Multiagent Control of Autonomous Vehicles in Presence of Non-Cooperative Agents using Game Theory

dc.contributor.advisorMojica Nava, Eduardo Alirio
dc.contributor.advisorTéllez Castro, Duván Andrés
dc.contributor.authorOspina Gaitan, Nestor Ivan
dc.contributor.googlescholarNI Ospinaspa
dc.contributor.researchgateOspina Gaitan, Nestor Ivanspa
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.date.accessioned2023-03-31T16:32:58Z
dc.date.available2023-03-31T16:32:58Z
dc.date.issued2023-03-08
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractThis thesis proposes a solution to the problem of autonomous vehicle driving in a road environment, specifically in the presence of agent-driven vehicles with selfish decisions and aggressive maneuvers. The controller tries to solve the optimization problem using a \textit{Model Predictive Control}(MPC). Taking advantage of the previous technique for trajectory prediction, the controller uses this to better predict the neighbors' position and plan its trajectory. In addition, the predictive model can solve the \textit{Optimal Control Problem} by complying with security restrictions, avoiding obstacles, and achieving its primary objective. The \textit{Optimal Control Problem} has non-convex constraints due to its based on mixed-integer variables. By creating non-linear MPC that can deal with the problem of hybrid variables, it is sought to solve the problem of driving vehicles against aggressive and non-cooperative decisions for the network. Furthermore, all agents in the system can be controlled by creating local controllers based on \textit{Game Theory}. We analyzed two methods to find an optimal solution: centralized and decentralized. The most effective and viable controller is chosen after objective research and comparison of all others. Since the centralized MPC provides the best solution for the entire plant, it is used as a benchmark. The first decomposed algorithm is centralized MPC, in which the neighboring subsystems give the information to the central node, calculate the new routes and transmit in each iteration of the MPC. The second approach is based on optimal distributed decentralized MPC. The cars are based on the \textit{Generalized Potential Game theory} in both cases. Each agent solves its problem sequentially and shares its next move with neighbors, looking for a $\epsilon$-Nash equilibrium. Both drivers can feasibly calculate their trajectory by relying on additional constraints while avoiding other vehicles. Distributed controllers are evaluated in three different scenarios, using three criteria: the efficiency of the global controller, the time it takes for each controller to find an answer, and the feasibility of the controller with the increase in steps that the controller must predict. The first scenario gives an idea of the controller's behavior against agents with unknown maneuvers; the second shows the controller's behavior against increased constraints and connections with neighbors, and the third tests the controller by reducing its environmental variables. (Texto tomado de la fuente)eng
dc.description.abstractEsta tesis propone una solución al problema de la conducción autónoma de vehículos en un entorno vial, concretamente en presencia de vehículos conducidos por agentes con decisiones egoístas y maniobras agresivas. El controlador trata de resolver el problema de optimización basado en un Control Predictivo de Modelo (MPC). Aprovechando la técnica anterior de predicción de trayectoria, el controlador la utiliza para predecir mejor la posición de los vecinos y planificar su trayectoria. Además, el modelo predictivo puede resolver el problema de control óptimo al cumplir con las restricciones de seguridad, evitar obstáculos y lograr su objetivo principal. El problema de control óptimo tiene restricciones no convexas debido a las variables enteras mixtas en las que se basa. Mediante la creación de MPC no lineales que puedan lidiar con el problema de las variables híbridas, se busca resolver el problema de conducción de vehículos frente a decisiones agresivas y no cooperativas para la red. Además, todos los agentes del sistema pueden controlarse mediante la creación de controladores locales basados en \textit{Teoría de Juegos}. Analizamos dos métodos para encontrar una solución óptima: centralizado y descentralizado. El controlador más eficaz y viable se elige después de una investigación objetiva y la comparación de todos los demás. Dado que el MPC proporciona la mejor solución para toda la planta, se utiliza como punto de referencia. El primer algoritmo descompuesto es MPC centralizado, en el que los subsistemas vecinos entregan la información al nodo central, calculan las nuevas rutas y transmiten en cada iteración del controlador por MPC. El segundo enfoque se basa en MPC descentralizado distribuido óptimo. Los coches se basan en la teoría del Juego de Potencial Generalizado en ambos casos. Cada agente resuelve su problema secuencialmente y comparte su próximo movimiento con los vecinos, buscando un equilibrio $\epsilon$-Nash. Ambos conductores pueden calcular su trayectoria de manera factible confiando en restricciones adicionales mientras evitan otros vehículos. Los controladores distribuidos se evalúan en tres escenarios diferentes, utilizando tres criterios: la eficiencia del controlador global, el tiempo que tarda cada controlador en encontrar una respuesta y la viabilidad del controlador con el aumento de pasos que el controlador debe predecir. El primer escenario da una idea del comportamiento del controlador frente a agentes con maniobras desconocidas; el segundo muestra el comportamiento del controlador frente a mayores restricciones y conexiones con vecinos, y el tercero prueba el controlador reduciendo sus variables ambientales.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaControlspa
dc.description.researchareaRoboticsspa
dc.format.extentxiv, 87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83682
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Administraciónspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAlrifaee, Bassam: Networked Model Predictive Control for Vehicle Collision Avoidance, Tesis de Grado, 05 2017spa
dc.relation.referencesAlrifaee, Bassam ; Ghanbarpour, Masoumeh ; Abel, Dirk: Centralized Non-Convex Model Predictive Control for Cooperative Collision Avoidance of Networked Vehicles, 2014spa
dc.relation.referencesAlrifaee, Bassam ; Maczijewski, Janis ; Abel, Dirk: Sequential Convex Programming MPC for Dynamic Vehicle Collision Avoidance, 2017spa
dc.relation.referencesBauso, Dario: Game Theory: Models, Numerical Methods and Applications. En:Foundations and Trends in Systems and Control 1 (2014), 10, p. 379–522spa
dc.relation.referencesBemporad, Alberto ; Morari, Manfred: Control of systems integrating logic, dynamics, and constraints. En: Automatica 35 (1999), Nr. 3, p. 407–427.spa
dc.relation.referencesBennett, S.: A brief history of automatic control. En: IEEE Control Systems Magazine 16 (1996), Nr. 3, p. 17–25spa
dc.relation.referencesBrock, Oliver ; Khatib, Oussama: High-Speed Navigation Using the Global Dynamic Window Approach. (2000), 01spa
dc.relation.referencesCarona, Ricardo ; Aguiar, A P. ; Gaspar, Jose: Control of unicycle type robots tracking, path following and point stabilization. (2008)spa
dc.relation.referencesCesa-Bianchi, Nicol`o ; Lugosi, G ́abor: Prediction, Learning, and Games. 2006spa
dc.relation.referencesCheng, Shuo ; Li, Liang ; Chen, Xiang ; nan Fang, Sheng ; yu Wang, Xiang ; heng Wu, Xiu ; bing Li, Wei: Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity. En: Applied Energy 268 (2020).spa
dc.relation.referencesDogra, Anutusha ; Jha, Rakesh K. ; Jain, Shubha: A Survey on Beyond 5G Network With the Advent of 6G: Architecture and Emerging Technologies.spa
dc.relation.referencesDunbar, William: Distributed Receding Horizon Control of Multiagent Systems. (2004)spa
dc.relation.referencesDunbar, William ; Murray, Richard: Distributed receding horizon control for multivehicle formation stabilization. En: Automatica 42 (2006)spa
dc.relation.referencesabiani, Filippo ; Grammatico, Sergio: Multi-Vehicle Automated Driving as a Generalized Mixed-Integer Potential Game. En: IEEE Transactions on Intelligent Transportation Systems PP (2019)spa
dc.relation.referencesFacchinei, F. ; Kanzow, Christian: Generalized Nash equilibrium problems. En: Annals of Operations Research 175 (2010)spa
dc.relation.referencesFacchinei, Francisco ; Pang, Jong-Shi: Nash equilibria: The variational approach. En: Convex Optimization in Signal Processing and Communications (2009spa
dc.relation.referencesFacchinei, Francisco ; Piccialli, Veronica: Decomposition algorithms for generalized potential games. En: Computational Optimization and Applications 50 (2011)spa
dc.relation.referencesFudenberg, Drew ; Tirole, Jean: Game Theory. Cambridge, MA : MIT Press, 1991.– Translated into Chinesse by Renin University Press, Bejing: China.spa
dc.relation.referencesGarcia, Carlos E. ; Prett, David M. ; Morari, Manfred: Model predictive control: Theory and practice—A survey. En: Automatica 25 (1989), Nr. 3, p. 335–348.spa
dc.relation.referencesGarrido-Jurado, Sergio ; Mu ̃noz-Salinas, Rafael ; Madrid-Cuevas, Francisco J. ; Mar ́ın-Jim ́enez, Manuel J.: Automatic generation and detection of highly reliable fiducial markers under occlusion.spa
dc.relation.referencesGehrig, S. K. ; Stein, F. J.: Dead reckoning and cartography using stereo vision for an autonomous car. En: Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289) Vol. 3, 1999spa
dc.relation.referencesHespanha, Joao: Noncooperative Game Theory: An Introduction for Engineers and Computer Scientists. 2017.spa
dc.relation.referencesHu, J. ; Bhowmick, P. ; Arvin, F. ; Lanzon, A. ; Lennox, B.: Cooperative Control of Heterogeneous Connected Vehicle Platoons: An Adaptive Leader Following Approach. En: IEEE Robotics and Automation Letters 5 (2020)spa
dc.relation.referencesJr, John ; Nash, John: Two-Person Cooperative Game. En: Econometrica 21 (1953), 02, p. 128–140spa
dc.relation.referencesLeyton-Brown, Kevin ; Shoham, Yoav: Essentials of Game Theory: A Concise Multidisciplinary Introduction. Vol. 2. 2008.spa
dc.relation.referencesMaestre, J.M.: Distributed Model Predictive Control Based on Game Theory, Tesis de Grado, 10 2010spa
dc.relation.referencesMarden, Jason R. ; Shamma, Jeff S.: Game Theory and Control. En: Annual Review of Control, Robotics, and Autonomous Systems 1 (2018), Nr. 1, p. 105–134.spa
dc.relation.referencesMayne, D.Q. ; Rawlings, J.B. ; Rao, C.V. ; Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. En: Automatica 36 (2000), Nr. 6, p. 789–814.spa
dc.relation.referencesMohseni, Fatemeh ; Frisk, Erik ; ̊Aslund, Jan ; Nielsen, Lars: Distributed Model Predictive Control for Highway Maneuvers. En: IFAC-PapersOnLine 50 (2017spa
dc.relation.referencesMoler., Clever: Matlab Optimizacion Toolbox,. (2022)spa
dc.relation.referencesMYERSON, ROGER B.: Game Theory: Analysis of Conflict. Harvard University Press, 1991spa
dc.relation.referencesNash, John: Equilibrium Points in N-Person Games. En: Proceedings of the National Academy of Sciences of the United States of America 36 (1950)spa
dc.relation.referencesNisan, Noam ; Roughgarden, Tim ; Tardos, ́Eva ; Vazirani, Vijay: Algorithmic Game Theory. 2007spa
dc.relation.referencesOptimization., LLC G.: gurobi optimizer reference manual,. (2021)spa
dc.relation.referencesOsborne, Martin ; Rubinstein, Ariel: A course in Game Theory. Vol. 63. 1994spa
dc.relation.referencesOspina Gaitan, Nestor ; Mojica-Nava, Eduardo ; Jaimes, L.G. ; Calderon, Juan: ARGroHBotS: An Affordable and Replicable Ground Homogeneous Robot Swarm Testbed. En: IFAC-PapersOnLine 54 (2021), 01, p. 256–261spa
dc.relation.referencesSagratella, Simone: Algorithms for generalized potential games with mixed-integer variables. En: Computational Optimization and Applications 68 (2017)spa
dc.relation.referencessar, Tamer ; Olsder, G.J.: Dynamic Noncooperative Game Theory. 1995spa
dc.relation.referencesShakey, Peter H.: the world’s first mobile, intelligent robot. 2015spa
dc.relation.referencesTaeihagh, Araz ; Lim, Hazel Si M.: Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks. En: Transport Reviews 39 (2018), Jul, Nr. 1, p. 103–128spa
dc.relation.referencesThrun, S.: Toward robotic cars. En: Commun. ACM 53 (2010), p. 99–106spa
dc.relation.referencesValencia, Felipe ; Pati ̃no, Julian: Game Theory Based Distributed Model Predictive Control for a Hydro-Power Valley Control, 2013.spa
dc.relation.referencesWorthmann, Karl ; Mehrez, Mohamed ; Zanon, Mario ; Mann, G.K.I. ; Gosine, Ray ; Diehl, Moritz: Model Predictive Control of Nonholonomic Mobile Robots Without Stabilizing Constraints and Costs.spa
dc.relation.referencesYang, Xue ; Liu, Jie ; Zhao, Feng ; Vaidya, Nitin: A Vehicle-to-Vehicle Communication Protocol for Cooperative Collision Warning., 2004, p. 114–123spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembConducción de automóvilesspa
dc.subject.lembAutomobile drivingeng
dc.subject.lembIngeniería del tránsitospa
dc.subject.lembTraffic engineeringeng
dc.subject.proposalGeneralized Mixed-Integer Potential Gameeng
dc.subject.proposalOptimal Controleng
dc.subject.proposalModel Predictive Controleng
dc.subject.proposalAutonomous Drivingeng
dc.subject.proposalDecentralized Networkeng
dc.subject.proposalTeoría de juegos potenciales con enteros mixtosspa
dc.subject.proposalControl optimospa
dc.subject.proposalControl predictivo de modelospa
dc.subject.proposalConducción autónomaspa
dc.subject.proposalRed descentralizadaspa
dc.titleMultiagent Control of Autonomous Vehicles in Presence of Non-Cooperative Agents using Game Theoryeng
dc.title.translatedControl multiagente de vehículos autónomos en presencia de agentes no cooperativos utilizando teoría de juegosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012417916.2023.pdf
Tamaño:
37.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Ingenieria - Automatizacion Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: