Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos

dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.authorPrada Padilla, Sebastian
dc.contributor.researchgroupBioinformática del Instituto de Biotecnología de la Universidad Nacional de Colombiaspa
dc.coverage.countryColombia
dc.date.accessioned2024-01-23T16:26:56Z
dc.date.available2024-01-23T16:26:56Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, figurasspa
dc.description.abstractLa resistencia a los antimicrobianos es una amenaza de salud pública reconocida a nivel mundial y cobra especial atención en entidades hospitalarias, donde se presentas brotes infecciosos problemáticos por la resistencia de las bacterias y las condiciones de salud de los pacientes, por ello, las entidades hospitalarias implementan medidas de seguimiento epidemiológico para el control y prevención de la propagación de dichas infecciones. En los últimos años los investigadores han optado por incluir información genómica a los estudios epidemiológicos obteniendo resultados más precisos que aportan y podrían mejorar el control de estas infecciones en los hospitales. El objetivo de este trabajo fue diseñar e implementar un pipeline que integre datos clínicos y genómicos para el seguimiento de bacterias dentro de un hospital. Primero se hizo un análisis de requerimientos para determinar los métodos y herramientas bioinformáticas necesarias para el seguimiento con ambos tipos de datos, luego, se diseñó e implementó el pipeline basado en el sistema SGIG, una aplicación web para para la identificación, tipificación y seguimiento de la resistencia a antibióticos desarrolla por el grupo de investigación Bioinformática del Instituto de Biotecnología de la Universidad Nacional de Colombia; y por último, se evaluó la implementación del pipeline en el sistema SGIG con un conjunto de datos clínicos y genómicos provenientes de un hospital. Como resultado el SGIG ahora cuenta con el módulo: Reporte de epidemiologia de precisión, el cual genera un árbol de máxima verosimilitud basado en los SNPs del core genome y relaciona el árbol con una línea de tiempo que representa las estancias de los pacientes en los diferentes sitios del hospital. Este análisis permite hacer un seguimiento epidemiológico más preciso dentro del hospital que mejora el control de las infecciones bacterianas. (Texto tomado de la fuente)spa
dc.description.abstractAntimicrobial resistance is a globally recognized public health threat and receives special attention in hospitals, where infectious outbreaks occur and they are problematic due to the resistance of bacteria and the health conditions of the patients; therefore, hospitals implement epidemiological monitoring measures to control and prevent the spread of these infections. In recent years, researchers have opted to include genomic information to epidemiological studies obtaining more accurate results that provide and could improve the control of these infections in hospitals. The objective of the work is to design and implement a pipeline that integrates clinical and genomic data for the monitoring of bacteria within a hospital, first a requirements analysis was made to determine the methods and bioinformatics tools needed for monitoring with both types of data, then, the pipeline was designed and implemented based on the SGIG system, a web application for the identification, typing and monitoring of antibiotic resistance developed by the Bioinformatica research group of the Instituto de Biotecnología de la Universidad Nacional de Colombia, finally, the implementation of the pipeline in the SGIG system was evaluated with a clinical and genomic dataset from a hospital. As a result, the SGIG now has the module: Precision Epidemiology Report, which generates a maximum likelihood tree based on the SNPs of the core genome and relates the tree to a timeline representing patient stays in the different hospital sites. This analysis allows for more accurate epidemiological monitoring within the hospital that improves bacterial infection controleng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.researchareaBioinformática funcional y estructuralspa
dc.format.extentxiii, 55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85409
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.referencesAlcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., … McArthur, A. G. (2023). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690–D699. https://doi.org/10.1093/nar/gkac920spa
dc.relation.referencesAllard, M. W. (2016). Commentary: The Future of Whole-Genome Sequencing for Public Health and the Clinic. Journal of Clinical Microbiology, 54(8), 1946–1948. https://doi.org/´ñ m,,,spa
dc.relation.referencesArgudín, M. A., Deplano, A., Nonhoff, C., Yin, N., Michel, C., Martiny, D., De Keersmaecker, S. C. J., & Hallin, M. (2021). Epidemiology of the Staphylococcus aureus CA-MRSA USA300 in Belgium. European Journal of Clinical Microbiology & Infectious Diseases, 40(11), 2335–2347. https://doi.org/10.1007/s10096-021-04286-3spa
dc.relation.referencesBalloux, F., Brønstad Brynildsrud, O., van Dorp, L., Shaw, L. P., Chen, H., Harris, K. A., Wang, H., & Eldholm, V. (2018). From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic. Trends in Microbiology, 26(12), 1035–1048. https://doi.org/10.1016/j.tim.2018.08.004spa
dc.relation.referencesBlanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11(July), 1–7. https://doi.org/10.3389/fmicb.2020.01729spa
dc.relation.referencesBogusz, M., & Whelan, S. (2016). Phylogenetic Tree Estimation With and Without Alignment: New Distance Methods and Benchmarking. Systematic Biology, syw074. https://doi.org/10.1093/sysbio/syw074spa
dc.relation.referencesChen, Q., Zhou, J., Fan, J., Wu, S., Xu, L., Jiang, Y., Ruan, Z., Yu, Y., Yu, D., & Wang, X. (2018). Simultaneous emergence and rapid spread of three OXA-23 producing Acinetobacter baumannii ST208 strains in intensive care units confirmed by whole genome sequencing. Infection, Genetics and Evolution, 58, 243–250. https://doi.org/10.1016/j.meegid.2018.01.005spa
dc.relation.referencesDangel, A., Berger, A., Messelhäußer, U., Konrad, R., Hörmansdorfer, S., Ackermann, N., & Sing, A. (2019). Genetic diversity and delineation of Salmonella Agona outbreak strains by next generation sequencing, Bavaria, Germany, 1993 to 2018. Eurosurveillance, 24(18). https://doi.org/10.2807/1560-7917.ES.2019.24.18.1800303spa
dc.relation.referencesDecreto 3518, (2006).spa
dc.relation.referencesFlorensa, A. F., Kaas, R. S., Clausen, P. T. L. C., Aytan-Aktug, D., & Aarestrup, F. M. (2022). ResFinder – an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microbial Genomics, 8(1). https://doi.org/10.1099/mgen.0.000748spa
dc.relation.referencesGarza-Ramos, U., Rodríguez-Medina, N., Córdova-Fletes, C., Rubio-Mendoza, D., Alonso-Hernández, C. J., López-Jácome, L. E., Morfín-Otero, R., Rodríguez-Noriega, E., Rojas-Larios, F., Vázquez-Larios, M. del R., Ponce-de-Leon, A., Choy-Chang, E. V., Franco-Cendejas, R., Martinez-Guerra, B. A., Morales-de-La-Peña, C. T., Mena-Ramírez, J. P., López-Gutiérrez, E., García-Romo, R., Ballesteros-Silva, B., … Garza-González, E. (2023). Whole genome analysis of Gram-negative bacteria using the EPISEQ CS application and other bioinformatic platforms. Journal of Global Antimicrobial Resistance, 33, 61–71. https://doi.org/10.1016/j.jgar.2023.02.026spa
dc.relation.referencesGona, F., Comandatore, F., Battaglia, S., Piazza, A., Trovato, A., Lorenzin, G., Cichero, P., Biancardi, A., Nizzero, P., Moro, M., & Cirillo, D. M. (2020). Comparison of core-genome MLST, coreSNP and PFGE methods for klebsiella pneumoniae cluster analysis. Microbial Genomics, 6(4). https://doi.org/10.1099/mgen.0.000347spa
dc.relation.referencesGu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., Chan, E. W.-C., Shu, L., Yu, J., Zhang, R., & Chen, S. (2018). A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. The Lancet Infectious Diseases, 18(1), 37–46. https://doi.org/https://doi.org/10.1016/S1473-3099(17)30489-9spa
dc.relation.referencesHalachev, M. R., Chan, J. Z. M., Constantinidou, C. I., Cumley, N., Bradley, C., Smith-Banks, M., Oppenheim, B., & Pallen, M. J. (2014). Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England. Genome Medicine, 6(11), 1–13. https://doi.org/10.1186/s13073-014-0070-xspa
dc.relation.referencesHarris, S. R., Cartwright, E. J. P., Török, M. E., Holden, M. T. G., Brown, N. M., Ogilvy-Stuart, A. L., Ellington, M. J., Quail, M. A., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2013). Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: A descriptive study. The Lancet Infectious Diseases, 13(2), 130–136. https://doi.org/10.1016/S1473-3099(12)70268-2spa
dc.relation.referencesHofer, U. (2019). The cost of antimicrobial resistance. Nature Reviews Microbiology, 17(1), 3–3. https://doi.org/10.1038/s41579-018-0125-xspa
dc.relation.referencesJhon Donato. (2018). SISTEMA DE GESTIÓN DE INFORMACIÓN DE GENOMAS COMPLETOS DE CEPAS DE ACINETOBACTER BAUMANNII PARA LA IDENTIFICACIÓN, TIPIFICACIÓN Y SEGUIMIENTO DE RESISTENCIA A ANTIBIÓTICOS. Universidad Nacional de Colombia.spa
dc.relation.referencesKamachi, K., Yao, S.-M., Chiang, C.-S., Koide, K., Otsuka, N., & Shibayama, K. (2021). Rapid and simple SNP genotyping for Bordetella pertussis epidemic strain MT27 based on a multiplexed single-base extension assay. Scientific Reports, 11(1), 4823. https://doi.org/10.1038/s41598-021-84409-0spa
dc.relation.referencesKwong, J. C., Lane, C. R., Romanes, F., da Silva, A. G., Easton, M., Cronin, K., Waters, M. J., Tomita, T., Stevens, K., Schultz, M. B., Baines, S. L., Sherry, N. L., Carter, G. P., Mu, A., Sait, M., Ballard, S. A., Seemann, T., Stinear, T. P., & Howden, B. P. (2018). Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: Evidence from a complex multi-institutional KPC outbreak. PeerJ, 2018(1). https://doi.org/10.7717/peerj.4210spa
dc.relation.referencesLiu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–D692. https://doi.org/10.1093/nar/gky1080spa
dc.relation.referencesMagalhães, B., Valot, B., Abdelbary, M. M. H., Prod’hom, G., Greub, G., Senn, L., & Blanc, D. S. (2020). Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00003spa
dc.relation.referencesO’Brien, T. (1995). WHONET: An Information System for Monitoring Antimicrobial Resistance. Emerging Infectious Diseases, 1(2), 66–66. https://doi.org/10.3201/eid0102.950209spa
dc.relation.referencesOrganization, W. H. (2015). Global Action Plan on Antimicrobial Resistance. Microbe Magazine, 10(9), 354–355. https://doi.org/10.1128/microbe.10.354.1spa
dc.relation.referencesParcell, B. J., Gillespie, S. H., Pettigrew, K. A., & Holden, M. T. G. (2021). Clinical perspectives in integrating whole-genome sequencing into the investigation of healthcare and public health outbreaks – hype or help? Journal of Hospital Infection, 109, 1–9. https://doi.org/10.1016/j.jhin.2020.11.001spa
dc.relation.referencesPark, C. J., Li, J., Zhang, X., Gao, F., Benton, C. S., & Andam, C. P. (2021). Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance. Infection, Genetics and Evolution, 87, 104645. https://doi.org/https://doi.org/10.1016/j.meegid.2020.104645spa
dc.relation.referencesQuainoo, S., Coolen, J. P. M., van Hijum, S. A. F. T., Huynen, M. A., Melchers, W. J. G., van Schaik, W., & Wertheim, H. F. L. (2017). Whole-genome sequencing of bacterial pathogens: The future of nosocomial outbreak analysis. Clinical Microbiology Reviews, 30(4), 1015–1063. https://doi.org/10.1128/CMR.00016-17spa
dc.relation.referencesQuijada, N. M., Rodríguez-Lázaro, D., Eiros, J. M., & Hernández, M. (2019). TORMES: An automated pipeline for whole bacterial genome analysis. Bioinformatics, 35(21), 4207–4212. https://doi.org/10.1093/bioinformatics/btz220spa
dc.relation.referencesRoberts, L. W., Forde, B. M., Hurst, T., Ling, W., Nimmo, G. R., Bergh, H., George, N., Hajkowicz, K., McNamara, J. F., Lipman, J., Permana, B., Schembri, M. A., Paterson, D., Beatson, S. A., & Harris, P. N. A. (2021). Genomic surveillance, characterization and intervention of a polymicrobial multidrug-resistant outbreak in critical care. Microbial Genomics, 7(3). https://doi.org/10.1099/mgen.0.000530spa
dc.relation.referencesRodrigues, I. C., Ribeiro-Almeida, M., Ribeiro, J., Silveira, L., Prata, J. C., Pista, A., & Martins da Costa, P. (2023). Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea. Veterinary Sciences, 10(5), 326. https://doi.org/10.3390/vetsci10050326spa
dc.relation.referencesRossen, J. W. A., Dombrecht, J., Vanfleteren, D., De Bruyne, K., van Belkum, A., Rosema, S., Lokate, M., Bathoorn, E., Reuter, S., Grundmann, H., Ertel, J., Higgins, P. G., & Seifert, H. (2019). Epidemiological Typing of Serratia marcescens Isolates by Whole-Genome Multilocus Sequence Typing. Journal of Clinical Microbiology, 57(4). https://doi.org/10.1128/JCM.01652-18spa
dc.relation.referencesRoyer, G., Fourreau, F., Boulanger, B., Mercier-Darty, M., Ducellier, D., Cizeau, F., Potron, A., Podglajen, I., Mongardon, N., & Decousser, J.-W. (2020). Local outbreak of extended-spectrum β-lactamase SHV2a-producing Pseudomonas aeruginosa reveals the emergence of a new specific sub-lineage of the international ST235 high-risk clone. Journal of Hospital Infection, 104(1), 33–39. https://doi.org/10.1016/j.jhin.2019.07.014spa
dc.relation.referencesRuan, Z., Wu, J., Chen, H., Draz, M. S., Xu, J., & He, F. (2020). Hybrid genome assembly and annotation of a pandrug-resistant klebsiella pneumoniae strain using nanopore and illumina sequencing. Infection and Drug Resistance, 13, 199–206. https://doi.org/10.2147/IDR.S240404spa
dc.relation.referencesSchürch, A. C., Arredondo-Alonso, S., Willems, R. J. L., & Goering, R. V. (2018). Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. In Clinical Microbiology and Infection (Vol. 24, Issue 4, pp. 350–354). https://doi.org/10.1016/j.cmi.2017.12.016spa
dc.relation.referencesShapovalova, V., Shaidullina, E., Azizov, I., Sheck, E., Martinovich, A., Dyachkova, M., Matsvay, A., Savochkina, Y., Khafizov, K., Kozlov, R., Shipulin, G., & Edelstein, M. (2022). Molecular Epidemiology of mcr-1-Positive Escherichia coli and Klebsiella pneumoniae Isolates: Results from Russian Sentinel Surveillance (2013–2018). Microorganisms, 10(10), 2034. https://doi.org/10.3390/microorganisms10102034spa
dc.relation.referencesSnitkin, E. S., Zelazny, A. M., Thomas, P. J., Stock, F., Henderson, D. K., Palmore, T. N., & Segre, J. A. (2012). Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Science Translational Medicine, 4(148). https://doi.org/10.1126/scitranslmed.3004129spa
dc.relation.referencesSserwadda, I., & Mboowa, G. (2021). Rmap: The rapid microbial analysis pipeline for eskape bacterial group whole-genome sequence data. Microbial Genomics, 7(6). https://doi.org/10.1099/MGEN.0.000583spa
dc.relation.referencesStamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033spa
dc.relation.referencesTafaj, S., Kostyanev, T., Xavier, B. B., Fluit, A. C., Rodrigues, C. F., Lammens, C., Osmalli, D., Raka, L., Goossens, H., Malhotra-Kumar, S., & Bonten, M. J. M. (2020). Clonal transmission of multidrug-resistant Acinetobacter baumannii harbouring blaOXA-24-like and blaOXA-23-like genes in a tertiary hospital in Albania. Journal of Global Antimicrobial Resistance, 23, 79–81. https://doi.org/10.1016/j.jgar.2020.07.026spa
dc.relation.referencesTassinari, E., Bawn, M., Thilliez, G., Charity, O., Acton, L., Kirkwood, M., Petrovska, L., Dallman, T., Burgess, C. M., Hall, N., Duffy, G., & Kingsley, R. A. (2020). Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic salmonella enterica serovar typhimurium clone. Microbial Genomics, 6(11), 1–15. https://doi.org/10.1099/mgen.0.000456spa
dc.relation.referencesVincent, J.-L. (2009). International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA, 302(21), 2323. https://doi.org/10.1001/jama.2009.1754spa
dc.relation.referencesWHO. (2020). GLASS whole-genome sequencing for surveillance of antimicrobial resistance: Global Antimicrobial Resistance and Use Surveillance System. In Who. https://www.who.int/health-topics/antimicrobial-resistancespa
dc.relation.referencesWillyard, C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature, 543(7643), 15–15. https://doi.org/10.1038/nature.2017.21550spa
dc.relation.referencesWorld Health Organization. (2020). Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.spa
dc.relation.referencesYu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. (2017). <scp>ggtree</scp> : an <scp>r</scp> package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsBiología Computacionalspa
dc.subject.decsComputational Biologyeng
dc.subject.decsFarmacorresistencia Microbianaspa
dc.subject.decsDrug Resistance, Microbialeng
dc.subject.proposalEpidemiológicaspa
dc.subject.proposalGenómicaspa
dc.subject.proposalInfecciones Asociadas a la Atención en Salud (IAAS)spa
dc.subject.proposalBioinformáticaspa
dc.subject.proposalEpidemiologyeng
dc.subject.proposalGenomicseng
dc.subject.proposalHealthcare-Associated Infections (HAIs)eng
dc.subject.proposalBioinformaticseng
dc.titlePipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicosspa
dc.title.translatedBioinformatic pipeline for epidemiological monitoring of multidrug-resistant bacteria within a hospital based on whole genome and clinical dataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010228638.2023.pdf
Tamaño:
1.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: