Modelación de campos magnéticos en galaxias tipo disco

dc.contributor.advisorCastañeda Colorado, Leonardo
dc.contributor.authorTavera Vizcaya, Nicolas Felipe
dc.contributor.researchgroupAstronomía Galáctica, Gravitación y Cosmologíaspa
dc.date.accessioned2024-01-25T15:45:19Z
dc.date.available2024-01-25T15:45:19Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, figurasspa
dc.description.abstractLos campos magnéticos son uno de los tópicos en astrofísica más fascinantes y desafiantes de observar y modelar. Han sido observados en un rango amplio de escalas: galaxias, cúmulos galácticos, planetas y estrellas a órdenes de los μG en el caso particular de las galaxias. Hasta ahora, el mecanismo dinamo es el más exitoso en explicar como los campos magnéticos se prolongan en el tiempo en galaxias espirales. Esta teoría predice campos con estructuras dipolares y cuadrupolares que han sido observados. En el presente trabajo, se deduce la ecuación de dinamo en el contexto teórico de la aproximación de campo medio. Teniendo en cuenta el disco y halo galáctico que conforman principalmente a una galaxia espiral; se soluciona la ecuación de dinamo para estas estructuras de manera independiente mediante una expansión en funciones propias. El campo magnético se simula considerando propiedades como el perfil de alturas y dos diferentes curvas de rotación para el disco de la galaxia así como se tienen en cuenta los parámetros asociados al campo en el halo. En las simulaciones realizadas, se obtuvieron campos magnéticos en el disco que presentan simetría axial, como se ha observado en galaxias espirales M31, IC 342 y NGC 253. De la misma manera, las simulaciones obtenidas muestran estructuras cuadrupolares de la componente poloidal del campo en el disco obteniéndose máximos de intensidades hacia el interior de la galaxia, como se ha demostrado observacionalmente para la Vía Láctea. Se obtuvieron intensidades del campo magnético total entre los 3 μG y 4 μGa distancias radiales aproximadas de 8.5 kpc. Según las observaciones basadas en el efecto Zeeman en las cercanías a la posición Solar, en la Vía Láctea, se estima que el campo magnético oscila en intensidad en el rango de 2 μG a 10 μG. Se implementó un paquete de Python de código abierto, denominado GalMag, para llevar a cabo las simulaciones del campo magnético. (Texto tomado de la fuente)spa
dc.description.abstractMagnetic fields are one of the most fascinating and challenging topics in astrophysics to observe and model. They have been observed on a wide range of scales, from galaxies, galactic clusters, planets, and stars to orders of μG in the case of galaxies. So far, the dynamo mechanism has been the most successful in explaining how magnetic fields persist over time in spiral galaxies. This theory predicts fields with dipolar and quadrupolar structures, which have been observed. In this study, the dynamo equation is derived within the theoretical framework of the mean-field approximation. Taking into account the galactic disk and halo, which primarily constitute a spiral galaxy, the dynamo equation is solved for these structures independently using an expansion in eigenfunctions. The magnetic field is simulated, considering properties such as the height profile and two different rotation curves for the galaxy's disk, as well as parameters associated with the halo field. In the conducted simulations, magnetic fields in the disk exhibit axial symmetry, as observed in spiral galaxies like M31, IC 342, and NGC 253. Similarly, the obtained simulations display quadrupolar structures in the poloidal component of the disk's field, with intensity maxima towards the galactic center, as has been demonstrated observationally for the Milky Way. The total magnetic field intensities obtained in the simulations range between 3 μG and 4 μG at approximate radial distances of 8.5 kpc. Based on observations using the Zeeman effect near the Solar position in the Milky Way, it is estimated that the magnetic field varies in intensity within the range of 2 μG to 10 μG. An open-source Python package called GalMag was implemented to conduct these magnetic field simulations.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaAstrofísicaspa
dc.format.extentx, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85442
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesLawrence Widrow. Origin of galactic and extragalactic magnetic fields. Reviews of Modern Physics, 74, 08 2002.spa
dc.relation.referencesRainer Beck. Magnetic fields in spiral galaxies. The Astronomy and Astrophysics Review, 24(1), dec 2015.spa
dc.relation.referencesMarijke Haverkorn. Magnetic fields in the milky way. In Astrophysics and Space Science Library, pages 483–506. Springer Berlin Heidelberg, oct 2014.spa
dc.relation.referencesTess R. Jaffe. Practical modeling of large-scale galactic magnetic fields: Status and prospects. Galaxies, 7(2):52, apr 2019.spa
dc.relation.referencesRudiger Pakmor, Federico Marinacci, and Volker Springel. Magnetic Fields In Cosmological Simulations Of Disk Galaxies. The Astrophysical Journal, 783(1):L20, feb 2014.spa
dc.relation.referencesPeng Wang and Tom Abel. Magnetohydrodynamic simulations of disk galaxy formation: The magnetization of the cold and warm medium. The Astrophysical Journal, 696(1):96, apr 2009.spa
dc.relation.referencesRuth Durrer and Andrii Neronov. Cosmological magnetic fields: their generation, evolution and observation. The Astronomy and Astrophysics Review, 21(1), jun 2013.spa
dc.relation.referencesKandaswamy Subramanian. From primordial seed magnetic fields to the galactic dynamo. Galaxies, 7(2), 2019.spa
dc.relation.referencesHidekazu Hanayama, Keitaro Takahashi, Kei Kotake, Masamune Oguri, Kiyotomo Ichiki, and Hiroshi Ohno. Biermann mechanism in primordial supernova remnant and seed magnetic fields. The Astrophysical Journal, 633(2):941, nov 2005.spa
dc.relation.referencesG S Bisnovatyi-Kogan, A A Ruzmaikin, and R A Syunyaev. Star contraction and magnetic-field generation in protogalaxies. Sov. Astron. AJ (Engl. Transl.), v. 17, no. 1, pp. 137-139, 7 1973.spa
dc.relation.referencesAxel Brandenburg and Kandaswamy Subramanian. Astrophysical magnetic fields and nonlinear dynamo theory. Physics Reports, 417(1):1–209, 2005.spa
dc.relation.referencesH. Kotarba, H. Lesch, K. Dolag, T. Naab, P. H. Johansson, and F. A. Stasyszyn. Magnetic field structure due to the global velocity field in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 397(2):733–747, 2009.spa
dc.relation.referencesNtormousi, Evangelia, Tassis, Konstantinos, Del Sordo, Fabio, Fragkoudi, Francesca, and Pakmor, R¨ udiger. A dynamo amplifying the magnetic field of a milky-way-like galaxy. A&A, 641:A165, 2020.spa
dc.relation.referencesL. F. S. Rodrigues, A. Shukurov, A. Fletcher, and C. M. Baugh. Galactic magnetic fields and hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society, 450(4):3472–3489, 05 2015.spa
dc.relation.referencesA.S. Soto. Electromagnetismo 2.a edici´on. Universidad de Antioquia, 2021.spa
dc.relation.referencesDavidW. Hughes. Mean field electrodynamics: triumphs and tribulations. Journal of Plasma Physics, 84(4):735840407, 2018.spa
dc.relation.referencesP.H. Roberts. An Introduction to Magnetohydrodynamics. American Elsevier Publishing Company, 1967.spa
dc.relation.referencesEdward M. Purcell and David J. Morin. Electricity and Magnetism. Cambridge University Press, 3 edition, 2013.spa
dc.relation.referencesJohn David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed. edition, 1999.spa
dc.relation.referencesAndrew D. Gilbert. Chapter 9 - dynamo theory. volume 2 of Handbook of Mathematical Fluid Dynamics, pages 355–441. North-Holland, 2003.spa
dc.relation.referencesH. K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics. Cambridge University Press, 1978.spa
dc.relation.referencesL.D. Landau and E.M. Lifshitz. Fluid Mechanics: Volume 6. Number v. 6. Elsevier Science, 2013.spa
dc.relation.referencesAxel Brandenburg. Computational aspects of astrophysical MHD and turbulence. In Antonio Ferriz-Mas and Manuel N´u˜ nez, editors, Advances in Nonlinear Dynamics, page 269. 2003.spa
dc.relation.referencesS. Vainshtein and Alexander Ruzmaikin. Generation of the large-scale galactic magnetic field. Astronomicheskii Zhurnal, 48:902, 09 1971.spa
dc.relation.referencesE. N. Parker. The Generation of Magnetic Fields in Astrophysical Bodies. II. The Galactic Field. The Astropysical Journal, 163:255, January 1971.spa
dc.relation.referencesF. Krause and K.-H. R¨adler. Chapter 2 - basic ideas of mean-field electrodynamics. In F. Krause and K.-H. R¨adler, editors, Mean-Field Magnetohydrodynamics and Dynamo Theory, pages 15–18. Pergamon, 1980.spa
dc.relation.referencesK-H Radler. Mean-field dynamos: The old concept and some recent developments. Astronomische Nachrichten, 335(5):459–469, 2014.spa
dc.relation.referencesA.A. Ruzmaikin, D.D. Sokoloff, and A.M. Shukurov. Magnetic Fields of Galaxies. Astrophysics and Space Science Library. Springer Netherlands, 2013.spa
dc.relation.referencesRainer Beck, Axel Brandenburg, David Moss, Anvar Shukurov, and Dmitry Sokoloff. Galactic magnetism: Recent developments and perspectives. Annual Review of Astronomy and Astrophysics, 34:155–206, January 1996.spa
dc.relation.referencesRussell M. Kulsrud. A critical review of galactic dynamos. Annual Review of Astronomy and Astrophysics, 37(1):37–64, 1999.spa
dc.relation.referencesFranc¸ois Rincon. Dynamo theories. Journal of Plasma Physics, 85(4):205850401, August 2019.spa
dc.relation.referencesAxel Brandenburg. Advances in mean-field dynamo theory and applications to astrophysical turbulence. Journal of Plasma Physics, 84(4):735840404, August 2018.spa
dc.relation.referencesRussell M. Kulsrud. Plasma Physics for Astrophysics. Princeton University Press, 2005.spa
dc.relation.referencesHanna Kotarba. Magnetic Field Evolution in Isolated and Interacting Spiral Galaxies. Phd thesis, June 2011. Aviable at http://nbn-resolving.de/urn:nbn:de:bvb: 19-131513.spa
dc.relation.referencesAnvar Shukurov and Dmitry Sokoloff. Course 4 astrophysical dynamos. In Ph. Cardin and L.F. Cugliandolo, editors, Dynamos, volume 88 of Les Houches, pages 251– 299. Elsevier, 2008.spa
dc.relation.referencesShukurov, Anvar, Rodrigues, Luiz Felippe S., Bushby, Paul J., Hollins, James, and Rachen, J ¨org P. Aphysical approach to modelling large-scale galactic magnetic fields. AA, 623:A113, 2019.spa
dc.relation.referencesYoshiaki Sofue and Vera Rubin. Rotation Curves of Spiral Galaxies. Annual Review of Atronomy and Astrophysics, 39:137–174, January 2001.spa
dc.relation.referencesD. P. Clemens. Massachusetts-Stony Brook Galactic plane CO survey: the galactic disk rotation curve. The Astrophysical Journal, 295:422–436, August 1985.spa
dc.relation.referencesAlexey Poezd, Anvar Shukurov, and Dmitry Sokoloff. Global magnetic patterns in the MilkyWay and the Andromeda nebula. Monthly Notices of the Royal Astronomical Society, 264(2):285–297, 09 1993.spa
dc.relation.referencesA.S. Davydov and D. Haar. Quantum Mechanics. International series in natural philosophy. Elsevier Science & Technology Books, 1976.spa
dc.relation.referencesYameng Ji, Laura Cole, Paul Bushby, and Anvar Shukurov. Asymptotic solutions for mean-field slab dynamos. Geophysical and Astrophysical Fluid Dynamics, 108, 12 2013.spa
dc.relation.referencesL. F. S. Rodrigues, G. R. Sarson, A. Shukurov, P. J. Bushby, and A. Fletcher. The parker instability in disk galaxies. The Astrophysical Journal, 816(1):2, dec 2015.spa
dc.relation.referencesAxel Brandenburg and Evangelia Ntormousi. Galactic dynamos. Annual Review of Astronomy and Astrophysics, 61(1):561–606, 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.lccCampos magnéticosspa
dc.subject.lccMagnetic fieldseng
dc.subject.lccGalaxiasspa
dc.subject.lccGalaxieseng
dc.subject.lccDinámica galácticaspa
dc.subject.lccGalactic dynamicseng
dc.subject.lccAstrofísicaspa
dc.subject.lccAstrophysicseng
dc.subject.lembCampos magnéticos cósmicosspa
dc.subject.lembMagnetic fields (Cosmic Physics)eng
dc.subject.proposalCampos magnéticosspa
dc.subject.proposalGalaxias espiralesspa
dc.subject.proposalDinamos galácticosspa
dc.subject.proposalCurvas de rotaciónspa
dc.subject.proposalMagnetic fieldseng
dc.subject.proposalSpiral galaxieseng
dc.subject.proposalGalactic dynamoseng
dc.subject.proposalRotation curveseng
dc.subject.proposalGalactic magnetic filedseng
dc.titleModelación de campos magnéticos en galaxias tipo discospa
dc.title.translatedModeling magnetic fields in disc galaxieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019088677.2023.pdf
Tamaño:
1.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: