Compuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacteriana

dc.contributor.advisorPabón Gelves, Elizabeth
dc.contributor.advisorMuñoz Acevedo, Juan Carlos
dc.contributor.authorMúnera Gómez, Luisa Fernanda
dc.contributor.cvlacMúnera Gómez, Luisa Fernanda [0001949499]spa
dc.contributor.orcidMúnera Gómez, Luisa [0009-0006-3097-2849]spa
dc.contributor.researchgroupCiencia de Materiales Avanzadosspa
dc.date.accessioned2024-01-30T16:50:48Z
dc.date.available2024-01-30T16:50:48Z
dc.date.issued2023-12
dc.descriptionIlustracionesspa
dc.description.abstractLos compuestos de coordinación con ligandos orgánicos de interés biológico han demostrado tener actividad antibacteriana ante una gran variedad de géneros entre los que se incluyen algunas bacterias resistentes a los tratamientos convencionales. Los aminoácidos son un grupo de moléculas muy versátiles con dos grupos funcionales (amino y carboxilo), esto favorece la interacción con el metal permitiendo sintetizar compuestos con alto potencial antibacteriano. En esta tesis se sintetizaron por métodos convencionales compuestos de coordinación con los metales divalente cobre y níquel, y se usaron como ligandos los aminoácidos glicina, alanina y los ácidos dicarboxílicos itacónico y oxálico. La caracterización de los compuestos sintetizados se realizó por análisis termogravimétrico (TGA), espectroscopia infrarroja por transformada de Fourier (FTIR), espectroscopia ultravioleta - visible (UV-vis) y difracción de rayos X (DRX), mostrando que los compuestos son octaédricos, cristalinos y estables a temperaturas entre los 250 a 300°C. Además, estos compuestos mostraron buena actividad antibacteriana principalmente contra cepas gram-positivas, esto se comprobó por el método del halo de inhibición y mediante la determinación de la concentración mínima inhibitoria la cual fue de 20 ppm para los compuestos con cobre y para los compuestos con níquel estuvo entre 10 y 5 ppm. (texto tomado de la fuente)spa
dc.description.abstractCoordination compounds with organic ligands of biological interest have shown to have antibacterial activity against a wide variety of genera, including some bacteria resistant to conventional treatments. Amino acids are a group of very versatile molecules with two functional groups (amino and carboxyl), this favors the interaction with the metal, allowing the synthesis of compounds with high antibacterial potential. In this thesis, coordination compounds with the divalent metals copper and nickel were synthesized by conventional methods, and the amino acids glycine, alanine, and the dicarboxylic acids itaconic and oxalic acids were used as ligands. The characterization of the synthesized compounds was carried out by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), ultraviolet - visible spectroscopy (UV-vis) and X-ray diffraction (XRD), showing that the compounds are octahedral, crystalline and stable at temperatures between 250 to 300°C. In addition, these compounds showed good antibacterial activity mainly against gram-positive strains, this was verified by the inhibition zone method and by determining the minimum inhibitory concentration which was 20 ppm for the compounds with copper and for the compounds with Nickel was between 10 and 5 ppm.eng
dc.description.curricularareaÁrea Curricular en Ciencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extent100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85529
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesT. Sattar and M. Athar, ‘Hydrothermal Synthesis and Characterization of Copper Glycinate (Bio-MOF-29) and Its in vitro Drugs Adsorption Studies’, Open J Inorg Chem, vol. 07, pp. 17–27, 2017, doi: 10.4236/ojic.2017.72002.spa
dc.relation.referencesV. André, P. C. Alves, and M. T. Duarte, ‘Exploring antibiotics as ligands in metal–organic and hydrogen bonding frameworks: Our novel approach towards enhanced antimicrobial activity (mini-review)’, Inorganica Chim Acta, vol. 525, p.120474, 2021, doi: 10.1016/j.ica.2021.120474.spa
dc.relation.referencesS. He et al., ‘Metal-organic frameworks for advanced drug delivery’, Acta Pharm Sin B, vol. 11, pp. 2362–2395, 2021, doi: 10.1016/j.apsb.2021.03.019.spa
dc.relation.referencesM. S. Mohamed, A. A. Shoukry, and A. G. Ali, ‘Synthesis and structural characterization of ternary Cu (II) complexes of glycine with 2,2′-bipyridine and 2,2′- dipyridylamine. the DNA-binding studies and biological activity’, Spectrochim Acta A. (SAA), vol. 86, pp. 562–570, 2012, doi: 10.1016/j.saa.2011.11.015.spa
dc.relation.referencesM. Aljahdali, ‘Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine’, Spectrochim Acta A. (SAA), vol. 112, pp. 364–376, 2013, doi: 10.1016/j.saa.2013.03.057spa
dc.relation.referencesD. A. Köse, E. Toprak, A. Kasąrci, E. Avci, G. A. Avci, O. Sąhin, and O. Buyükgüngör, ‘Synthesis, Spectral, and Thermal Studies of Co(II), Ni(II), Cu(II), and Zn(II)-Glycinato Complexes and Investigation of Their Biological Properties: Crystal Structure of [Cu(μ-gly) 2(H2O)] n’, Syn react inorg metaorg nanometal chem, vol. 46, pp. 1109–1118, 2016, doi: 10.1080/15533174.2013.801855.spa
dc.relation.referencesP. A. Kobielska, A. J. Howarth, O. K. Farha, and S. Nayak, ‘Metal–organic frameworks for heavy metal removal from water’, Coord Chem Rev, vol. 358, pp. 92– 107, 2018, doi: 10.1016/j.ccr.2017.12.010.spa
dc.relation.referencesY. N. Wang, H. X. Li, L. Jia, S. S. Zhang, Y. R. Zhao, L. Du, and Q. H. Zhao, ‘Two 2D isostructural coordination polymers: Syntheses, structure analysis and effective detection of Cr(VI) and Fe(III) ions in water’, Inorg Chem Commun, vol. 110, p. 107575, 2019, doi: 10.1016/j.inoche.2019.107575spa
dc.relation.referencesA. Pastrana-Dávila, A. Amaya-Flórez, C. Aranaga, J. Ellena, M. Macías, E. Flórez-López, and R. F. D’Vries, ‘Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds’, J Mol Struct, vol. 1245, 2021, doi: 10.1016/j.molstruc.2021.131109.spa
dc.relation.referencesA. A. García-Valdivia et al., ‘Anti-cancer and anti-inflammatory activities of a new family of coordination compounds based on divalent transition metal ions and indazole-3-carboxylic acid’, J Inorg Biochem, vol. 215, 2021, doi: 10.1016/j.jinorgbio.2020.111308.spa
dc.relation.referencesE. B. Bauer, A. A. Haase, R. M. Reich, D. C. Crans, and F. E. Kühn, ‘Organometallic and coordination rhenium compounds and their potential in cancer therapy’, Coord Chem Rev, vol. 393, pp. 79–117, 2019, doi: 10.1016/j.ccr.2019.04.014.spa
dc.relation.referencesV. Subramaniyam, P. v. Ravi, and M. Pichumani, ‘Structure co-ordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): A comprehensive review’, J Mol Struct, vol. 1251, 2022, doi: 10.1016/j.molstruc.2021.131931.spa
dc.relation.referencesJ. An, S. J. Geib, and N. L. Rosi, ‘High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores’, J Am Chem Soc, vol. 132, pp. 38–39, 2010, doi: 10.1021/ja909169x.spa
dc.relation.referencesS. L. Anderson et al., ‘Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor’, Nat Commun, vol. 10, 2019, doi: 10.1038/s41467-019-09486-2.spa
dc.relation.referencesJ. An, S. J. Geib, and N. L. Rosi, ‘Cation-triggered drug release from a porous zinc-adeninate metal-organic framework’, J Am Chem Soc, vol. 131, pp. 8376–8377, 2009, doi: 10.1021/ja902972w.spa
dc.relation.referencesD. İnci, R. Aydın, and Y. Zorlu, ‘Biomacromolecular interactions and radical scavenging activities of one-dimensional (1D) copper(II) glycinate coordination polymer’, J Iran Chem soc, vol. 18, pp. 3017-3030, 2021, doi: 10.1007/s13738-021-02249-1.spa
dc.relation.referencesC. Li, K. Deng, Z. Tang, and L. Jiang, ‘Twisted metal-amino acid nanobelts: Chirality transcription from molecules to frameworks’, J Am Chem Soc, vol. 132, pp. 8202–8209, 2010, doi: 10.1021/ja102827fspa
dc.relation.referencesS. Shu, Y. F. Jian, T. Zhang, W. L. Guo, and X. Liu, ‘A novel threedimensional copper aspartate coordination compound with efficient photoluminescence’, Z. fur Naturforsch. - B J. Chem. Sci, vol. 75, pp. 281–286, 2020, doi: 10.1515/znb-2019-0156.spa
dc.relation.referencesN. Bhardwaj, S. K. Pandey, J. Mehta, S. K. Bhardwaj, K. H. Kim, and A. Deep, ‘Bioactive nano-metal–organic frameworks as antimicrobials against Grampositive and Gram negative bacteria’, Toxicol Res (Camb), vol. 7, pp. 931–941, 2018, doi: 10.1039/C8TX00087E.spa
dc.relation.referencesS. Shams, W. Ahmad, A. H. Memon, S. Shams, Y. Wei, Q. Yuan, and H. Liang, ‘Cu/H3BTC MOF as a potential antibacterial therapeutic agent against: Staphylococcus aureus and Escherichia coli’, New J Chem, vol. 44, pp. 17671–17678, 2020, doi: 10.1039/d0nj04120c.spa
dc.relation.referencesX. Lu, J. Ye, D. Zhang, R. Xie, R. F. Bogale, Y. Sun, L. Zhao, Q. Zhao, and G. Ning, ‘Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility’, J Inorg Biochem, vol. 138, pp. 114–121, 2014, doi: 10.1016/J.JINORGBIO.2014.05.005.spa
dc.relation.referencesY. Liu, X. Xu, Q. Xia, G. Yuan, Q. He, and Y. Cui, ‘Multiple topological isomerism of three-connected networks in silver-based metal-organoboron frameworks’, Chem Comm, vol. 46, pp. 2608–2610, 2010, doi: 10.1039/b923365b.spa
dc.relation.referencesW. Zhuang, D. Yuan, J. R. Li, Z. Luo, H. C. Zhou, S. Bashir, and J. Liu, ‘Highly potent bactericidal activity of porous metal-organic frameworks’, Adv Health Mater, vol. 1, pp. 225–238, 2012, doi: 10.1002/adhm.201100043.spa
dc.relation.referencesN. A. Siddiki, S. Islam, S. Begum, and M. A. Salam, ‘Synthesis, spectral characterization, thermal behavior and biological activities study of ternary metal complexes of alanine and 1,8-diaminonapthalene with Co(III), Ni(II), Cu(II), Zn(II) and Cd(II)’, Mater Today: Proc, 2019, vol. 46, pp. 6374–6381, doi: 10.1016/j.matpr.2020.06.126.spa
dc.relation.referencesT. Kundu, S. C. Sahoo, S. Saha, and R. Banerjee, ‘Salt metathesis in three dimensional metal-organic frameworks (MOFs) with unprecedented hydrolytic regenerability’, Chem Comm, vol. 49, pp. 5262–5264, 2013, doi: 10.1039/c3cc41842a.spa
dc.relation.referencesIngrid M. Weiss, Christina Muth, Robert Drumm, and, and Helmut O. K. Kirchn, ‘Thermal decomposition of the aminoacids glycine, cysteine, aspartic acid,asparagine, glutamic acid, glutamine, arginine and histidine’, BMC Biophys, vol. 11, 2018, doi: 10.1186/s13628-018-0042-4.spa
dc.relation.referencesV. Y. Yablokov, I. L. Smel’tsova, I. A. Zelyaev, and S. v. Mitrofanova, ‘Studies of the rates of thermal decomposition of glycine, alanine, and serine’, Russ J Gen Chem, vol. 79, pp. 1704–1706, 2009, doi: 10.1134/S1070363209080209.spa
dc.relation.referencesM. A. Ali, X. Liu, and J. Qiu, “A review on the vitrification of metal coordination compounds and their photonic applications,” J Non Cryst Solids, vol. 597, pp. 121936, 2022, doi: 10.1016/J.JNONCRYSOL.2022.121936.spa
dc.relation.referencesE. Battaner A, Biomoléculas. Una introducción estructural a la bioquímica, 1st ed. Salmanca. España: Ediciones Universidad de Salamanca, 2012.spa
dc.relation.referencesS. Horike, S. S. Nagarkar, T. Ogawa, and S. Kitagawa, “A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids,” Angew. Chem. Int Ed, vol. 59, pp. 6652–6664, 2020, doi: 10.1002/anie.201911384.spa
dc.relation.referencesH. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, 2013, doi: 10.1126/science.1230444spa
dc.relation.referencesT. Kundu, S. C. Sahoo, and R. Banerjee, “Variable water adsorption in amino acid derivative based homochiral metal organic frameworks,” Cryst Growth Des, vol. 12, pp. 4633–4640, 2012, doi: 10.1021/cg3008443.spa
dc.relation.referencesS. Rojas, A. Arenas-Vivo, and P. Horcajada, “Metal-organic frameworks: A novel platform for combined advanced therapies,” Coord Chem Rev, vol. 388, pp. 202–226, 2019, doi: 10.1016/j.ccr.2019.02.032.spa
dc.relation.referencesM. Ding, W. Liu, and R. Gref, “Nanoscale MOFs : from synthesis to drug delivery and theranostics,” Adv Drug Deliv Rev, p. 114496, 2022, doi: 10.1016/j.addr.2022.114496.spa
dc.relation.referencesB. Wang, L. H. Xie, X. Wang, X. M. Liu, J. Li, and J. R. Li, “Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal,” Green Energy Environ, vol. 3, pp. 191–228, 2018, doi: 10.1016/j.gee.2018.03.001.spa
dc.relation.referencesT. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt, and O. Yaghi, “MOF-74 building unit has a direct impact on toxic gas adsorption,” Chem Eng Sci, vol. 66, pp. 163–170, 2011, doi: 10.1016/j.ces.2010.10.002.spa
dc.relation.referencesN. Saikumari, “Synthesis and characterization of amino acid Schiff base and its copper (II) complex and its antimicrobial studies,” in Mater Today: Proc 2021, vol. 47, pp. 1777–1781, doi: 10.1016/j.matpr.2021.02.607.spa
dc.relation.referencesF. Sevgi, U. Bagkesici, A. N. Kursunlu, and E. Guler, “Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity,” J Mol Struct, vol. 1154, pp. 256–260, 2018, doi: 10.1016/j.molstruc.2017.10.052.spa
dc.relation.referencesD. U. Miodragović et al., “Syntheses, characterization and antimicrobial activity of the first complexes of Zn(II), Cd(II) and Co(II) with N-benzyloxycarbonylglycine: X-ray crystal structure of the polymeric Cd(II) complex,” Inorg Chim Acta, vol. 361, pp. 86-94, 2008, doi: 10.1016/J.ICA.2007.06.041.spa
dc.relation.referencesR. Abazari, A. R. Mahjoub, F. Ataei, A. Morsali, C. L. Carpenter-Warren, K. Mehdizadeh, and A. M. Z. Slawin, “Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer,” Inorg Chem, vol. 57, pp. 13364–13379, 2018, doi: 10.1021/acs.inorgchem.8b01955spa
dc.relation.referencesJ. Hou, X. Long, X. Wang, L. Li, D. Mao, Y. Luo, and H. Ren, “Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption,” J Hazard Mater, vol. 442, 2023, doi: 10.1016/j.jhazmat.2022.130042.spa
dc.relation.referencesS. S. Shekhawat et al., “Antibiotic resistance genes and bacterial diversity: A comparative molecular study of treated sewage from different origins and their impact on irrigated soils,” Chemosphere, vol. 307, 2022, doi: 10.1016/J.CHEMOSPHERE.2022.136175.spa
dc.relation.referencesX. Lu, J. Ye, Y. Sun, R. F. Bogale, L. Zhao, P. Tian, and G. Ning, “Ligand effects on the structural dimensionality and antibacterial activities of silver-based coordination polymers,” Dalton Trans, vol. 43, pp. 10104–10113, 2014, doi: 10.1039/c4dt00270a.spa
dc.relation.referencesI. P. Burneo Saavedra, “Metal-Organic Frameworks made of amino acids and adenine: chirality and hydrochromism,” Tesis Doctoral, Universitat Autonoma de Barcelona, 2017.spa
dc.relation.referencesE. Yang, L. Wang, F. Wang, Q. Lin, Y. Kang, and J. Zhang, “Zeolitic metal-organic frameworks based on amino acid,” Inorg Chem, vol. 53, pp. 10027–10029, 2014, doi: 10.1021/ic501556w.spa
dc.relation.referencesJ. J. Zhang et al., “Two 3D supramolecular polymers constructed from an amino acid and a high-nuclear Ln6Cu24 cluster node,” Chem Eur J, vol. 10, pp. 3963–3969, 2004, doi: 10.1002/chem.200400018.spa
dc.relation.referencesP. Ferrer, I. Da Silva, J. Rubio-Zuazo, and G. R. Castro, “Synthesis and crystal structure of the novel metal organic framework Zn(C3H5NO2S)2,” Powder Diffr, vol. 760, pp. 366–370, 2014, doi: 10.1017/S0885715614000554.spa
dc.relation.referencesH. yuan Zhang, H. jia Yu, H. xia Xu, J. song Ren, and X. gang Qu, “Structural diversity of lanthanide-amino acid complexes under near physiological pH conditions and their recognition of single-stranded DNA,” Polyhedron, vol. 26, pp. 5250–5256, 2007, doi: 10.1016/j.poly.2007.07.052.spa
dc.relation.referencesT. T. Luo, L. Y. Hsu, C. C. Su, C. H. Ueng, T. C. Tsai, and K. L. Lu, “Deliberate design of a 3D homochiral CuII/L-met/AgI coordination network based on the distinct soft-hard recognition principle,” Inorg Chem, vol. 46, pp. 1532–1534, 2007, doi: 10.1021/ic062132k.spa
dc.relation.referencesC. B. Liu, Y. N. Gong, Y. Chen, and H. L. Wen, “Self-assembly and structures of newtransition metal complexes with phenyl substituted pyrazole carboxylic acid and N-donor co-ligands,” Inorg Chim Acta, vol. 383, pp. 277–286, 2012, doi: 10.1016/J.ICA.2011.11.015.spa
dc.relation.referencesH. M. Tay, N. Kyratzis, S. Thoonen, S. A. Boer, D. R. Turner, and C. Hua, “Synthetic strategies towards chiral coordination polymers,” Coord Chem Rev, vol. 435, 2021, doi: 10.1016/j.ccr.2020.213763.spa
dc.relation.referencesJ. Dharmaraja, T. Esakkidurai, P. Subbaraj, and S. Shobana, “Mixed ligand complex formation of 2-aminobenzamide with Cu(ii) in the presence of some amino acids: Synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies,” Spectrochimica Acta, Part A (SAA), vol. 114, pp. 607–621, 2013, doi: 10.1016/j.saa.2013.05.043.spa
dc.relation.referencesS. M. F. Vilela, D. Ananias, P. Silva, M. Nolasco, L. D. Carlos, V. De Zea Bermudez, J. Rocha, J. P. C. Tomé, and F. A. Almeida Paz, “Coordination polymers based on a glycinederivative ligand,” Cryst Eng Comm, vol. 16, pp. 8119–8137, 2014, doi: 10.1039/c4ce00465e.spa
dc.relation.referencesJ. He, G. Zhang, D. Xiao, H. Chen, S. Yan, X. Wang, J. Yang, and E. Wang, “Helicity controlled by the chirality of amino acid: Two novel enantiopure chiral 3D architectures containing fivefold interwoven helices,” Cryst Eng Comm, vol. 14, pp. 3609–3614, 2012, doi: 10.1039/c2ce25038a.spa
dc.relation.referencesA. C. Tella, S. O. Owalude, P. A. Ajibade, N. Simon, S. J. Olatunji, M. S. M. Abdelbaky, and S. Garcia-Granda, “Synthesis, characterization, crystal structure and antimicrobial studies of a novel Cu(II) complex based on itaconic acid and nicotinamide,” J Mol Struct, vol. 1125, pp. 570–575, 2016, doi: 10.1016/j.molstruc.2016.07.016.spa
dc.relation.referencesN. Rabiee et al., “Green metal-organic frameworks (MOFs) for biomedical applications,” Microporus Mesoporus Mater, vol. 335, p. 111670, 2022, doi: 10.1016/J.MICROMESO.2021.111670.spa
dc.relation.referencesM. Berchel et al., “A silver-based metal-organic framework material as a ‘reservoir’ of bactericidal metal ions,” New J of Chem, vol. 35, pp. 1000–1003, 2011, doi: 10.1039/c1nj20202b.spa
dc.relation.referencesK. Martín-Betancor, S. Aguado, I. Rodea-Palomares, M. Tamayo-Belda, F. Leganés, R. Rosal, and F. Fernández-Piñas, “Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms,” Sci Total Environ, vol. 595, pp. 547–555, 2017, doi: 10.1016/j.scitotenv.2017.03.250.spa
dc.relation.referencesG. Wyszogrodzka, B. Marszałek, B. Gil, and P. Dorozyński, “Metal-organic frameworks: Mechanisms of antibacterial action and potential applications,” Drug Discov Today, vol. 21, pp. 1009–1018, 2016, doi: 10.1016/j.drudis.2016.04.009.spa
dc.relation.referencesR. Li, X. Kong, J. Dong, K. Li, T. Wan, and H. Wu, “Two new Ag-MOFs: Synthesis, structure, electrocatalytic hydrogen evolution and H2O2 electrochemical sensing,” Inorg Chim Acta, vol. 544, p. 121208, 2023, doi: 10.1016/J.ICA.2022.121208.spa
dc.relation.referencesS. Wen-Wen, S. Chen, and H. Jin-Song, “A high selective Zn-based luminescent metal-organic framework for fluorescence sensing detecting iron(III) and trinitrophenol,” Inorg Chem Commun, vol. 149, p. 110368, 2023, doi: 10.1016/J.INOCHE.2022.110368.spa
dc.relation.referencesS. H. Alisir, S. Demir, B. Sariboga, and O. Buyukgungor, “A disparate 3-D silver(I) coordination polymer of pyridine-3,5-dicarboxylate and pyrimidine with strong intermetallic interactions: X-ray crystallography, photoluminescence and antimicrobial activity,” J Coord Chem, vol. 68 pp. 155–168, 2015, doi: 10.1080/00958972.2014.978307.spa
dc.relation.referencesM. A. Ghasemzadeh and B. Mirhosseini-Eshkevari, “Poly(acrylic acid)/Fe3O4 supported on MIL-100(Cr) MOF as a novel and magnetic nanocatalyst for the synthesis of Pyrido[2,3-d]Pyrimidines,” Heliyon, vol. 8, p. 10022, 2022, doi: 10.1016/j.heliyon.2022.e10022.spa
dc.relation.referencesS. Fatemeh Seyedpour et al., “Tailoring the Biocidal Activity of Novel Silver-Based Metal Azolate Frameworks,” ACS Sustain Chem Eng, vol. 8, pp. 7588–7599, 2020, doi: 10.1021/acssuschemeng.0c00201.spa
dc.relation.referencesJ. H. Jo, H. C. Kim, S. Huh, Y. Kim, and D. N. Lee, “Antibacterial activities of CuMOFs containing glutarates and bipyridyl ligands,” Dalton Trans, vol. 48, pp. 8084–8093, 2019, doi: 10.1039/c9dt00791a.spa
dc.relation.referencesH. Yang, C. Lai, M. Wu, S. Wang, Y. Xia, F. Pan, K. Lv, and L. Wen, “Novel aminofunctionalized Ni(II)-based MOFs for efficiently photocatalytic reduction of CO2 to CO with superior selectivity under visible-light illumination,” Chem Eng J, vol. 455, 2022, doi: 10.1016/j.cej.2022.140425.spa
dc.relation.referencesJ. Yoo, J. H. Kim, Y. S. Sohn, and D. Youngkyu, “Platinum(II) complexes of 3,3′-disubstituted-2,2′-bypyridines. Synthesis, structures, cytotoxic effect and unusual solvolysis in DMSO,” Inorg Chim Acta, vol. 263, pp. 53–60,1997, doi: 10.1016/S0020-1693(97)05566-spa
dc.relation.referencesN. Politeo, M. Pisačić, M. Daković, V. Sokol, and B. M. Kukovec, “The first coordination compound of 6-fluoronicotinate: The crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4′- bipyridine,” Acta Crystallogr. E: Crystallogr, vol. 76, pp. 500–505, 2020, doi: 10.1107/S2056989020003023/XI2024SUP3.DOCX.spa
dc.relation.referencesP. Cao, X. Wu, W. Zhang, L. Zhao, W. Sun, and Z. Tang, “Killing Oral Bacteria Using Metal-Organic Frameworks,” Ind Eng Chem Res, vol. 59, pp. 1559–1567, 2020, doi: 10.1021/acs.iecr.9b05659.spa
dc.relation.referencesK. Xu et al., “Ce (III)-terephthalic acid metal-organic frameworks as highly efficient·OH radical scavengers for fuel cells and investigation of its antioxidation mechanism,” Mater Today Energy, vol. 31, pp. 101195, 2023, doi: 10.1016/J.MTENER.2022.101195.spa
dc.relation.referencesY. Gao, X. H. Yi, C. C. Wang, F. Wang, and P. Wang, “Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst,” Mater Res Bull, vol. 158, pp. 112072, 2023, doi: 10.1016/J.MATERRESBULL.2022.112072.spa
dc.relation.referencesB. J. Zhang, C. J. Wang, G. M. Qiu, S. Huang, X. L. Zhou, J. Weng, and Y. Y. Wang, “Polycarboxylate anions effect on the structures of a series of transition metal-based coordination polymers: Syntheses, crystal structures and bioactivities,” Inorg Chim Acta, vol. 397, pp. 48–59, 2013, doi: 10.1016/J.ICA.2012.11.018.spa
dc.relation.referencesG. Yuan, H. Tu, M. Li, J. Liu, C. Zhao, J. Liao, Y. Yang, J. Yang, and N. Liu, “Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution,” Appl Surf Sci, vol. 466, pp. 903–910, 2019, doi: 10.1016/j.apsusc.2018.10.129.spa
dc.relation.referencesX. Wang, J. D. Ranford, and J. J. Vittal, “One-dimensional coordination polymers: Cu(II) and Zn(II) complexes of N-(2-pyridylmethyl)-glycine and N-(2-pyridylmethyl)-lalanine,” J Mol Struct, vol. 796, pp. 28–35, 2006, doi: 10.1016/j.molstruc.2006.03.090.spa
dc.relation.referencesZ. H. Chohan, M. Praveen, and A. Ghaffar, “Synthesis, characterisation and biological role of anions (nitrate, sulphate, oxalate and acetate) in Co(II), Cu(II) and Ni(II) metal chelates of some Schiff base derived amino acids,” Syn react inorg metaorg nanometal chem, vol. 28, pp. 1673–1687, 1998, doi: 10.1080/00945719809349422.spa
dc.relation.referencesZ. Lü, D. Zhang, S. Gao, and D. Zhu, “Two helical one-dimensional copper(II) coordination polymers based on N-(2-hydroxylbenzyl)glycine and N-(2-hydroxylbenzyl)-Lalanine: Syntheses, crystal structures and magnetic studies,” Inorg Chem Commun, vol. 8, pp. 746–750, 2005, doi: 10.1016/j.inoche.2005.05.012.spa
dc.relation.referencesM. Estrader, C. Diaz, J. Ribas, X. Solans, and M. Font-Bardía, “Synthesis, characterization and magnetic properties of six new copper(II) complexes with aminoacids as bridging ligand, exhibiting ferromagnetic coupling,” Inorg Chim Acta, vol. 361, pp. 3963–3969, 2008, doi: 10.1016/j.ica.2008.03.028.spa
dc.relation.referencesZ. Vargová, M. Almáši, L. Arabuli, K. Györyová, V. Zeleňák, and J. Kuchár, “Utilization of IR spectral detailed analysis for coordination mode determination in novel Zncyclen-aminoacid complexes,” Spectrochimica Acta, Part A (SAA), vol. 78, pp. 788–793, 2011, doi: 10.1016/j.saa.2010.12.022.spa
dc.relation.referencesJ. K. MacLaren and C. Janiak, “Amino-acid based coordination polymers,” Inorg Chim Acta, vol. 389, pp. 183–190, 2012, doi: 10.1016/j.ica.2012.03.010.spa
dc.relation.referencesM. Y. Li, F. Wang, Z. G. Gu, and J. Zhang, “Synthesis of homochiral zeolitic metalorganic frameworks with amino acid and tetrazolates for chiral recognition,” RSC Adv, vol. 7, pp. 4872–4875, 2017, doi: 10.1039/c6ra27069g.spa
dc.relation.referencesI. Ahmed, U. Yunus, M. Nadeem, M. H. Bhatti, and M. Mehmood, “Post synthetically modified compounds of Cd-MOF by L-amino acids for luminescent applications,” J Solid State Chem, vol. 287, pp. 121320, 2020, doi: 10.1016/j.jssc.2020.121320.spa
dc.relation.referencesN. Nishat, S. Dhyani, and H. S. Manisha, “Development of antimicrobial aminoacidmodified bisphenol-A formaldehyde resin and its transition-metal complexes,” Poly Bulletin, vol. 64, pp. 523–536, 2010, doi: 10.1007/s00289-009-0154-8.spa
dc.relation.referencesH. I. Beltrán, A. Abreu, L. S. Zamudio-rivera, T. Mancilla, and R. Santillán, “Síntesis y caracterización espectroscópica de N-(2-hidroxibencil )-α-aminoácidos,” Rev. Soc. Quím. Méx. Vol., vol. 45, pp. 152–158, 2001, doi: 000186194.spa
dc.relation.referencesS. Konar, K. Gagnon, A. Clearfield, C. Thompson, J. Hartle, C. Ericson, and C. Nelson, “Structural determination and characterization of copper and zinc bis-glycinates with X-ray crystallography and mass spectrometry,” J Coord Chem, vol. 63, pp. 3335–3347, 2010, doi: 10.1080/00958972.2010.514336.spa
dc.relation.referencesR. Bikas, B. Soltani, H. Sheykhi, M. Korabik, and M. Hossaini-Sadr, “Synthesis, crystal structure and magneto-structural studies of 2D copper(II) coordination polymer containing L-alanine amino acid,” J Mol Struct, vol. 1168, pp. 195–201, 2018, doi: 10.1016/j.molstruc.2018.05.016.spa
dc.relation.referencesC. Kamble, R. Chavan, and V. Kamble, ‘A Review on Amino Acids’, Research & Reviews: A J of Drug Design & Disco, vol. 8, pp. 19–27, 2021, doi: 10.37591/RRJoDDD.spa
dc.relation.referencesC. Furman, M. Howsam, and E. Lipka, ‘Recent developments in separation methods for enantiomeric ratio determination of amino acids specifically involved in cataract and Alzheimer’s disease’, TrAC, vol. 141, p. 116287, 2021, doi: 10.1016/J.TRAC.2021.116287.spa
dc.relation.referencesH. Cai, Y. L. Huang, and D. Li, ‘Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications’, Coord Chem Rev, vol. 378, pp. 207–221, 2019, doi: 10.1016/j.ccr.2017.12.003.spa
dc.relation.referencesJ. Yang and Y. W. Yang, ‘Metal–Organic Frameworks for Biomedical Applications’, Small, vol. 16, 2020, doi: 10.1002/smll.201906846spa
dc.relation.referencesK. Nakamoto, ‘Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Applications in Coordination, Organometallic, and Bioinorganic Chemistry’, in Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. Sixth edition, 2009.spa
dc.relation.referencesM. Can, S. Demirci, A. K. Sunol, and N. Sahiner, ‘An amino acid, l-Glutamic acidbased metal-organic frameworks and their antibacterial, blood compatibility, biocompatibility, and sensor properties’, Microporous Mesoporous Mater, vol. 309, pp. 110533, 2020, doi: 10.1016/J.MICROMESO.2020.110533.spa
dc.relation.referencesX. Ye, D. Wang, K. Yuan, Y. Dong, Z. Chen, C. Huang, Z. Yu, and D. Wu, ‘Synthesis, characterization and antibacterial activity of [Zn(formato)2(4,4′-bipy)] complex’, J Mol Struct, vol. 1225, pp. 129094, 2021, doi: 10.1016/J.MOLSTRUC.2020.129094.spa
dc.relation.referencesB. Li, Y. Luo, Y. Zheng, X. Liu, L. Tan, and S. Wu, “Two-dimensional antibacterial materials,” Prog Mater Sci, vol. 130, 2022, doi: 10.1016/j.pmatsci.2022.100976.spa
dc.relation.referencesS. Ali Akbar Razavi and A. Morsali, “Linker functionalized metal-organic frameworks,” Coord Chem Rev, vol. 399, pp. 213023, 2019, doi: 10.1016/j.ccr.2019.213023.spa
dc.relation.referencesG. N. Lucena, R. C. Alves, M. P. Abuçafy, L. A. Chiavacci, I. C. da Silva, F. R. Pavan, and R. C. G. Frem, “Zn-based porous coordination solid as diclofenac sodium carrier,” J Solid State Chem, vol. 260, pp. 67–72, 2018, doi: 10.1016/j.jssc.2018.01.011.spa
dc.relation.referencesK. Yuan et al., “Preparation, characterization and antibacterial activity of a novel Zn(II) coordination polymer derived from carboxylic acid,” J Mol Struct, vol. 1241, 2021, doi: 10.1016/j.molstruc.2021.130624.spa
dc.relation.referencesF. Akbarzadeh, M. Motaghi, N. P. S. Chauhan, and G. Sargazi, “A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application,” Heliyon, vol. 6, 2020, doi: 10.1016/J.HELIYON.2020.E03231.spa
dc.relation.referencesI. Wiegand, K. Hilpert, and R. E. W. Hancock, “Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances,” Nat Protoc, vol. 3, pp. 163–175, 2008, doi: 10.1038/nprot.2007.521.spa
dc.relation.referencesA. Liu, C. C. Wang, C. zheng Wang, H. fen Fu, W. Peng, Y. L. Cao, H. Y. Chu, and A. F. Du, “Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers,” J Colloid Interface Sci, vol. 512, pp. 730–739, 2018, doi: 10.1016/j.jcis.2017.10.099.spa
dc.relation.referencesM. Juan and Z. Peralta, “Síntesis, caracterización y evaluación de la actividad biológica de compuestos de coordinación de cobalto con pirazinamida,” Rev Soc Quím Perú, vol. 86, pp. 315–328, 2020, doi: 10.37761/rsqp.v86i3.303.spa
dc.relation.referencesG. B. Deacon and R. J. Phillips, “Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination,” Coord. Chem. Rev., vol. 33, pp. 227–250, 1980, doi: 10.1016/S0010-8545(00)80455-5.spa
dc.relation.referencesM. H. El-Newehy, S. M. Osman, M. S. Refat, S. S. Al-Deyab, and A. El-Faham, “Microwave synthesis of copolymers based on itaconic acid moiety and their utility for scavenging of copper (II) and lead (II),” J of Macromol Sci, Part A: P A C, vol. 52, pp. 561–576, 2015, doi: 10.1080/10601325.2015.1039335.spa
dc.relation.referencesF. Hillman, J. M. Zimmerman, S. M. Paek, M. R. A. Hamid, W. T. Lim, and H. K. Jeong, “Rapid microwave-assisted synthesis of hybrid zeolitic-imidazolate frameworks with mixed metals and mixed linkers,” J Mater Chem, vol. 5, pp. 6090–6099, 2017, doi: 10.1039/c6ta11170j.spa
dc.relation.referencesM. Bradley, D., Gitlitz, “Metal-Nitrogen Infrared Stretching Frequencies in Dialkylamido-transition Metal Compounds,” Nat, vol. 218, pp. 353–354, 1968, doi: 10.1038/218353b0.spa
dc.relation.referencesH. G. T. Nguyen, R. Tao, and R. D. Van Zee, “Porosity, Powder X-Ray Diffraction Patterns, Skeletal Density, and Thermal Stability of NIST Zeolitic Reference Materials RM 8850, RM 8851, and RM 8852,” J Res Natl Inst Stand Technol, vol. 126, pp. 1–10, 2021, doi: 10.6028/jres.126.047.spa
dc.relation.referencesJ. M. Newsam, C. Z. Yang, H. E. King, R. H. Jones, and D. Xie, “Experiences in studying zeolites and related microporous materials by synchrotron x-ray diffraction†,” J of Phy and Chem of Solids, vol. 52, pp. 1281–1288, 1991, doi: 10.1016/0022-3697(91)90204-D.spa
dc.relation.referencesM. Eswaramoorthy, S. Neeraj, and C. N. R. Rao, “Synthesis of hexagonal microporous silica and aluminophosphate by supramolecular templating of a short-chain amine,” Microporus Mesoporus Mater, vol. 28, pp. 205–210, 1999, doi: 10.1016/S1387-1811(98)00309-6.spa
dc.relation.referencesT. D. Agboola and M. A. Bisi-Johnson, “Occurrence of Listeria monocytogenes in irrigation water and irrigated vegetables in selected areas of Osun State, Nigeria,” Sci Afr, vol. 19, 2023, doi: 10.1016/j.sciaf.2022.e01503.spa
dc.relation.referencesX. Fan, J. B. Gurtler, and J. P. Mattheis, “Possible sources of Listeria monocytogenes contamination of fresh-cut apples and antimicrobial interventions during antibrowning treatments: A Review,” J Food Prot, vol. 86, 2023, doi: 10.1016/j.jfp.2023.100100.spa
dc.relation.referencesM. E. Doyle, J. Archer, C. W. Kaspar, and R. Weiss, “Human Illness Caused by E . coli O157 : H7 from Food and Non-food Sources,” FRI Briefings, pp. 1–37, 2006, [Online]. Available: http://fri.wisc.edu/docs/pdf/FRIBrief_EcoliO157H7humanillness.pdfspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembAminoácidos
dc.subject.lembCompuestos de coordinación
dc.subject.proposalCompuestos de coordinaciónspa
dc.subject.proposalCoordination compoundseng
dc.subject.proposalActividad antibacterianaspa
dc.subject.proposalAntibacterial activityeng
dc.subject.proposalAminoácidosspa
dc.subject.proposalAmino acidseng
dc.subject.proposalGlicinaspa
dc.subject.proposalGlycineeng
dc.subject.proposalAlaninaspa
dc.subject.proposalAlanineeng
dc.subject.proposalMetáles divalentesspa
dc.subject.proposalDivalent metalseng
dc.subject.proposalÁcidos dicarboxílicosspa
dc.subject.proposalDicarboxylic acidseng
dc.subject.proposalConcentración mínima inhibitoriaspa
dc.subject.proposalMinimum inhibitory concentrationeng
dc.subject.wikidataGlicina
dc.subject.wikidataAlanina
dc.titleCompuestos de coordinación de metales divalentes con aminoácidos y ácidos dicarboxílicos: potencial actividad antibacterianaspa
dc.title.translatedCoordination compounds of divalent metals with amino acids and dicarboxylic acids: potential antibacterial activityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152188158.2023.pdf
Tamaño:
2.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: