Modelo de gestión de recursos para la optimización de proyectos integrando técnicas de Inteligencia Artificial

dc.contributor.advisorJiménez Builes, Jovani Alberto
dc.contributor.authorHerrera Arredondo, Carolina
dc.date.accessioned2025-06-24T14:21:14Z
dc.date.available2025-06-24T14:21:14Z
dc.date.issued2025
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractLa gestión de recursos es una parte fundamental de la gestión de proyectos, pues gracias a ella los gestores, mediante planificaciones determinan previamente qué recursos requieren para la ejecución de un proyecto, partiendo desde una identificación rigurosa de necesidades y siendo éstas cuantificadas por medio de la estimación del presupuesto requerido para su ejecución. En este caso, al ser el presupuesto un recurso limitado, es necesario realizar formulaciones precisas que permitan la optimización del capital y minimicen el riesgo de incurrir en sobrecostos o el incumplimiento de los objetivos. Este trabajo aplica técnicas de analítica de datos e inteligencia artificial para predecir el presupuesto total de proyectos de investigación a partir de características propias de estos. Una vez ejecutados los seis modelos seleccionados, Random Forest mostró el mejor desempeño para predecir el costo total de un proyecto. El modelo seleccionado se reconoce como una herramienta estratégica de apoyo que puede ser integrada para la toma de decisiones en la optimización de recursos en proyectos. (Tomado de la fuente)spa
dc.description.abstractResource management is a fundamental part of project management, as it allows managers, through planning, to determine in advance which resources are required for the execution of a project. This process begins with a rigorous identification of needs, which are then quantified through the estimation of the budget necessary for execution. In this case, since the budget is a limited resource, it is essential to make accurate formulations that allow for capital optimization and minimize the risk of cost overruns or failure to meet objectives. This work applies data analytics and artificial intelligence techniques to predict the total budget of research projects based on their inherent characteristics. After executing the six selected models, Random Forest showed the best performance in predicting the total cost of a project. The selected model is recognized as a strategic support tool that can be integrated into decision-making for the optimization of resources in projects.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.format.extent93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88241
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAmin Ashtari, M., Ansari, R., Hassannayebi, E., & Jeong, J. (2022). Cost Overrun Risk Assessment and Prediction in Construction Projects: A Bayesian Network Classifier Approach. Buildings.spa
dc.relation.referencesAntebi, L. (2021). What is Artificial Intelligence? Artificial Intelligence and National Security in Israel, 31-40.spa
dc.relation.referencesArrioja, N. (2021). Medium. Obtenido de Cómo actuar ante el desbalance en regresión: https://medium.com/@nicolasarrioja/c%C3%B3mo-actuar-ante-el-desbalance-en- regresi%C3%B3n-e7a0e87d6ff2.spa
dc.relation.referencesAuth, G., Jokisch, O., & Durk, C. (2019). Revisiting automated project management in the digital age: A survey of AI approaches. The Online Journal of Applied Knowledge Management (OJAKM), 27-39. doi:doi:https://doi.org/10.36965/OJAKM.2019.7(1)27-39.spa
dc.relation.referencesBahroun, Z., Tanash, M., & Mohamad Alnajar, R. A. (2023). Artificial Intelligence applications in project scheduling: A systematic review, bibliometric analysis, and prospects for future researh. Managememnt Systems in product Engineering, 144- 161.spa
dc.relation.referencesBushuyev, S., Bushuyev, D., Bushuyeva, V., Bushuyeva, N., & Tykchonovych, Y. (2024). Strategic project management development under influence or artificial intelligence. Bulletin of NTU "KhPI". Series: Strategic management, portfolio, program and project management. doi:https://doi.org/10.20998/2413-3000.2024.8.1.spa
dc.relation.referencesCarrión Rosende, I., & Berasategi Vitoria, I. (2010). Guía para la elaboración de proyectos. Documento técnico, Koalifikazioen eta Lanbide Heziketaren Euskal Instituoa.spa
dc.relation.referencesEl Khatib, M., & Al Falasi, A. (2021). Effects of Artificial Intelligence on Decision Making in Project Management. American Journal of Industrial and Business Management, 251-260. doi: 10.4236/ajibm.2021.113016.spa
dc.relation.referencesElkholosy, H., Ead, R., Hammad, A., & AbouRizk, S. (2022). Data mining for forecasting labor resource requirements: a case study of project management staffing requirements. International Journal of Construction Management.spa
dc.relation.referencesElmousalami, H. H. (2021). Comparison of Artificial Intelligence Techniques for Project Conceptual Cost Prediction: A Case Studio and Comparative Analysis. IEEE: Transactions on Engineering Management, 183-196.spa
dc.relation.referencesGido, J., & Clements, J. P. (2012). Administración exitosa de proyectos. Cengage Learning Editores S.A.spa
dc.relation.referencesGil, D. (2022). Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia. Tesis de doctorado. Universidad Nacional de Colombia.spa
dc.relation.referencesGopalakrishnan Nair, T., & Al Falasi, A. (2021). Impact Analysis of Allocation of Resources by Project Manager on Success of Software Projects. International Conference on Data Mining and Computer Engineering (ICDMCE), 191-195.spa
dc.relation.referencesGuyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. . Journal of Machine Learning Research, 1157-1182.spa
dc.relation.referencesHammoody, O., Al-Somaydaii, J. A., Al-Zwainy, F. M., & Hayder, G. (2022). Forecasting And Determining Of Cost Performance Index Of Tunnels Projects Using Artificial Neural Networks. International Journal for Computational Civil and Structural Engineering, 18. doi::10.22337/2587-9618-2022-18-1-51-60.spa
dc.relation.referencesHofmann, P., Johnk, J., Protschky, D., & Urbach, N. (2020). Developing Purposeful AI Use Cases – A Structured Method and Its Application in Project Management. WI2020 Zentrale Tracks, 33-49. doi:doi:https://doi.org/10.30844/wi_2020_a3-hofmann.spa
dc.relation.referencesJames, G., Witten, D., Hastie, T., & & Tibshirani, R. (2021). An Introduction to Statistical Learning: With Applications in R. Obtenido de An Introduction to Statistical Learning: https://www.statlearning.com/.spa
dc.relation.referencesJoshi, H. (2024). Artificial Intelligence in Project Management: A Study of The Role of Ai- Powered Chatbots in Project Stakeholder Engagement. Indian Journal of Software Engineering and Project Management (IJSEPM), 21-26. doi:10.54105/ijsepm.B9022.04010124.spa
dc.relation.referencesKarki, S., & Hadikusumo, B. (2021). Machine learning for the identification of competent project managers for construction projects in Nepal. Construction Innovation.spa
dc.relation.referencesKitchenham, B. (2004). Procedures for undertaking systematic reviews. NICTA Technical Report 0400011T.1 Keele University, UK.spa
dc.relation.referencesKusonkhum, W., Srinavin, K., Leungbootnak, N., & Aksor, P. (s.f.). Government Construction Project Budget Prediction Using Machine Learning. Journal of Advances in Information Technology, 13. doi:10.12720/jait.13.1.29-35.spa
dc.relation.referencesL, Z., & Huang, L. (2022). A Resource Scheduling Method for Enterprise Management Based on Artificial Intelligence Deep Learning. Mobile Information Systems.spa
dc.relation.referencesLarson, E. W., & Gray, C. F. (2014). Project management: The managerial process (6th ed). McGraw- Hill Education.spa
dc.relation.referencesMariani, C., & Mancini, M. (2022). Artificial Intelligence adoption in project management: are we still far from practical implementation? IPMA PUBLICATIONS, 34-47.spa
dc.relation.referencesMcCarthy. (2007). What is artifcial intelligence? (S. University, Ed.)spa
dc.relation.referencesMir, M., Dipu Kabir, H., Nasirzadeh, F., & Khosravi, A. (2021). Neural network-based interval forecasting of construction material prices. 39, Journal of Building Engineering. doi:https://doi.org/10.1016/j.jobe.2021.102288.spa
dc.relation.referencesMunir, M. (2019). How Artificial Intelligence can help Project Manager. Global Journal of Management and Business Research: A Administration and Management.spa
dc.relation.referencesOdeh, M. (2023). The Role of Artificial Intelligence in Project Management. IEEE Engineering Management.spa
dc.relation.referencesOkon Ndem Eyibio, C. O. (2020). Effective resource budgeting as a tool for project management. Asian Journal of Business and Management.spa
dc.relation.referencesPage, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., & Mulrow, C. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. 372. doi:DOI: 10.1136/bmj.n71.spa
dc.relation.referencesPérez, J. (2019). Revisión sistemática de la literatura en ingeniería. 2da edición. Colección Ciencia y Tecnología. Editorial Universidad de Antioquia. Colombia.spa
dc.relation.referencesProject Management Institute. (2017). Guía de los fundamentos para la dirección de proyectos. Guía del PMBOK.spa
dc.relation.referencesProject Management Institute Inc. (2013). Guía de los fundamentos para la dirección de proyectos. Newtown Square, Pensilvania: PMI Publications.spa
dc.relation.referencesQureshi. (2022). Resource management: Process advantages and disadvantages. Journal of Stock & Forex Trading, 9:203. doi:DOI: 10.4172/2168-9458.22.9.203.spa
dc.relation.referencesRadujković, M., & Sjekavica, M. (2017). Project management success factors. Procedia Engineering 196, 592-606.spa
dc.relation.referencesRusell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice Hall.spa
dc.relation.referencesSantos, J. I., Pereda, M., Ahedo, V., & Galán, J. M. (2023). Explainable Machine Learning for Project Management Control. Computers & Industrial Engineering.spa
dc.relation.referencesSilva Nobre, R. M. (2020). How Artificial Intelligence Can Provide Support in Project Resource Management. Instituto Universitario de Lisboa.spa
dc.relation.referencesTayyab Zia, M., Nadim, M., Ahmad Khan, M., Akram, N., & Atta, F. (2024). The Role and Impact of Artificial Intelligence on Project Management. The Asian Bulletin of Big Data Management, 178-185. doi:https://doi.org/10.62019/abbdm.v4i02.160178.spa
dc.relation.referencesVanegas, F. (2016). Conoce el Clima óptimo para un cultivo de café. Obtenido de Coffee Media: https://www.yoamoelcafedecolombia.com/2016/08/31/conoce-el-clima- optimo-para-un-cultivo-de-cafe/.spa
dc.relation.referencesVasiliev, V., Mayborodin, A., & Kramarenko, X. (2020). Machine Learning Technology as a Solution of the Resource Assignment Spread Issue in Research and Development Projects. International Conference Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS).spa
dc.relation.referencesWu, L., Ji, W., Feng, B., & Hermann, U. A. (2021). Intelligent data-driven approach for enhancing preliminary resource planning in industrial construction. Automation in Construction, 130.spa
dc.relation.referencesZabala Vargas, S., Jaimes Quintanilla, M., & Barrera, M. (2023). Big Data, Data Science and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Revie. Buildings. doi:doi:https://doi.org/10.3390/buildings13122944.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::606 - Organizacionesspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc650 - Gerencia y servicios auxiliares::658 - Gerencia generalspa
dc.subject.lembProyectos de investigación - Procesamiento de datos
dc.subject.lembInteligencia artificial - Procesamiento de datos
dc.subject.lembAnálisis de costos - Procesamiento de datos
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalGestión de proyectosspa
dc.subject.proposalGestión de recursosspa
dc.subject.proposalPresupuestosspa
dc.subject.proposalAnalítica de datosspa
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalProject managementeng
dc.subject.proposalResource managementeng
dc.subject.proposalBudgetingeng
dc.subject.proposalData analyticseng
dc.titleModelo de gestión de recursos para la optimización de proyectos integrando técnicas de Inteligencia Artificialspa
dc.title.translatedResource management model for the optimization of projects integrating Artificial Intelligence techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053872140.2025.pdf
Tamaño:
2.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: