Diseño y construcción de un túnel de viento con cámara de pruebas modular
dc.contributor.advisor | García Navarrete, Oscar Leonardo | |
dc.contributor.advisor | Osorio Hernández, Robinson | |
dc.contributor.author | González Camelo, Josué Nicolás | |
dc.date.accessioned | 2021-06-02T14:44:06Z | |
dc.date.available | 2021-06-02T14:44:06Z | |
dc.date.issued | 2021-05-31 | |
dc.description | diagramas, ilustraciones a color, fotografías, tablas | spa |
dc.description.abstract | Los Túneles de Viento son una herramienta para la simulación del flujo del aire en diferentes aplicaciones, de tal manera que se puedan realizar pruebas y simulaciones de modelos a escala, reduciendo los costos. En este trabajo de grado se realiza el diseño y construcción de un túnel de viento. La metodología propuesta comienza con la identificación de los requerimientos y restricciones de materiales, espacio y dinero por lo cual se propone un túnel de viento subsónico de circuito abierto con cámara de pruebas modular y cámara de estabilización con resistencia eléctrica de 2000W. Se realizan los cálculos de diseño de los diferentes elementos que componen el túnel de viento, cálculo de pérdidas y simulación del comportamiento del túnel utilizando dinámica de fluidos computacional (DFC) con el software CFX ANSYS y la estructura del túnel utilizando el método de elementos finitos (MEF) en Inventor Profesional. Se realiza la construcción del túnel en la Universidad Nacional de Colombia y se realizan pruebas de desempeño obtenido resultados de velocidad promedio dentro de la cámara de pruebas de 14.34m/s. Adicional dentro del diseño con la cámara de estabilización se incorpora un sistema de calefacción para el acondicionamiento de la temperatura del viento dentro de la cámara de pruebas del túnel, obteniendo un máximo de temperatura de 32°C en la zona central con el ventilador a 40 Hz. | spa |
dc.description.abstract | Wind Tunnels are a simulation tool of air flow in different applications, in such a way that tests and simulations of scale models can be carried out, reducing costs. This degree work is done designing and building a wind tunnel. The proposed methodology begins with the identification of the requirements and restrictions of materials, space and capital, as a result it is proposed an open circuit subsonic wind tunnel with a modular test chamber and stabilization chamber with an electrical resistance of 2000W. The design section shows the calculations of the different elements, losses and simulation of tunnel behavior using computational fluid dynamics (CFD) with CFX ANSYS software and tunnel structure using Finite Element Method (FEM) Inventor Professional. The construction of the tunnel is carried out at Universidad Nacional de Colombia and performance tests are carried out, obtaining results of average speed within the test chamber of 14.34m/s. Additionally within the design with the stabilization chamber, a heating system is incorporated for conditioning the wind temperature inside the wind tunnel test chamber, obtaining a maximum temperature of 32 ° C in the central zone with the fan working at 40 Hz. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Automatización de Procesos | spa |
dc.format.extent | 1 recurso en línea (76 páginas) | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79590 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Electrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | [1] J. E. Bermeo Valleho, D. F. Siguencia Bermeo, and P. I. Serpa Medina, “Diseño y construcción de un tunel de viento para analisis aerodinamico en vehiculos a escala,” 2012. | spa |
dc.relation.references | [2] P. Moreno-Garibaldi, B. Dávila-Carmona, A. S.-C. José, M. Cervantes-Vázquez, M. Ángel Munive-Rojas, and N. Corro-Valdez, “Diseño y manufactura de túnel de viento subsónico de circuito abierto,” vol. 18, no. 3, pp. 107–111, 2014, Accessed: Jul. 12, 2019. [Online]. Available: http://www.redalyc.org/pdf/614/61448036004.pdf. | spa |
dc.relation.references | [3] S. M. Mejia Urquijo and L. J. Cardona Montes, “AUTOMATIZACIÓN DE UN TÚNEL DE VIENTO PARA ESTUDIOS DE COMPORTAMIENTO DE VUELO DE INSECTOS,” 2016. | spa |
dc.relation.references | [4] R. D. Mehta and P. Bradshaw, “Design rules for small low speed wind tunnels,” Aeronaut. J., vol. 83, no. 827, pp. 443–453, 1979, doi: 10.1017/s0001924000031985. | spa |
dc.relation.references | [5] NASA, “Open Return Wind Tunnel,” Wind Tunnel Index. https://www.grc.nasa.gov/www/k-12/airplane/tunoret.html (accessed Feb. 03, 2021). | spa |
dc.relation.references | [6] NASA, “Closed Return Wind Tunnel,” Wind Tunnel Index. https://www.grc.nasa.gov/www/k-12/airplane/tuncret.html (accessed Feb. 03, 2021). | spa |
dc.relation.references | [7] J. K. Calautit, H. N. Chaudhry, B. R. Hughes, and L. F. Sim, “A validated design methodology for a closed-loop subsonic wind tunnel,” J. Wind Eng. Ind. Aerodyn., vol. 125, pp. 180–194, Feb. 2014, doi: 10.1016/J.JWEIA.2013.12.010. | spa |
dc.relation.references | [8] W. Chang, J. C. Dutton, and G. S. Elliott, “DESIGN AND DEVELOPMENT OF A RECTANGULAR SUPERSONIC WIND TUNNEL FACILITY FOR THE STUDY OF SHOCK/BOUNDARY LAYER INTERACTIONS.” Accessed: Jul. 12, 2019. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.8744&rep=rep1&typ e=pdf. | spa |
dc.relation.references | [9] O. A. Carias Amaya and I. V. Betancourt Mendoza, “Acondicionamiento de un Túnel de Viento para pruebas aerodinámicas y prácticas de laboratorio en la UNAH,” Rev. CIENCIAS Espac., vol. 9, 2016. | spa |
dc.relation.references | [10] B. Earley, S. Morin, E. Morrison, and M. Sangenario, “Design and Construction of a Supersonic Wind Tunnel A Major Qualifying Project,” 2010. Accessed: Jul. 12, 2019. [Online]. Available: https://web.wpi.edu/Pubs/E-project/Available/E-project- 031410-175039/unrestricted/SWT-MQP-JB3-SWT2.pdf. | spa |
dc.relation.references | [11] M.-S. Li, H.-L. Liao, and S.-X. Zheng, “A NEW EXTREME LARGE BOUNDARY LAYER WIND TUNNEL AT SOUTHWEST JIAOTONG UNIVERSITY.” Accessed: Jul. 12, 2019. [Online]. Available: http://www.iawe.org/Proceedings/7APCWE/M2A_7.pdf. | spa |
dc.relation.references | [12] L. Rong, P. Pedersen, T. L. Jensen, S. Morsing, and G. Zhang, “Dynamic performance of an evaporative cooling pad investigated in a wind tunnel for application in hot and arid climate,” Biosyst. Eng., vol. 156, pp. 173–182, Apr. 2017, doi: 10.1016/J.BIOSYSTEMSENG.2017.02.003. | spa |
dc.relation.references | [13] C.-M. Liao and K.-H. Chiu, “Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region,” Build. Environ., vol. 37, no. 2, pp. 177–187, Feb. 2002, doi: 10.1016/S0360-1323(00)00098-6. | spa |
dc.relation.references | [14] O. Sarfraz, C. Bach, and C. K. Bach, “Purdue e-Pubs Development Of Operating Envelope Limits For Equipment Tested In A Wind Tunnel Development of Operating Envelope Limits for Equipment Tested in a Wind Tunnel.” Accessed: Jul. 12, 2019. [Online]. Available: http://docs.lib.purdue.edu/iracc/1664. | spa |
dc.relation.references | [15] C. A. Quispe Gonzáles, W. J. Urcuhuaranga Esteban, and J. E. Chiroque Baldera, “Diseño aerodinámico de un túnel de viento de bajas velocidades,” Rev. Investig. Física, vol. 17, no. 01, pp. 1–12, Jul. 2014, doi: 10.15381/rif.v17i01.8664. | spa |
dc.relation.references | [16] J. B. Barlow, W. H. Rae, W. H. Rae, A. Pope, and J. B. Barlow, Low-Speed Wind Tunnel Testing. Wiley, 1999. | spa |
dc.relation.references | [17] J. E. Hesselgreaves, R. Law, and D. A. Reay, “Introduction,” in Compact Heat Exchangers, Elsevier, 2017, pp. 1–33. | spa |
dc.relation.references | [18] Y. A. Çengel, Mecánica de fluidos. McGraw-Hill Interamericana de España S.L., 2006. | spa |
dc.relation.references | [19] M. P. Burgos Gutiérrez, S. Aldana Ávila, and D. J. Rodríguez Patarroyo, “Análisis del recurso energético eólico para la ciudad de Bogotá DC para los meses de diciembre y enero,” Av. Investig. en Ing., vol. 12, no. 1 SE-Artículos, Dec. 2015, doi: 10.18041/1794-4953/avances.2.278. | spa |
dc.relation.references | [20] D. Brown, Level One Energy Optimization Assessment at Dugway Proving Ground. 2010. | spa |
dc.relation.references | [21] Michigan Air, “Understanding Fan System Effects | Michigan Air Products.” https://www.michiganair.com/blog/understanding-fan-system-effects/ (accessed Nov. 08, 2019). | spa |
dc.relation.references | [22] J. H. Bell and R. D. Mehta, “NASA CONTRACTOR REPORT Contraction Design for Small Low-Speed Wind Tunnels,” 1988. Accessed: Nov. 09, 2019. [Online]. Available: https://ntrs.nasa.gov/search.jsp?R=19890004382. | spa |
dc.relation.references | [23] A. Scarabino, J. S. Delnero, M. Camocardi, and M. Giannecchini, “Resistencia Aerodinámica de Telas y Mallas de Distintas porosidades,” Av. en Energías Renov. y Medio Ambient., vol. 11, 2007, Accessed: Jan. 15, 2021. [Online]. Available: www.laclyfa.ing.unlp.edu.ar. | spa |
dc.relation.references | [24] E. S. Menon and P. S. Menon, “Pressure Loss through Piping Systems,” in Working Guide to Pumps and Pumping Stations, Elsevier, 2010, pp. 69–111. | spa |
dc.relation.references | [25] R. D. Mehta, “Aspects of the design and performance of blower tunnel components,” 1979, Accessed: Jan. 12, 2021. [Online]. Available: http://hdl.handle.net/10044/1/35874. | spa |
dc.relation.references | [26] Y. Nakayama and R. F. Boucher, “Flow in pipes,” in Introduction to Fluid Mechanics, Elsevier, 1998, pp. 111–135. | spa |
dc.relation.references | [27] J. G. Ardila-Marín, D. A. Hincapié-Zuluaga, and J. A. Sierra-del-Rïo, “INDEPENDENCIA DE MALLA EN TUBOS TORSIONADOS PARA INTERCAMBIO DE CALOR: CASO DE ESTUDIO,” Rev. la Fac. Ciencias, vol. 5, no. 1, pp. 124–140, Jan. 2016, doi: 10.15446/rev.fac.cienc.v5n1.54231. | spa |
dc.relation.references | [28] I. ANSYS, “Chapter 15. Reporting Mesh Statistics,” 2008. | spa |
dc.relation.references | [29] C. D. Gray, Design and Development of a Continuous, Open-return Transonic Wind Tunnel Facility. University of Illinois at Urbana-Champaign, 2017. | spa |
dc.relation.references | [30] S. S. K. Ketan V.Karandikar, Ishan J. Kelkar, “Diseño, fabricación y prueba de túneles de viento de circuito abierto de bajo nivel subsónico,” IJERT, vol. 8, 2019, Accessed: Feb. 13, 2021. [Online]. Available: https://www.ijert.org/design- fabrication-and-testing-of-low-subsonic-open-circuit-wind-tunnels-a-review. | spa |
dc.relation.references | [31] A. Pimpin and A. Bunyajitradulya, “The Design and Development of The FMRL 60x18 cm 2 Wide-Angle Screened-Diffuser Blower Tunnel Part I: General Design Considerations,” undefined, 1999. | spa |
dc.relation.references | [32] B. Celis and H. H. Ubbens, “Design and Construction of an Open-circuit Wind Tunnel with Specific Measurement Equipment for Cycling,” in Procedia Engineering, Jan. 2016, vol. 147, pp. 98–103, doi: 10.1016/j.proeng.2016.06.196. | spa |
dc.relation.references | [33] I. Hussain, M. Hachem, A. Ali, and W. Sarsam, “DESIGN, CONSTRUCTION AND TESTING OF LOW SPEED WIND TUNNEL WITH ITS MEASUREMENT AND INSPECTION DEVICES,” J. Eng. / Univ. Baghdad, vol. 17, pp. 1550–1565, Dec. 2011. | spa |
dc.relation.references | [34] Aurelien Borgoltz, “0.7m subsonic open jet wind tunnel | Kevin T. Crofton Department of Aerospace and Ocean Engineering | Virginia Tech.” https://www.aoe.vt.edu/research/facilities/openjet.html (accessed Feb. 13, 2021). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.other | Dinámica de fluidos | |
dc.subject.other | Fluid dynamics | |
dc.subject.proposal | Túnel de Viento | spa |
dc.subject.proposal | Dinámica de fluidos | spa |
dc.subject.proposal | Elementos finitos | spa |
dc.subject.proposal | Sistema modular | spa |
dc.subject.proposal | Acondicionamiento aire forzado | spa |
dc.subject.proposal | Amplio ángulo | spa |
dc.subject.proposal | Wind tunnel | eng |
dc.subject.proposal | Fluid dynamics | eng |
dc.subject.proposal | Finite elements | eng |
dc.subject.proposal | Modular system | eng |
dc.subject.proposal | Forced air conditioning | eng |
dc.subject.proposal | Wide angle | eng |
dc.subject.unesco | Aerodinámica | |
dc.subject.unesco | Aerodynamics | |
dc.title | Diseño y construcción de un túnel de viento con cámara de pruebas modular | spa |
dc.title.translated | Design and construction of a wind tunnel with a modular test chamber | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032479030.2021.pdf
- Tamaño:
- 2.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: