microgrid a design challenge. Additionally, in multistage systems and loads where disturbances affect both upstream and downstream of the microgrid, these controllers demand greater robustness. This thesis presents an analysis of a sliding mode control (SMC) applied to a multistage microgrid with direct current (DC) and alternating current (AC) power converters. The goal was to implement sliding mode controllers for converters that supply constant power loads DC-DC and DC-AC. The controller was tested considering a unique sliding surface facing external disturbances, such as variations in the frequency of AC converters, sudden changes in upstream voltages, and constant power loads (CPL). Initially, the simple first-order controller was analyzed, then with a washout filter, and subsequently experimentally validated. Next, a second-order controller was analyzed. The influence on the response and stability of the gain values (k) of the controller's sliding surface was also studied. The results show that the controller is robust in terms of sensitivity to external disturbances and steady-state error. However, it was observed that there are limiting values for the sliding surface constant 'k,' where if 'k' is too low, deceleration occurs, and the response to disturbances is critical, and if it is too high, undesired overshoot occurs in the output voltage. This way, it was observed that it is possible to find a single controller that offers some robustness to typical disturbances in a microgrid with commercial voltages.eng
dc.description.abstractLas microrredes están diseñadas para conectar diferentes tipos de cargas de CA y CC que requieren controladores de potencia robustos para lograr una transferencia de energía eficiente. Sin embargo, los efectos de las perturbaciones de CA y CC en un único tipo de controlador hacen que lograr dicha estabilidad en una microred sea un desafío de diseño. Adicionalmente, en sistemas de múltiples etapas y cargas donde las perturbaciones afectan tanto aguas arriba como aguas abajo de la microred estos controladores exigen mayor robustez. Esta tesis presenta un análisis de un control de modo deslizante (SMC) aplicado a una microrred de múltiples etapas con convertidores de potencia de corriente continua (DC) y corriente alterna (AC). El objetivo fue implementar controladores de modo deslizante a convertidores que alimentan cargas de potencia constantes CC-CC y CC-CA. El controlador fue probado considerando una superficie deslizante única que enfrenta perturbaciones externas, como variaciones en la frecuencia de los convertidores de CA, cambios repentinos en los voltajes aguas arriba y cargas de potencia constante (CPL). Inicialmente se analizó el controlador de primer orden sencillo, luego con filtro washout y posteriormente se validó experimentalmente. Luego se analizó un controlador de segundo orden. También se analizó la influencia en la respuesta y estabilidad de los valores de ganancia (k) de la superficie de deslizamiento del controlador. Los resultados muestran que el controlador es robusto en cuanto a sensibilidad a perturbaciones externas y error de estado estacionario. Sin embargo, se observó que existen valores de constantes de superficie de deslizamiento “k” límites donde si "k" es demasiado bajo se presenta una desaceleración y la respuesta ante perturbaciones es crítica, y si es demasiado alto vi se presenta un sobrepaso indeseado en el voltaje de salida. De esta manera se observó que es posible encontrar un único controlador que ofreciera cierta robustez a las perturbaciones típicas de una microrred con voltajes comerciales. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaRedes Inteligentes - Smartgridsspa
dc.description.sponsorshipRecursos del proyecto provenientes de la beca de doctorados nacionales 727 de Minciencias.spa
dc.format.extent102 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84899
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesCabana-Jiménez, K.; Candelo-Becerra, J.E.; Sousa Santos, V.; Santos, V.S. Comprehensive Analysis of Microgrids Configurations and Topologies. Sustainability 2022, 14, 1056, doi:10.3390/su14031056.spa
dc.relation.referencesTahim, A.P.N.; Pagano, D.J.; Heldwein, M.L.; Ponce, E. Control of Interconnected Power Electronic Converters in Dc Distribution Systems. COBEP 2011 - 11th Brazilian Power Electronics Conference 2011, 269–274, doi:10.1109/COBEP.2011.6085269.spa
dc.relation.referencesGrigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a Buck Converter with a Constant Power Load. PESC Record - IEEE Annual Power Electronics Specialists Conference 1998, 1, 72–78, doi:10.1109/PESC.1998.701881.spa
dc.relation.referencesHossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305, doi:10.1109/ACCESS.2018.2849065.spa
dc.relation.referencesDong, Y.; Liu, W.; Gao, Z.; Zhang, X. New Simulation Model of Ac Constant Power Load. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica 2009, 30, 115–120, doi:10.1109/TENCON.2008.4766537.spa
dc.relation.referencesPagano, D.J.; Ponce, E. On the Robustness of the DC-DC Boost Converter under Washout SMC. 2009 Brazilian Power Electronics Conference, COBEP2009 2009, 110–115, doi:10.1109/COBEP.2009.5347639.spa
dc.relation.referencesYue, Z.; Wei, Q. A Third-Order Sliding-Mode Controller for DC/DC Converters with Constant Power Loads. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society) 2011, 1–8, doi:10.1109/IAS.2011.6074347.spa
dc.relation.referencesBandyopadhyay, B.; Deepak, F.; Kim, K.S. Sliding Mode Control Using Novel Sliding Surfaces; 2009; Vol. 392; ISBN 9783642034473.spa
dc.relation.referencesRivetta, C.H.; Emadi, A.; Williamson, G.A.; Jayabalan, R.; Fahimi, B. Analysis and Control of a Buck DC-DC Converter Operating with Constant Power Load in Sea and Undersea Vehicles. IEEE Trans Ind Appl 2006, 42, 559–572, doi:10.1109/TIA.2005.863903.spa
dc.relation.referencesKakigano, H.; Nishino, A.; Miura, Y.; Ise, T. Distribution Voltage Control for DC Microgrid by Converters of Energy Storages Considering the Stored Energy. 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings 2010, 2851–2856, doi:10.1109/ECCE.2010.5618178.spa
dc.relation.referencesUtkin, V. Variable Structure Systems with Sliding Modes. IEEE Trans Automat Contr 1977, AC-22, 212–222.spa
dc.relation.referencesShtessel, Y.; Edwards, C.; Fridman, L. Sliding Mode Control and Observation, Series: Control Engineering; Birkhauser, 2016; Vol. 10; ISBN 978-0-81764-8923.spa
dc.relation.referencesVenkataramanan, G.; Marnay, C. A larger role for microgrids. IEEE Power Energy Mag. 2008, 6, 78–82.spa
dc.relation.referencesBadal, F.R.; Das, P.; Sarker, S.K.; Das, S.K. A survey on control issues in renewable energy integration and microgrid. Prot. Control Mod. Power Syst. 2019, 4, 8.spa
dc.relation.referencesGarcía Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Energy Management in Microgrids with Renewable Energy Sources: A Literature Review. Appl. Sci. 2019, 9, 3854.spa
dc.relation.referencesBouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766.spa
dc.relation.referencesRocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749.spa
dc.relation.referencesDragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549.spa
dc.relation.referencesDragicevic, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 2015, 31, 4876–4891.spa
dc.relation.referencesZinober, A.S.I. An introduction to sliding mode variable structure control. In Variable Structure and Lyapunov Control; Springer: London, UK, 1994; pp. 1–22.spa
dc.relation.referencesTahim, A.P.N.; Pagano, D.J.; Ponce, E. Nonlinear control of dc-dc bidirectional converters in stand-alone dc Microgrids. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 3068–3073.spa
dc.relation.referencesKwasinski, A.; Onwuchekwa, C.N. Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads. IEEE Trans. Power Electron. 2011, 26, 822–834.spa
dc.relation.referencesZhao, Y.; Qiao, W.; Ha, D. A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans. Ind. Appl. 2014, 50, 1448–1458.spa
dc.relation.referencesGrigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a buck converter with a constant power load. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka, Japan, 22–22 May 1998; Volume 1, pp. 72–78.spa
dc.relation.referencesHossain, E.; Perez, R.; Nasiri, A.; Padmanaban, S. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 2018, 6, 33285–33305.spa
dc.relation.referencesAL-Nussairi, M.K.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Siano, P. Constant power loads (CPL) with Microgrids: Problem definition, stability analysis and compensation techniques. Energies 2017, 10, 1656.spa
dc.relation.referencesHoyos, F.E.; Candelo-Becerra, J.E.; Toro, N. Numerical and experimental validation with bifurcation diagrams for a controlled DC–DC converter with quasi-sliding control. TecnoLógicas 2018, 21, 147–167.spa
dc.relation.referencesHoyos, F.; Candelo, J.; Silva, J. Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC. INGE CUC 2018, 14, 9–18.spa
dc.relation.referencesPonce, E.; Pagano, D.J. Sliding Dynamics Bifurcations in the Control of Boost Converters*. IFAC Proc. Vol. 2011, 44, 13293–13298.spa
dc.relation.referencesHoyos, F.E.; Burbano, D.; Angulo, F.; Olivar, G.; Toro, N.; Taborda, J.A. Effects of Quantization, Delay and Internal Resistances in Digitally ZAD-Controlled Buck Converter. Int. J. Bifurc. Chaos 2012, 22, 1250245.spa
dc.relation.referencesFossas, E.; Griñó, R.; Biel, D. Quasi-Sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm. In Proceedings of the Advances in Variable Structure Systems-6th IEEE International Workshop on Variable Structure Systems, Gold Coast, Australia, 7–9 December 2000; pp. 335–344.spa
dc.relation.referencesAshita, S.; Uma, G.; Deivasundari, P. Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter. IET Power Electron. 2014, 7, 289–298.spa
dc.relation.referencesHoyos, F.E.; Candelo-Becerra, J.E.; Hoyos Velasco, C.I. Model-Based Quasi-Sliding Mode Control with Loss Estimation Applied to DC–DC Power Converters. Electronics 2019, 8, 1086.spa
dc.relation.referencesHoyos, F.E.; Toro, N.; Garcés-Gómez, Y. Numerical and Experimental Comparison of the Control Techniques Quasi-Sliding, Sliding and PID, in a DC-DC Buck Converter. Sci. Tech. 2018, 23, 25–33.spa
dc.relation.referencesG. Venkataramanan and C. Marnay, A larger role for microgrids, IEEE Power Energy Mag., vol. 6, no. 3, pp. 78–82, May 2008. doi: 10.1109/MPE.2008.918720.spa
dc.relation.referencesY. Xu, C.-C. Liu, K. P. Schneider, F. K. Tuffner, and D. T. Ton, Microgrids for Service Restoration to Critical Load in a Resilient Distribution System, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 426–437, Jan. 2018. doi: 10.1109/TSG.2016.2591531.spa
dc.relation.referencesS. K. Sahoo, A. K. Sinha, and N. K. Kishore, Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review, IEEE J. Emerg. Sel. Top. Power Electron., vol. 6, no. 2, pp. 738–759, Jun. 2018. doi: 10.1109/JESTPE.2017.2786588.spa
dc.relation.referencesI. Gadoura, V. Grigore, J. Hatonen, J. Kyyra, P. Vallittu, and T. Suntio, Stabilizing a telecom power supply feeding a constant power load, in INTELEC - Twentieth International Telecommunications Energy Conference (Cat. No.98CH36263), pp. 243–248. doi: 10.1109/INTLEC.1998.793506.spa
dc.relation.referencesR. W. Erickson, D. Maksimović, R. W. Erickson, and D. Maksimović, Converter Circuits, in Fundamentals of Power Electronics, Springer US, 2001, pp. 131–184.spa
dc.relation.referencesQ. Xu, C. Zhang, C. Wen, and P. Wang, A Novel Composite Nonlinear Controller for Stabilization of Constant Power Load in DC Microgrid, IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 752– 761, Jan. 2019. doi: 10.1109/TSG.2017.2751755.spa
dc.relation.referencesM. WU and D. D.-C. LU, Active stabilization methods of electric power systems with constant power loads: a review, J. Mod. Power Syst. Clean Energy, vol. 2, no. 3, pp. 233–243, Sep. 2014. doi: 10.1007/s40565-014-0066-y.spa
dc.relation.referencesS. Pang et al., Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load, IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6476–6485, Nov. 2019. doi: 10.1109/TIA.2019.2938149.spa
dc.relation.referencesP. Liutanakul, A.-B. Awan, S. Pierfederici, B. Nahid-Mobarakeh, and F. Meibody-Tabar, Linear Stabilization of a DC Bus Supplying a Constant Power Load: A General Design Approach, IEEE Trans. Power Electron., vol. 25, no. 2, pp. 475–488, Feb. 2010. doi: 10.1109/TPEL.2009.2025274.spa
dc.relation.referencesM. Su, Z. Liu, Y. Sun, H. Han, and X. Hou, Stability analysis and stabilization methods of DC microgrid with multiple parallel- connected DC-DC converters loaded by CPLs, IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 132–142, Jan. 2016. doi: 10.1109/TSG.2016.2546551.spa
dc.relation.referencesR. S. Balog, W. W. Weaver, and P. T. Krein, The Load as an Energy Asset in a Distributed DC SmartGrid Architecture, IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 253–260, Mar. 2012. doi: 10.1109/TSG.2011.2167722.spa
dc.relation.referencesA. Kwasinski and C. N. Onwuchekwa, Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant- Power Loads, IEEE Trans. Power Electron., vol. 26, no. 3, pp. 822–834, Mar. 2011. doi: 10.1109/TPEL.2010.2091285.spa
dc.relation.referencesS. Singh and D. Fulwani, Constant power loads: A solution using sliding mode control, in IECON Proceedings (Industrial Electronics Conference), 2014, pp. 1989–1995. doi: 10.1109/IECON.2014.7048775.spa
dc.relation.referencesV. Stramosk and D. J. Pagano, Nonlinear control of a bidirectional dc-dc converter operating with boost-type Constant- Power Loads, in 2013 Brazilian Power Electronics Conference, COBEP 2013 - Proceedings, 2013, pp. 305–310. doi: 10.1109/COBEP.2013.6785132.spa
dc.relation.referencesU. K. Kalla, B. Singh, S. S. Murthy, C. Jain, and K. Kant, Adaptive Sliding Mode Control of Standalone Single-Phase Microgrid Using Hydro, Wind, and Solar PV Array-Based Generation, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6806– 6814, Nov. 2018. doi: 10.1109/TSG.2017.2723845.spa
dc.relation.referencesW. Qi, S. Li, S.-C. Tan, and S. Y. R. Hui, Parabolic-Modulated Sliding-Mode Voltage Control of a Buck Converter, IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 844–854, Jan. 2018. doi: 10.1109/TIE.2017.2716859.spa
dc.relation.referencesB. A. Martinez-Treviño, A. El Aroudi, E. Vidal-Idiarte, A. Cid- Pastor, and L. Martinez-Salamero, Sliding-mode control of a boost converter under constant power loading conditions, IET Power Electron., vol. 12, no. 3, pp. 521–529, Mar. 2019. doi: 10.1049/iet-pel.2018.5098.spa
dc.relation.referencesY. M. Alsmadi et al., Sliding mode control of photovoltaic based power generation systems for microgrid applications, Int. J. Control, pp. 1–12, Jan. 2020. doi: 10.1080/00207179.2019.1664762.spa
dc.relation.referencesC. A. Ramos-Paja, J. D. Bastidas-Rodríguez, D. González, S. Acevedo, and J. Peláez-Restrepo, Design and control of a buck- boost charger-discharger for DC-bus regulation in microgrids, Energies, vol. 10, no. 11, 2017. doi: 10.3390/en10111847.spa
dc.relation.referencesM. Monsalve-Rueda, J. E. Candelo-Becerra, and F. E. Hoyos, Dynamic Behavior of a Sliding-Mode Control Based on a Washout Filter with Constant Impedance and Nonlinear Constant Power Loads, Appl. Sci., vol. 9, no. 21, p. 4548, Oct. 2019. doi: 10.3390/app9214548.spa
dc.relation.referencesE. Ponce and D. J. Pagano, Sliding Dynamics Bifurcations in the Control of Boost Converters, IFAC Proc. Vol., vol. 44, no. 1, pp. 13293–13298, Jan. 2011. doi: 10.3182/20110828-6-IT-1002.02603.spa
dc.relation.referencesKhongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331.spa
dc.relation.referencesOuadi, H., Et-taoussi, M., Bouhlal, A., Nonlinear Control of Multilevel Inverter for Grid Connected Photovoltaic System with Power Quality Improvement, (2017) International Review of Electrical Engineering (IREE), 12 (1), pp. 43-59. doi: https://doi.org/10.15866/iree.v12i1.10685.spa
dc.relation.referencesDi Noia, L., Del Pizzo, A., Meo, S., Reduced-Order Averaged Model and Non-Linear Control of a Dual Active Bridge DC-DC Converter for Aerospace Applications, (2017) International Review of Aerospace Engineering (IREASE), 10 (5), pp. 259-266. doi: https://doi.org/10.15866/irease.v10i5.13818.spa
dc.relation.referencesRached, B., Elharoussi, M., Abdelmounim, E., DSP in the Loop Implementation of Sliding Mode and Super Twisting Sliding Mode Controllers Combined with an Extended Kalman Observer for Wind Energy System Involving a DFIG, (2020) International Journal on Energy Conversion (IRECON), 8 (1), pp. 26-37. doi: https://doi.org/10.15866/irecon.v8i1.18432.spa
dc.relation.referencesMerabet, L., Chaker, A., Kouzou, A., Boulouiha, H., Elaguab, M., Investigation on the Control of DFIG Used in Power Generation Based on Sliding Mode Control and SV-PWM, (2019) International Journal on Energy Conversion (IRECON), 7 (4), pp. 148-161. doi: https://doi.org/10.15866/irecon.v7i4.17844.spa
dc.relation.referencesTesfahunegn, S., Hajizadeh, A., Undeland, T., Ulleberg, O., Vie, P., Modelling and Control of Grid-Connected PV/Fuel Cell/Battery Hybrid Power System, (2018) International Journal on Energy Conversion (IRECON), 6 (5), pp. 168-177. doi: https://doi.org/10.15866/irecon.v6i5.16652.spa
dc.relation.referencesGursoy, M.; Zhuo, G.; Lozowski, A.G.; Wang, X. Photovoltaic Energy Conversion Systems with Sliding Mode Control. Energies 330 2021, 14, 6071.spa
dc.relation.referencesDing, S.; Zheng, W.X.; Sun, J.; Wang, J. Second-Order Sliding-Mode Controller Design and Its Implementation for Buck Converters. IEEE Trans. Ind. Inf. 2018, 14, 1990–2000.spa
dc.relation.referencesRakhtAla, S.M.; Yasoubi, M.; HosseinNia, H. Design of second order sliding mode and sliding mode algorithms: a practical insight to DC-DC buck converter. IEEE/CAA J. Autom. Sin. 2017, 4, 483–497.spa
dc.relation.referencesCucuzzella, M.; Incremona, G.P.; Ferrara, A. Design of Robust Higher Order Sliding Mode Control for Microgrids. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2015, 5, 393–401.spa
dc.relation.referencesLe Nhu Ngoc Thanh, H.; Hong, S.K. Quadcopter Robust Adaptive Second Order Sliding Mode Control Based on PID Sliding Surface. IEEE Access 2018, 6, 66850–66860.spa
dc.relation.referencesRakhtala, S.M.; Casavola, A. Real-Time Voltage Control Based on a Cascaded Super Twisting Algorithm Structure for DC–DC Converters. IEEE Trans. Ind. Electron. 2022, 69, 633–641.spa
dc.relation.referencesDu, W.; Zhang, J.; Zhang, Y.; Qian, Z. Stability Criterion for Cascaded System With Constant Power Load. IEEE Trans. Power Electron. 2013, 28, 1843–1851.spa
dc.relation.referencesSongbin, L.; Zhiyuan, F.; Yang, G.; Hai, K.L.; Peng, W. Second-order sliding-mode control of synchronous buck converter based on sub-optimal algorithm. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 2017, pp. 1–6.spa
dc.relation.referencesKaplan, O.; Bodur, F. Second-order sliding mode controller design of buck converter with constant power load. Int. J. Control 2023, 96, 1210–1226.spa
dc.relation.referencesCucuzzella, M.; Lazzari, R.; Trip, S.; Sandroni, C.; Ferrara, A. Robust voltage regulation of boost converters in DC microgrids. In Proceedings of the 2018 European Control Conference (ECC), 2018, pp. 2350–2355.spa
dc.relation.referencesIncremona, G.P.; Cucuzzella, M.; Ferrara, A. Adaptive suboptimal second-order sliding mode control for microgrids. Int. J. Control 2016, 89, 1849–1867.spa
dc.relation.referencesHan, Y.; Ma, R.; Cui, J. Adaptive Higher-Order Sliding Mode Control for Islanding and Grid-Connected Operation of a Microgrid. Energies 2018, 11, 1459.spa
dc.relation.referencesWu, J.; Yang, L.; Lu, Z.; Wang, Q. Robust adaptive composite control of DC–DC boost converter with constant power load in DC microgrid. Energy Reports 2023, 9, 855–865. Selected papers from 2022 International Conference on Frontiers of Energy and Environment Engineering, https://doi.org/https://doi.org/10.1016/j.egyr.2023.04.199.spa
dc.relation.referencesYi, S.; Zhai, J. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Transactions 2019, 90, 41–51. https://doi.org/https://doi.org/10.1016/j.isatra.2018.12.046.spa
dc.relation.referencesChen, S.Y.; Chiang, H.H.; Liu, T.S.; Chang, C.H. Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control. IEEE/ASME Transactions on Mechatronics 2019, 24, 741–752. https://doi.org/10.1109/TMECH.2019.2892401.spa
dc.relation.referencesKhooban, M.H.; Gheisarnejad, M.; Farsizadeh, H.; Masoudian, A.; Boudjadar, J. A New Intelligent Hybrid Control Approach for DC–DC Converters in Zero-Emission Ferry Ships. IEEE Transactions on Power Electronics 2020, 35, 5832–5841. https: //doi.org/10.1109/TPEL.2019.2951183.spa
dc.relation.referencesLevaggi, L. Sliding modes in Banach spaces. Differential and Integral Equations 2002, 15, 167 – 189. https://doi.org/10.57262/die/ 1356060871.spa
dc.relation.referencesTriggiani, R. On the stabilizability problem in Banach space. Journal of Mathematical Analysis and Applications 1975, 52, 383–403. https://doi.org/https://doi.org/10.1016/0022-247X(75)90067-0.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembRedes eléctricas
dc.subject.lembElectric networks
dc.subject.lembAnálisis de redes eléctricas
dc.subject.lembElectric network analysis
dc.subject.proposalSliding mode controleng
dc.subject.proposalMicrogrideng
dc.subject.proposalHigher order controleng
dc.subject.proposalBuck convertereng
dc.subject.proposalConstant power loadeng
dc.subject.proposalControl deslizantespa
dc.subject.proposalMicroredspa
dc.subject.proposalConvertidor Buckspa
dc.subject.proposalControl de alto ordenspa
dc.subject.proposalCargas de potencia constantespa
dc.titleDesign and analysis of a multi-stage control for power multi-converters in a DC microgrideng
dc.title.translatedDiseño y análisis de un control multietapa para multiconvertidores de potencia en una microrred DCspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
13870453-2023.pdf
Tamaño:
4.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis doctoral

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: