Modelo de gestión de recursos para la optimización de proyectos integrando técnicas de Inteligencia Artificial
dc.contributor.advisor | Jiménez Builes, Jovani Alberto | |
dc.contributor.author | Herrera Arredondo, Carolina | |
dc.date.accessioned | 2025-06-24T14:21:14Z | |
dc.date.available | 2025-06-24T14:21:14Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | La gestión de recursos es una parte fundamental de la gestión de proyectos, pues gracias a ella los gestores, mediante planificaciones determinan previamente qué recursos requieren para la ejecución de un proyecto, partiendo desde una identificación rigurosa de necesidades y siendo éstas cuantificadas por medio de la estimación del presupuesto requerido para su ejecución. En este caso, al ser el presupuesto un recurso limitado, es necesario realizar formulaciones precisas que permitan la optimización del capital y minimicen el riesgo de incurrir en sobrecostos o el incumplimiento de los objetivos. Este trabajo aplica técnicas de analítica de datos e inteligencia artificial para predecir el presupuesto total de proyectos de investigación a partir de características propias de estos. Una vez ejecutados los seis modelos seleccionados, Random Forest mostró el mejor desempeño para predecir el costo total de un proyecto. El modelo seleccionado se reconoce como una herramienta estratégica de apoyo que puede ser integrada para la toma de decisiones en la optimización de recursos en proyectos. (Tomado de la fuente) | spa |
dc.description.abstract | Resource management is a fundamental part of project management, as it allows managers, through planning, to determine in advance which resources are required for the execution of a project. This process begins with a rigorous identification of needs, which are then quantified through the estimation of the budget necessary for execution. In this case, since the budget is a limited resource, it is essential to make accurate formulations that allow for capital optimization and minimize the risk of cost overruns or failure to meet objectives. This work applies data analytics and artificial intelligence techniques to predict the total budget of research projects based on their inherent characteristics. After executing the six selected models, Random Forest showed the best performance in predicting the total cost of a project. The selected model is recognized as a strategic support tool that can be integrated into decision-making for the optimization of resources in projects. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
dc.format.extent | 93 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88241 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Amin Ashtari, M., Ansari, R., Hassannayebi, E., & Jeong, J. (2022). Cost Overrun Risk Assessment and Prediction in Construction Projects: A Bayesian Network Classifier Approach. Buildings. | spa |
dc.relation.references | Antebi, L. (2021). What is Artificial Intelligence? Artificial Intelligence and National Security in Israel, 31-40. | spa |
dc.relation.references | Arrioja, N. (2021). Medium. Obtenido de Cómo actuar ante el desbalance en regresión: https://medium.com/@nicolasarrioja/c%C3%B3mo-actuar-ante-el-desbalance-en- regresi%C3%B3n-e7a0e87d6ff2. | spa |
dc.relation.references | Auth, G., Jokisch, O., & Durk, C. (2019). Revisiting automated project management in the digital age: A survey of AI approaches. The Online Journal of Applied Knowledge Management (OJAKM), 27-39. doi:doi:https://doi.org/10.36965/OJAKM.2019.7(1)27-39. | spa |
dc.relation.references | Bahroun, Z., Tanash, M., & Mohamad Alnajar, R. A. (2023). Artificial Intelligence applications in project scheduling: A systematic review, bibliometric analysis, and prospects for future researh. Managememnt Systems in product Engineering, 144- 161. | spa |
dc.relation.references | Bushuyev, S., Bushuyev, D., Bushuyeva, V., Bushuyeva, N., & Tykchonovych, Y. (2024). Strategic project management development under influence or artificial intelligence. Bulletin of NTU "KhPI". Series: Strategic management, portfolio, program and project management. doi:https://doi.org/10.20998/2413-3000.2024.8.1. | spa |
dc.relation.references | Carrión Rosende, I., & Berasategi Vitoria, I. (2010). Guía para la elaboración de proyectos. Documento técnico, Koalifikazioen eta Lanbide Heziketaren Euskal Instituoa. | spa |
dc.relation.references | El Khatib, M., & Al Falasi, A. (2021). Effects of Artificial Intelligence on Decision Making in Project Management. American Journal of Industrial and Business Management, 251-260. doi: 10.4236/ajibm.2021.113016. | spa |
dc.relation.references | Elkholosy, H., Ead, R., Hammad, A., & AbouRizk, S. (2022). Data mining for forecasting labor resource requirements: a case study of project management staffing requirements. International Journal of Construction Management. | spa |
dc.relation.references | Elmousalami, H. H. (2021). Comparison of Artificial Intelligence Techniques for Project Conceptual Cost Prediction: A Case Studio and Comparative Analysis. IEEE: Transactions on Engineering Management, 183-196. | spa |
dc.relation.references | Gido, J., & Clements, J. P. (2012). Administración exitosa de proyectos. Cengage Learning Editores S.A. | spa |
dc.relation.references | Gil, D. (2022). Metodología para predecir el desempeño estudiantil en cursos universitarios virtuales a distancia. Tesis de doctorado. Universidad Nacional de Colombia. | spa |
dc.relation.references | Gopalakrishnan Nair, T., & Al Falasi, A. (2021). Impact Analysis of Allocation of Resources by Project Manager on Success of Software Projects. International Conference on Data Mining and Computer Engineering (ICDMCE), 191-195. | spa |
dc.relation.references | Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. . Journal of Machine Learning Research, 1157-1182. | spa |
dc.relation.references | Hammoody, O., Al-Somaydaii, J. A., Al-Zwainy, F. M., & Hayder, G. (2022). Forecasting And Determining Of Cost Performance Index Of Tunnels Projects Using Artificial Neural Networks. International Journal for Computational Civil and Structural Engineering, 18. doi::10.22337/2587-9618-2022-18-1-51-60. | spa |
dc.relation.references | Hofmann, P., Johnk, J., Protschky, D., & Urbach, N. (2020). Developing Purposeful AI Use Cases – A Structured Method and Its Application in Project Management. WI2020 Zentrale Tracks, 33-49. doi:doi:https://doi.org/10.30844/wi_2020_a3-hofmann. | spa |
dc.relation.references | James, G., Witten, D., Hastie, T., & & Tibshirani, R. (2021). An Introduction to Statistical Learning: With Applications in R. Obtenido de An Introduction to Statistical Learning: https://www.statlearning.com/. | spa |
dc.relation.references | Joshi, H. (2024). Artificial Intelligence in Project Management: A Study of The Role of Ai- Powered Chatbots in Project Stakeholder Engagement. Indian Journal of Software Engineering and Project Management (IJSEPM), 21-26. doi:10.54105/ijsepm.B9022.04010124. | spa |
dc.relation.references | Karki, S., & Hadikusumo, B. (2021). Machine learning for the identification of competent project managers for construction projects in Nepal. Construction Innovation. | spa |
dc.relation.references | Kitchenham, B. (2004). Procedures for undertaking systematic reviews. NICTA Technical Report 0400011T.1 Keele University, UK. | spa |
dc.relation.references | Kusonkhum, W., Srinavin, K., Leungbootnak, N., & Aksor, P. (s.f.). Government Construction Project Budget Prediction Using Machine Learning. Journal of Advances in Information Technology, 13. doi:10.12720/jait.13.1.29-35. | spa |
dc.relation.references | L, Z., & Huang, L. (2022). A Resource Scheduling Method for Enterprise Management Based on Artificial Intelligence Deep Learning. Mobile Information Systems. | spa |
dc.relation.references | Larson, E. W., & Gray, C. F. (2014). Project management: The managerial process (6th ed). McGraw- Hill Education. | spa |
dc.relation.references | Mariani, C., & Mancini, M. (2022). Artificial Intelligence adoption in project management: are we still far from practical implementation? IPMA PUBLICATIONS, 34-47. | spa |
dc.relation.references | McCarthy. (2007). What is artifcial intelligence? (S. University, Ed.) | spa |
dc.relation.references | Mir, M., Dipu Kabir, H., Nasirzadeh, F., & Khosravi, A. (2021). Neural network-based interval forecasting of construction material prices. 39, Journal of Building Engineering. doi:https://doi.org/10.1016/j.jobe.2021.102288. | spa |
dc.relation.references | Munir, M. (2019). How Artificial Intelligence can help Project Manager. Global Journal of Management and Business Research: A Administration and Management. | spa |
dc.relation.references | Odeh, M. (2023). The Role of Artificial Intelligence in Project Management. IEEE Engineering Management. | spa |
dc.relation.references | Okon Ndem Eyibio, C. O. (2020). Effective resource budgeting as a tool for project management. Asian Journal of Business and Management. | spa |
dc.relation.references | Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., & Mulrow, C. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. 372. doi:DOI: 10.1136/bmj.n71. | spa |
dc.relation.references | Pérez, J. (2019). Revisión sistemática de la literatura en ingeniería. 2da edición. Colección Ciencia y Tecnología. Editorial Universidad de Antioquia. Colombia. | spa |
dc.relation.references | Project Management Institute. (2017). Guía de los fundamentos para la dirección de proyectos. Guía del PMBOK. | spa |
dc.relation.references | Project Management Institute Inc. (2013). Guía de los fundamentos para la dirección de proyectos. Newtown Square, Pensilvania: PMI Publications. | spa |
dc.relation.references | Qureshi. (2022). Resource management: Process advantages and disadvantages. Journal of Stock & Forex Trading, 9:203. doi:DOI: 10.4172/2168-9458.22.9.203. | spa |
dc.relation.references | Radujković, M., & Sjekavica, M. (2017). Project management success factors. Procedia Engineering 196, 592-606. | spa |
dc.relation.references | Rusell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice Hall. | spa |
dc.relation.references | Santos, J. I., Pereda, M., Ahedo, V., & Galán, J. M. (2023). Explainable Machine Learning for Project Management Control. Computers & Industrial Engineering. | spa |
dc.relation.references | Silva Nobre, R. M. (2020). How Artificial Intelligence Can Provide Support in Project Resource Management. Instituto Universitario de Lisboa. | spa |
dc.relation.references | Tayyab Zia, M., Nadim, M., Ahmad Khan, M., Akram, N., & Atta, F. (2024). The Role and Impact of Artificial Intelligence on Project Management. The Asian Bulletin of Big Data Management, 178-185. doi:https://doi.org/10.62019/abbdm.v4i02.160178. | spa |
dc.relation.references | Vanegas, F. (2016). Conoce el Clima óptimo para un cultivo de café. Obtenido de Coffee Media: https://www.yoamoelcafedecolombia.com/2016/08/31/conoce-el-clima- optimo-para-un-cultivo-de-cafe/. | spa |
dc.relation.references | Vasiliev, V., Mayborodin, A., & Kramarenko, X. (2020). Machine Learning Technology as a Solution of the Resource Assignment Spread Issue in Research and Development Projects. International Conference Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). | spa |
dc.relation.references | Wu, L., Ji, W., Feng, B., & Hermann, U. A. (2021). Intelligent data-driven approach for enhancing preliminary resource planning in industrial construction. Automation in Construction, 130. | spa |
dc.relation.references | Zabala Vargas, S., Jaimes Quintanilla, M., & Barrera, M. (2023). Big Data, Data Science and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Revie. Buildings. doi:doi:https://doi.org/10.3390/buildings13122944. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::606 - Organizaciones | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 650 - Gerencia y servicios auxiliares::658 - Gerencia general | spa |
dc.subject.lemb | Proyectos de investigación - Procesamiento de datos | |
dc.subject.lemb | Inteligencia artificial - Procesamiento de datos | |
dc.subject.lemb | Análisis de costos - Procesamiento de datos | |
dc.subject.proposal | Inteligencia artificial | spa |
dc.subject.proposal | Gestión de proyectos | spa |
dc.subject.proposal | Gestión de recursos | spa |
dc.subject.proposal | Presupuestos | spa |
dc.subject.proposal | Analítica de datos | spa |
dc.subject.proposal | Artificial intelligence | eng |
dc.subject.proposal | Project management | eng |
dc.subject.proposal | Resource management | eng |
dc.subject.proposal | Budgeting | eng |
dc.subject.proposal | Data analytics | eng |
dc.title | Modelo de gestión de recursos para la optimización de proyectos integrando técnicas de Inteligencia Artificial | spa |
dc.title.translated | Resource management model for the optimization of projects integrating Artificial Intelligence techniques | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053872140.2025.pdf
- Tamaño:
- 2.09 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: