Un método para la detección y clasificación automática de accidentes de tráfico en un video mediante técnicas de aprendizaje profundo.

dc.contributor.advisorSánchez Torres, German
dc.contributor.advisorBranch Bedoya, John William
dc.contributor.authorRobles Serrano, Sergio Andres
dc.contributor.researchgroupGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificialspa
dc.date.accessioned2021-10-13T16:48:17Z
dc.date.available2021-10-13T16:48:17Z
dc.date.issued2021
dc.description.abstractSegún estadísticas a nivel mundial, los accidentes de tránsito son causantes de un porcentaje alto de muertes, llegando a ser, en algunos países, el segundo puesto en muertes mas violentas. El tráfico vehicular, el clima de la zona y el exceso de velocidad son algunos de los factores causantes de estos eventos. Por esto es cada vez mas importante la detección de este tipo de accidentes. Si bien ya existen diferentes alternativas para ayudar a la regulación de estos eventos, se necesita de un método automático que apoye este proceso. La duración del envío de una respuesta a una ocurrencia de un accidente de tráfico, se ve afectada en gran medida por el factor humano. Esto porque, en la ocurrencia de un evento de este tipo, la notificación del incidente debe ser dada por un humano, lo que limita el tiempo de respuesta prestado. El objetivo de este trabajo es establecer un método automático capaz de detectar y clasificar los accidentes de tráfico en video. Primero, se debe realizar una segmentación temporal del video de entrada. Luego se procesa por una red neuronal artificial con capas convolucionales y recurrentes para así detectar si el segmento presenta una escena de accidente. Por último, si se detectó con éxito el evento, se procesan los datos en otro modelo basado en redes neuronales artificiales capaz de clasificar el nivel de gravedad del accidente en las siguientes categorías: moderado y grave. Logrando una exactitud del 98% en la detección de accidentes en videos y un 81% en la clasificación según su nivel de gravedad. (Texto tomado de la fuente)spa
dc.description.abstractAccording to worldwide statistics, traffic accidents are the cause of a high percentage of deaths, becoming, in some countries, the second most violent deaths. Vehicular traffic, the climate of the area and speed are some of the factors that cause these events. This is why it is increasingly important to detect these types of accidents. Although there are already different alternatives to help regulate these events, an automatic method is needed to support this process. The duration of sending a response to a traffic accident occurrence is largely affected by the human factor. This is because, in the occurrence of such an event, the notification of the incident must be given by a human, which limits the response time provided. The objective of this work is to establish an automatic method capable of detecting and classifying traffic accidents on video. First, a temporal segmentation of the input video must be performed. Then it is processed by an artificial neural network with convolutional and recurrent layers in order to detect if the segment presents an accident scene. Finally, if the event was successfully detected, the data is processed in another model based on artificial neural networks capable of classifying the level of severity of the accident in the following categories: moderate and severe. Achieving an accuracy of 98% in the detection of accidents in videos and 81% in the classification according to their level of severity. Ingléseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaVisión artificialspa
dc.format.extentx, 59 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80540
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.references[1] A. Karndacharuk and A. Hassan,Techniques for Incident Management to SupportNetwork Operations Planning. Austroads Ltd., 2017.spa
dc.relation.references[2] A. P. Shah, J. B. Lamare, T. Nguyen-Anh, and A. Hauptmann, “CADP: A NovelDataset for CCTV Traffic Camera based Accident Analysis,”Proceedings of AVSS2018 - 2018 15th IEEE International Conference on Advanced Video and Signal-Based Surveillance, no. i, 2019.spa
dc.relation.references[3] W. Liu, C. C. Yan, J. Liu, and H. Ma, “Deep learning based basketball video analy-sis for intelligent arena application,”Multimedia Tools and Applications, vol. 76,no. 23, pp. 24983–25001, 2017.spa
dc.relation.references[4] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,”31st AAAI Conferenceon Artificial Intelligence, AAAI 2017, pp. 4278–4284, 2017.spa
dc.relation.references[5] I. Gonz ́alez-D ́ıaz, T. Mart ́ınez-Cort ́es, A. Gallardo-Antol ́ın, and F. D ́ıaz-De-Mar ́ıa,“Temporal segmentation and keyframe selection methods for user-generated vi-deo search-based annotation,”Expert Systems with Applications, vol. 42, no. 1,pp. 488–502, 2015.spa
dc.relation.references[6] M. Z. Li, “The road traffic analysis based on an urban traffic model of the circularworking field,”Acta Mathematicae Applicatae Sinica, vol. 20, no. 1, pp. 77–84,2004.spa
dc.relation.references[7] R. Kmet, Z. Dvorak, and M. Kvet, “Map of traffic accidents,”TransportationResearch Procedia, vol. 40, pp. 1418–1425, 2019.spa
dc.relation.references[8] P. W. Chiu, C. H. Lin, C. L. Wu, P. H. Fang, C. H. Lu, H. C. Hsu, and C. H.Chi, “Ambulance traffic accidents in Taiwan,”Journal of the Formosan MedicalAssociation, vol. 117, no. 4, pp. 283–291, 2018.spa
dc.relation.references[9] D. Wang, Q. Liu, L. Ma, Y. Zhang, and H. Cong, “Road traffic accident severity analysis: A census-based study in China,”Journal of Safety Research, vol. 70,pp. 135–147, 2019.spa
dc.relation.references[10] S. Cardona, D. C. Arango, B. Fernandez, and A. Agudelo Martinez, “Mortality intraffic accidents with older adults in Colombia,”Revista de Sa ́ude P ́ublica (0034-8910), pp. 1–7, 2017.spa
dc.relation.references[11] W. Chu, C. Wu, C. Atombo, H. Zhang, and T. ̈Ozkan, “Traffic climate, driverbehaviour, and accidents involvement in China,”Accident Analysis and Preven-tion, vol. 122, no. 1178, pp. 119–126, 2019.spa
dc.relation.references[12] A. G. Guimar ̃aes and A. R. da Silva, “Impact of regulations to control alcoholconsumption by drivers: An assessment of reduction in fatal traffic accident num-bers in the Federal District, Brazil,”Accident Analysis and Prevention, vol. 127,no. January, pp. 110–117, 2019.spa
dc.relation.references[13] Y. Nishitani, “Alcohol and traffic accidents in Japan,”IATSS Research, vol. 43,no. 2, pp. 79–83, 2019.spa
dc.relation.references[14] M. A. Kamal, M. Mukai, J. Murata, and T. Kawabe, “On board eco-driving systemfor varying road-traffic environments using model predictive control,”Proceedingsof the IEEE International Conference on Control Applications, pp. 1636–1641,2010.spa
dc.relation.references[15] D. Briggs, C. Hoogh, J. Gulliver, J. Wills, P. Elliott, S. Kingham, and K. Smalbone,“A regression-based method for mapping traffic-related air pollution: applicationand testing in four contrasting urban environments,”International Archives of Allergy and Immunology, vol. 118, no. 2-4, pp. 245–246, 1999.spa
dc.relation.references[16] M. Aldana-Mu ̃noz, E. Maeso-Gonz ́alez, and A. Garc ́ıa-Rodr ́ıguez, “Contributionsof eco-driving on traffic safetyAportaciones de la conducción eficiente a la seguridadvial,”Securitas Vialis, vol. 7, no. 1-3, pp. 21–26, 2015.spa
dc.relation.references[17] D. Mahata, P. K. Narzary, and D. Govil, “Spatio-temporal analysis of road trafficaccidents in Indian large cities,”Clinical Epidemiology and Global Health, no. 3,pp. 1–6, 2019.spa
dc.relation.references[18] H. Sheng, H. Zhao, J. Huang, and N. Li, “A spatio-velocity model based semanticevent detection algorithm for traffic surveillance video,”Science China Technolo-gical Sciences, vol. 53, pp. 120–125, 2010.spa
dc.relation.references[19] K. Polat and S. S. Durduran, “Automatic determination of traffic accidents based on KMC-based attribute weighting,”Neural Computing and Applications, vol. 21,no. 6, pp. 1271–1279, 2012.spa
dc.relation.references[20] ̈O. Ak ̈oz and M. E. Karsligil, “Traffic event classification at intersections basedon the severity of abnormality,”Machine Vision and Applications, vol. 25, no. 3,pp. 613–632, 2014.spa
dc.relation.references[21] ́A. Briz-Red ́on, F. Mart ́ınez-Ruiz, and F. Montes, “Estimating the occurrence of traffic accidents near school locations: A case study from Valencia (Spain) inclu-ding several approaches,”Accident Analysis and Prevention, vol. 132, no. July,p. 105237, 2019.spa
dc.relation.references[22] J. Lee, J. Chae, T. Yoon, and H. Yang, “Traffic accident severity analysis withrain-related factors using structural equation modeling – A case study of SeoulCity,”Accident Analysis and Prevention, vol. 112, no. May 2017, pp. 1–10, 2018.spa
dc.relation.references[23] Y. George, T. Athanasios, and P. George, “Investigation of road accident severityper vehicle type,”Transportation Research Procedia, vol. 25, pp. 2076–2083, 2017.spa
dc.relation.references[24] J. Abellan, G. Lopez, and J. De Ona, “Analysis of traffic accident severity usingDecision Rules via Decision Trees,”Expert Systems with Applications, vol. 40,no. 15, pp. 6047–6054, 2013.spa
dc.relation.references[25] J. De ona, R. O. Mujalli, and F. J. Calvo, “Analysis of traffic accident injuryseverity on Spanish rural highways using Bayesian networks,”Accident Analysisand Prevention, vol. 43, no. 1, pp. 402–411, 2011.spa
dc.relation.references[26] A. B. Parsa, R. S. Chauhan, H. Taghipour, S. Derrible, and A. Mohammadian,“Applying deep learning to detect traffic accidents in real time using spatiotem-poral sequential data,”arXiv, vol. 1, no. 312, 2019.spa
dc.relation.references[27] S. C. Joshua and N. J. Garber, “Estimating truck accident rate and involvementsusing linear and poisson regression models,”Transportation Planning and Tech-nology, vol. 15, no. 1, pp. 41–58, 1990.spa
dc.relation.references[28] R. Arvin, M. Kamrani, and A. J. Khattak, “How instantaneous driving behaviorcontributes to crashes at intersections: Extracting useful information from connec-ted vehicle message data,”Accident Analysis and Prevention, vol. 127, no. August2018, pp. 118–133, 2019.spa
dc.relation.references[29] P. P. Jovanis and H. L. Chang, “Modeling the Relationship of Accidents To MilesTraveled.,”Transportation Research Record, no. January 1986, pp. 42–51, 1986.spa
dc.relation.references[30] S. Xu, S. Li, and R. Wen, “Sensing and detecting traffic events using geosocialmedia data: A review,”Computers, Environment and Urban Systems, vol. 72,no. January, pp. 146–160, 2018.spa
dc.relation.references[31] Y. Gu, Z. Qian, and F. Chen, “From Twitter to detector: Real-time traffic incidentdetection using social media data,”Transportation Research Part C: EmergingTechnologies, vol. 67, pp. 321–342, 2016.spa
dc.relation.references[32] B. Fernandes, M. Alam, V. Gomes, J. Ferreira, and A. Oliveira, “Automatic acci-dent detection with multi-modal alert system implementation for ITS,”VehicularCommunications, vol. 3, pp. 1–11, 2016.spa
dc.relation.references[33] V. C. Maha, M. Rajalakshmi, and R. Nedunchezhian, “Intelligent traffic videosurveillance and accident detection system with dynamic traffic signal control,”Cluster Computing, vol. 21, no. 1, pp. 135–147, 2018.spa
dc.relation.references[34] M. Ozbayoglu, G. Kucukayan, and E. Dogdu, “A real-time autonomous highwayaccident detection model based on big data processing and computational intelli-gence,”Proceedings - 2016 IEEE International Conference on Big Data, Big Data2016, pp. 1807–1813, 2016.spa
dc.relation.references[35] N. Dong, H. Huang, and L. Zheng, “Support vector machine in crash prediction atthe level of traffic analysis zones: Assessing the spatial proximity effects,”AccidentAnalysis and Prevention, vol. 82, pp. 192–198, 2015.spa
dc.relation.references[36] Z. Zhang, Q. He, J. Gao, and M. Ni, “A deep learning approach for detecting trafficaccidents from social media data,”Transportation Research Part C: EmergingTechnologies, vol. 86, no. May 2017, pp. 580–596, 2018.spa
dc.relation.references[37] R. Yu, G. X. Wang, J. Y. Zheng, and H. Y. Wang, “Urban road traffic conditionpattern recognition based on support vector machine,”Jiaotong Yunshu XitongGongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Infor-mation Technology, vol. 13, no. 1, pp. 130–136, 2013.spa
dc.relation.references[38] S. Albawi, T. A. M. Mohammed, and S. Alzawi, “Layers of a Convolutional NeuralNetwork,”Ieee, 2017.spa
dc.relation.references[39] T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: A SimpleDeep Learning Baseline for Image Classification?,”IEEE Transactions on ImageProcessing, vol. 24, no. 12, pp. 5017–5032, 2015.spa
dc.relation.references[40] J. Wu, Y. Yu, C. Huang, and K. Yu, “Deep Multiple Instance Learning for Image Classification and Auto-Annotation,”Journal of Reconstructive Microsurgery,vol. 1, no. 4, pp. 287–289, 1985.spa
dc.relation.references[41] W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image Classi-fication: A Comprehensive Review,”The MIT Press Journals, vol. 2733, no. Oc-tober, pp. 2709–2733, 2018.spa
dc.relation.references[42] A. G. Howard, “Some improvements on deep convolutional neural network basedimage classification,”2nd International Conference on Learning Representations,ICLR 2014 - Conference Track Proceedings, 2014.spa
dc.relation.references[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,”Handbook of Approximation Algorithms and Me-taheuristics, pp. 1–1432, 2007.spa
dc.relation.references[44] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical imageclassification with convolutional neural network,”2014 13th International Con-ference on Control Automation Robotics and Vision, ICARCV 2014, vol. 2014,no. December, pp. 844–848, 2014.spa
dc.relation.references[45] T. J. Brinker, A. Hekler, A. H. Enk, J. Klode, A. Hauschild, C. Berking, B. Schi-lling, S. Haferkamp, D. Schadendorf, S. Fr ̈ohling, J. S. Utikal, and C. von Kalle,“A convolutional neural network trained with dermoscopic images performed onpar with 145 dermatologists in a clinical melanoma image classification task,”European Journal of Cancer, vol. 111, pp. 148–154, 2019.spa
dc.relation.references[46] C. Panda and V. Narasimhan, “Forecasting exchange rate better with artificialneural network,”Journal of Policy Modeling, vol. 29, no. 2, pp. 227–236, 2007.spa
dc.relation.references[47] H. J. Song, A. Y. Kim, and S. B. Park, “Translation of natural language queryinto keyword query using a rnn encoder-decoder,”SIGIR 2017 - Proceedings ofthe 40th International ACM SIGIR Conference on Research and Development inInformation Retrieval, pp. 965–968, 2017.spa
dc.relation.references[48] W. Kahuttanaseth, A. Dressler, and C. Netramai, “Commanding mobile robot mo-vement based on natural language processing with RNN encoder-decoder,”Procee-dings of 2018 5th International Conference on Business and Industrial Research:Smart Technology for Next Generation of Information, Engineering, Business andSocial Science, ICBIR 2018, pp. 161–166, 2018.spa
dc.relation.references[49] Y. Duan, Y. Lv, and F. Y. Wang, “Travel time prediction with LSTM neuralnetwork,”IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 1053–1058, 2016.spa
dc.relation.references[50] M. Sundermeyer, H. Ney, and R. Schluter, “From feedforward to recurrent LSTMneural networks for language modeling,”IEEE Transactions on Audio, Speech andLanguage Processing, vol. 23, no. 3, pp. 517–529, 2015.spa
dc.relation.references[51] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko,“Translating videos to natural language using deep recurrent neural networks,”NAACL HLT 2015 - 2015 Conference of the North American Chapter of the Asso-ciation for Computational Linguistics: Human Language Technologies, Proceedingsof the Conference, pp. 1494–1504, 2015.spa
dc.relation.references[52] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action Recog-nition in Video Sequences using Deep Bi-Directional LSTM with CNN Features,”IEEE Access, vol. 6, no. c, pp. 1155–1166, 2017.spa
dc.relation.references[53] Y. Fan, X. Lu, D. Li, and Y. Liu, “Video-Based emotion recognition using CNN-RNN and C3D hybrid networks,”ICMI 2016 - Proceedings of the 18th ACM In-ternational Conference on Multimodal Interaction, no. November, pp. 445–450,2016.spa
dc.relation.references[54] E. Nishani and B. Cico, “Computer Vision Approaches based on Deep Learningand Neural Networks: Deep neural networks for video analysis of human pose es-timation,” in2017 6th Mediterranean Conference on Embedded Computing (ME-CO), pp. 11–14, 2017.spa
dc.relation.references[55] I. Lee, D. Kim, S. Kang, and S. Lee, “Ensemble Deep Learning for Skeleton-BasedAction Recognition Using Temporal Sliding LSTM Networks,”Proceedings of theIEEE International Conference on Computer Vision, vol. 2017-Octob, pp. 1012–1020, 2017.spa
dc.relation.references[56] M. Ruikar, “National statistics of road traffic accidents in India,”Journal of Ortho-pedics, Traumatology and Rehabilitation, vol. 6, no. 1, p. 1, 2013.spa
dc.relation.references[57] M. G. Masuri, K. A. M. Isa, and M. P. M. Tahir, “Children, Youth and RoadEnvironment: Road Traffic Accident,”Procedia - Social and Behavioral Sciences,vol. 38, no. December 2010, pp. 213–218, 2012.spa
dc.relation.references[58] C. Jodi, “Best Practices in Traffic Incident Management,” tech. rep., Federal High-way Administration, 2010.spa
dc.relation.references[59] S. R. Ke, H. L. U. Thuc, Y. J. Lee, J. N. Hwang, J. H. Yoo, and K. H. Choi, A review on video-based human activity recognition, vol. 2. Computers ISSN 2073-431X, 2013.spa
dc.relation.references[60] W. Lejmi, M. A. Mahjoub, and A. Ben Khalifa, “Event detection in video se-quences: Challenges and perspectives,”ICNC-FSKD 2017 - 13th InternationalConference on Natural Computation, Fuzzy Systems and Knowledge Discovery,pp. 682–690, 2017.spa
dc.relation.references[61] A. Chen, B. Khorashadi, C. N. Chuah, D. Ghosal, and M. Zhang, “Smoothingvehicular traffic flow using vehicular-based ad hoc networking & computing grid(VGrid),”IEEE Conference on Intelligent Transportation Systems, Proceedings,ITSC, pp. 349–354, 2006.spa
dc.relation.references[62] S. P. Miaou and H. Lum, “Modeling vehicle accidents and highway geometricdesign relationships,”Accident Analysis and Prevention, vol. 25, no. 6, pp. 689–709, 1993.spa
dc.relation.references[63] G. Azimi, A. Rahimi, H. Asgari, and X. Jin, “Severity analysis for large truckrollover crashes using a random parameter ordered logit model,”Accident Analysisand Prevention, vol. 135, no. November 2019, p. 105355, 2020.spa
dc.relation.references[64] R. Arvin, M. Kamrani, and A. J. Khattak, “The role of pre-crash driving insta-bility in contributing to crash intensity using naturalistic driving data,”AccidentAnalysis and Prevention, vol. 132, no. April, p. 105226, 2019.spa
dc.relation.references[65] A. B. Parsa, A. Movahedi, H. Taghipour, S. Derrible, and A. K. Mohammadian,“Toward safer highways, application of XGBoost and SHAP for real-time acci-dent detection and feature analysis,”Accident Analysis and Prevention, vol. 136,no. August 2019, p. 105405, 2020.spa
dc.relation.references[66] Z. Hui, Y. Xie, M. Lu, and J. Fu, “Vision-based real-time traffic accident detec-tion,”Proceedings of the World Congress on Intelligent Control and Automation(WCICA), vol. 2015-March, no. March, pp. 1035–1038, 2015.spa
dc.relation.references[67] M. Motamed, “Developing A Real-time Freeway Incident Detection Model usingMachine Learning Techniques,” inUT Electronic Theses and Dissertations, 2016.spa
dc.relation.references[68] W. Sultani, C. Chen, and M. Shah, “Real-World Anomaly Detection in Surveillan-ce Videos,”Proceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition, pp. 6479–6488, 2018.spa
dc.relation.references[69] X. Huang, P. He, A. Rangarajan, and S. Ranka, “Intelligent intersection: Two stream convolutional networks for real-time near accident detection in traffic video,”arXiv, 2019.spa
dc.relation.references[70] S. Mokhtarimousavi, J. C. Anderson, A. Azizinamini, and M. Hadi, “ImprovedSupport Vector Machine Models for Work Zone Crash Injury Severity Predictionand Analysis,”Transportation Research Record, 2019.spa
dc.relation.references[71] A. B. Parsa, H. Taghipour, S. Derrible, and A. K. Mohammadian, “Real-time acci-dent detection: Coping with imbalanced data,”Accident Analysis and Prevention,vol. 129, no. June, pp. 202–210, 2019.spa
dc.relation.references[72] D. Singh and C. K. Mohan, “Deep Spatio-Temporal Representation for Detectionof Road Accidents Using Stacked Autoencoder,”IEEE Transactions on IntelligentTransportation Systems, vol. 20, no. 3, pp. 879–887, 2019.spa
dc.relation.references[73] A. Rahimi, G. Azimi, H. Asgari, and X. Jin, “Clustering Approach toward LargeTruck Crash Analysis,”Transportation Research Record, vol. 2673, no. 8, pp. 73–85, 2019.spa
dc.relation.references[74] R. Marimuthu, A. Suresh, M. Alamelu, and S. Kanagaraj, “Driver Fatigue De-tection Using Image Processing and Accident,”International Journal of Pure andApplied Mathematics, vol. 116, no. 11, pp. 91–99, 2017.spa
dc.relation.references[75] Y. Zou, G. Shi, H. Shi, and Y. Wang, “Image sequences based traffic incidentdetection for signaled intersections using HMM,”Proceedings - 2009 9th Interna-tional Conference on Hybrid Intelligent Systems, HIS 2009, vol. 1, pp. 257–261,2009.spa
dc.relation.references[76] C. Guti ́errez, P. Figueiras, P. Oliveira, R. Costa, and R. Jardim-Goncalves, “Anapproach for detecting traffic events using social media,”Studies in ComputationalIntelligence, vol. 647, pp. 61–81, 2016.spa
dc.relation.references[77] A. J. Ghandour, H. Hammoud, M. Dimassi, H. Krayem, J. Haydar, and A. Is-sa, “Allometric scaling of road accidents using social media crowd-sourced data,”Physica A: Statistical Mechanics and its Applications, vol. 545, 2020.spa
dc.relation.references[78] R. Weil, J. Wootton, and A. García-Ortiz, “Traffic incident detection: Sensors andalgorithms,”Mathematical and Computer Modelling, vol. 27, no. 9-11, pp. 257–291,1998.spa
dc.relation.references[79] J. Xiao, “SVM and KNN ensemble learning for traffic incident detection,”PhysicaA: Statistical Mechanics and its Applications, vol. 517, pp. 29–35, 2019spa
dc.relation.references[80] X. M. Liu, Z. H. Zhang, G. Y. Li, and T. J. Lv, “Research on technology of trafficvideo incidents detection under highway condition,”Journal of China Universitiesof Posts and Telecommunications, vol. 17, no. SUPPL. 1, pp. 79–83, 2010.spa
dc.relation.references[81] Y. Zhang and Y. Zhu, “A Novel Storing and Accessing Method of Traffic IncidentVideo Based on Spatial-Temporal Analysis,”Lecture Notes in Computer Science(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes inBioinformatics), vol. 9529, pp. 315–329, 2015.spa
dc.relation.references[82] Y. Chen, Y. Yu, and T. Li, “A vision based traffic accident detection methodusing extreme learning machine,”ICARM 2016 - 2016 International Conferenceon Advanced Robotics and Mechatronics, pp. 567–572, 2016.spa
dc.relation.references[83] Y. Yao, M. Xu, Y. Wang, D. J. Crandall, and E. M. Atkins, “Unsupervised Traf-fic Accident Detection in First-Person Videos,” in2019 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS), 2019.spa
dc.relation.references[84] F. H. Chan, Y. T. Chen, Y. Xiang, and M. Sun, “Anticipating accidents in dashcamvideos,”Lecture Notes in Computer Science (including subseries Lecture Notesin Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10114 LNCS,pp. 136–153, 2017.spa
dc.relation.references[85] H. Ullah, M. Ullah, H. Afridi, N. Conci, and F. G. D. Natale, “TRAFFIC AC-CIDENT DETECTION THROUGH A HYDRODYNAMIC LENS,”InternationalConference on Image Processing (ICIP), pp. 2470–2474, 2015.spa
dc.relation.references[86] K. Yun, H. Jeong, K. M. Yi, S. W. Kim, and J. Y. Choi, “Motion interaction fieldfor accident detection in traffic surveillance video,”Proceedings - InternationalConference on Pattern Recognition, pp. 3062–3067, 2014.spa
dc.relation.references[87] S. Xia, J. Xiong, Y. Liu, and G. Li, “Vision-based traffic accident detection usingmatrix approximation,”2015 10th Asian Control Conference: Emerging ControlTechniques for a Sustainable World, ASCC 2015, 2015.spa
dc.relation.references[88] Y. K. Ki and D. Y. Lee, “A traffic accident recording and reporting model atintersections,”IEEE Transactions on Intelligent Transportation Systems, vol. 8,no. 2, pp. 188–194, 2007.spa
dc.relation.references[89] B. Maaloul, A. Taleb-Ahmed, S. Niar, N. Harb, and C. Valderrama, “Adaptivevideo-based algorithm for accident detection on highways,”2017 12th IEEE In-ternational Symposium on Industrial Embedded Systems, SIES 2017 - Proceedings,2017.spa
dc.relation.references[90] J. Lee, “An accident detection system on highway through CCTV with Calogero-Moser system,” in2012 18th Asia-Pacific Conference on Communications(APCC), vol. 7, pp. 1–25, 2012.spa
dc.relation.references[91] Y. Yu, M. Xu, and J. Gu, “Vision-based traffic accident detection using sparsespatio-temporal features and weighted extreme learning machine,”IET IntelligentTransport Systems, vol. 13, no. 9, pp. 1417–1428, 2019.spa
dc.relation.references[92] H. Jiang, G. Zhang, H. Wang, and H. Bao, “Spatio-Temporal Video Segmentationof Static Scenes and Its Applications,”IEEE Transactions on Multimedia, vol. 17,no. 1, pp. 3–15, 2015.spa
dc.relation.references[93] A. MacKin, F. Zhang, and D. R. Bull, “A Study of High Frame Rate Video For-mats,”IEEE Transactions on Multimedia, vol. 21, no. 6, pp. 1499–1512, 2019.spa
dc.relation.references[94] X. Yu, H. W. Leong, C. Xu, and Q. Tian, “Trajectory-based ball detection andtracking in broadcast soccer video,”IEEE Transactions on Multimedia, vol. 8,no. 6, pp. 1164–1178, 2006.spa
dc.relation.references[95] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Uni-fied, Real-Time Object Detection,”arXiv, 2019.spa
dc.relation.references[96] Y. LeCun, P. Haffnet, B. Leon, and Y. Bengio, “Object Recognition with Gradient-Based Learning,” inShape, Contour and Grouping in Computer Vision, pp. 1–27,1999.spa
dc.relation.references[97] W. Lim, D. Jang, and T. Lee, “Speech Emotion Recognition using Convolutional Recurrent Neural Networks and Spectrograms,” inCanadian Conference onElectrical and Computer Engineering, 2016.spa
dc.relation.references[98] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo, “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,”Journal of Sensors, vol. 2018, pp. 1–9, 2018.spa
dc.relation.references[99] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “AComprehensive Survey on Transfer Learning,”Proceedings of the IEEE, vol. 109,no. 1, pp. 43–76, 2021.spa
dc.relation.references[100] B. Ghojogh, M. N. Samad, S. A. Mashhadi, T. Kapoor, W. Ali, F. Karray, andM. Crowley, “Feature Selection and Feature Extraction in Pattern Analysis: ALiterature Review,” 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembAccidente de tránsito - Procesamiento de datosspa
dc.subject.lembRedes neuronales (computadores)spa
dc.subject.lembNeural networks (Computer science)eng
dc.subject.lembTraffic accidentseng
dc.subject.proposalUrban traffic accidenteng
dc.subject.proposalDeep learningeng
dc.subject.proposalAccident detectioneng
dc.subject.proposalAccident classificationeng
dc.subject.proposalAccidentes de tráficospa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalConvolutional neural networkeng
dc.subject.proposalRecurrent neural networkeng
dc.titleUn método para la detección y clasificación automática de accidentes de tráfico en un video mediante técnicas de aprendizaje profundo.spa
dc.title.translatedA method for automatic detection and classification of traffic accidents in a video using deep learning techniques.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1083024361.2021.pdf
Tamaño:
38.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Ingeniería Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: