Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados

dc.contributor.authorBáez Cruz, Ricardo Eulisesspa
dc.date.accessioned2019-07-02T11:28:05Zspa
dc.date.available2019-07-02T11:28:05Zspa
dc.date.issued2015spa
dc.description.abstractEn la presente investigación se realizó un estudio de la interacción de nanopartículas de oro y plata con DNA genómico por medio de la Espectroscopia Raman. Se realizaron tres ciclos de síntesis de nanopartículas de oro y plata por medio del método de radiación por microondas, las nanopartículas se caracterizaron usando microscopia electrónica de trasmisión (TEM) y absorción óptica (Uv-Visible). El DNA se extrajo del bazo de cerdo y se caracterizó por absorción óptica (Uv-Visible. Se encontró que las partículas sintetizadas estabilizaban en nanoesferas y adquieran un plasmon entre los 320 y 420 nm. Del DNA se encontró que estaba desproteinizado y con un PH estable. Las dos muestras fueron conjugas de dos formas, en la primera se combinaron en solución variando los ml de nanopartículas (oro y plata) y se realizaron las mediciones Raman entre 200 y 4000 cm−1. La segunda muestra se estudió en fibra (solido) agregando ml de nanopartículas (oro y plata) en un portaobjeto con la finalidad de secar las muestras a estos sustratos se les realizo igualmente pruebas de espectroscopia Raman 200 y 4000 cm−1. Se encontró que las NPs en solución ancladas al DNA no amplificaban la señal Raman del DNA debido al apantallamiento del citrato estabilizante envolate de las nanopartículas de oro. En contraposición, las nanopartículas de plata en solución amplificaron la señal Raman de la beses nitrógenos de DNA. Respecto a las muestras solidas tantas las nanopartículas de oro y plata realizaron amplificación del %100 de las bases nitrogenadas de DNA (Texto tomado de la fuente)spa
dc.description.abstractAbstract : In this research a study of the interaction of nanoparticles of gold and silver with genomic DNA by means of Raman spectroscopy was performed. Three cycles of synthesis of nanoparticles of gold and silver by the method of microwave radiation were performed, the nanoparticles were characterized using transmission electron microscopy (TEM) and optical absorption (UV-visible). The DNA was extracted from pig spleen and was characterized by optical absorption (UV-Vis. It was found that the synthesized particles stabilized in nanospheres and purchase a plasmon between 320 and 420 nm. The DNA was found to be deproteinized and a PH stable. The two samples were conjugas in two ways, in the first solution were combined in varying ml nanoparticles (gold and silver) and Raman measurements between 200 and 4000 cm−1 were performed. The second sample was studied fiber (solid) was added ml of nanoparticles (gold and silver) on a slide with the aim of drying the samples at these substrates were subjected to Raman spectroscopy testing igualemnte 200 and 4000 cm−1. It was found that NPs DNA in solution anchored not amplify the Raman signal due to shielding DNA citrate envolate stabilizing the gold nanoparticles. In contrast, the silver nanoparticles in solution Raman amplified signal DNA nitrogenous base. Regarding the many samples solid gold nanoparticles and silver amplification performed % 100 of the nitrogenous bases of DNAeng
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/51237/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/55774
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Manizales Facultad de Ciencias Exactas y Naturales Departamento de Física y Químicaspa
dc.relation.ispartofDepartamento de Física y Químicaspa
dc.relation.referencesLa cromatina durante el ciclo celular.spa
dc.relation.referencesA Khan, S Alrokayan M Alsalhi M Alhoshan A S.:spa
dc.relation.referencesA. Serrano, V. Collado J. Rubio-Zuazo C. Monton G. ; García, M. A.: Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy.eng
dc.relation.referencesAngshuman Pal, Surekha D.: Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. En: Materials Chemistry and Physics 114 2009() (2009), p. 530–532eng
dc.relation.referencesAnju K. Augustine, M. K.: Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. 125 (2014) (2014), p. 6696–6699eng
dc.relation.referencesAoune Barhoumi, Felicia T. ; Halas, Naomi J.: Surface-Enhanced Raman Spectroscopy of DNA. 130 (2008), p. 5523–5529eng
dc.relation.referencesAtwater, Harry A.: The Promise of PLASMONICS.eng
dc.relation.referencesB, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. 56 (2) (2010), p. 147–154spa
dc.relation.referencesB, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. XXXVI (2012), p. 138spa
dc.relation.referencesB. Aswathy, G.S. Avadhani R. Aswathy S. Suganthi G. S.: Microwave assisted one pot synthesis of biocompatible gold nanoparticles in Triton X-100 aqueous micellar medium using tryptophan as reducing agent. 0928-4931 (2015), p. 298–309eng
dc.relation.referencesBarrio, Justo V.: Sintesis de nanoparticulas de oro y plata y estudio de su deposicion sobre nanoestructuras de base silicea. (2012), p. 2spa
dc.relation.referencesC. Otto, F. F. M.: Surface enhanced Raman spectroscopy of DNA bases. 17 (2005), p. 289–298eng
dc.relation.referencesCatalina David, Hong Shen Timothee T. ; de la Chapelle., Marc L.: SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. 21 (2010), p. 475501 (6pp)eng
dc.relation.referencesCristina M. Muntean, Carmen Tripon Ana Coste Adela H.: Surface-enhanced Raman spectroscopy of genomic DNA fromin vitro grown tomato (Lycopersicon esculentumMill.) cultivars before and after plant cryopreservation. 22 (2006), p. 1735–1741eng
dc.relation.referencesD. A. Guzman-Embus, M. Orrego C. ; Vargas-Hernandez, C.: Genomic DNA characterization of pork spleen by Raman spectroscopy. En: J. Appl.Polym. Sci. 114 (2013), p. 1–8eng
dc.relation.referencesD. Yamini a, J. Kumar b V. R.: Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. 117 (2014), p. 299–303eng
dc.relation.referencesE Sassaroli, K C P L. ; O’Neill, B E.: Radio frequency absorption in gold nanoparticle suspensions: a phenomenological study. 45 (2012) 075303 (2012), p. 1–15eng
dc.relation.referencesFERREIRA, SZPINIAC Beatriz; GRASSI E.: Manual de Genetica.spa
dc.relation.referencesGarcia, M A.: surface plasmons in metallic nanoparticles : fundamentals and applications. 44 (2011), p. 283001eng
dc.relation.referencesGarc´ıa-Etxarri, Aitzol ; Jennifer A. Dionne, Surface-enhanced circular dichroisspectroscopymediated by nonchiral n.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 87 (2013), p. 235409eng
dc.relation.referencesGhodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144eng
dc.relation.referencesGoia, D V. ; E, Matijevic: Metal Nanoparticles: Synthesis, Characterization, and Applications. (1998), p. 221203eng
dc.relation.referencesGonc¸alves, Manuel R.: Plasmonic nanoparticles: fabrication, simulation and experiments. 47 (2014) 213001 (2014), p. 1–45eng
dc.relation.referencesGonzalez, Edgar E.: La nueva era de los nanomateriales. 1 (2013), p. 35–45spa
dc.relation.referencesGutiérrez-Wing, C. ; Esparza, R. ; Vargas-Hern´andez, C. ; Fern´andez Garc´ıa, M. E. ; Jos´e-Yacam´an, M.: Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. En: Nanoscale 4 (2012), p. 2281–2287eng
dc.relation.referencesHe Xu, Liping Zeng Yuezhong Xian Guoyue Shi Litong J.: Microwave-enhanced voltammetric detection of copper(II) at gold nanoparticles-modified platinum microelectrodes. 0022-0728 (2009), p. 53–59eng
dc.relation.referencesHe Xu, Sujie Xing Guoyue Shi Yuezhong Xian Litong J.: Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). 1388-2481 (2008), p. 1839–1843eng
dc.relation.referencesHengbo Yin, Tetsushi Yamamoto Yuji Wada Shozo Y.: Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. En: Materials Chemistry and Physics 83 (2004) (2004), p. 66–70eng
dc.relation.referencesHongjin Jiang, Zhuqing Zhang Suresh Pothukuchi C.P. W.: Variable frequency microwave synthesis of silver nanoparticles. En: Journal of Nanoparticle Research 8(2006) (2006), p. 117–124eng
dc.relation.referencesHongwei Liao, Collen L N. ; Hafner, Jason H.: Biomedical applications of plasmon resonant metal nanoparticles. 2 (2006), p. 201–208eng
dc.relation.referencesJ Binoy, V S Jayakumar O F N. ; Aubard., J: DFT based relaxed PES scan studies and SERS of anti cancer drug, Combretastatin A-4. 2 (2005), p. 544–550eng
dc.relation.referencesJhnson, P.B. ; Christy, R. W.: Optical Constants of the Noble Metals. 6 (1972), p. 4370–4739eng
dc.relation.referencesJSujata Patra, Ayan Kumar Barui Anirban Gangulya Bojja Sreedhar Chitta Ranjan P.: Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. 0928-4931 (2015), p. 298–309eng
dc.relation.referencesJulian Restrepo, M. Isabel Burguete Eduardo Garc´ıa-Verdugo Santiago V. L.: Gold nanoparticles immobilized onto supported ionic liquid-likephases for microwave phenylethanol oxidation in water. 0920-5861 (2015), p. 1–8eng
dc.relation.referencesK. Krishnan, F.A.Sc: Raman and infrared spectra of ethylene glycol. (1996), p. 111–122eng
dc.relation.referencesK. Uchida, D. Kikuchi S. Ito Z. Qiu S. M. ; Saitoh, E.: Generation of spin currents by surface plasmon resonance. DOI: 10.1038/ncomms6910 (2015), p. 1–8eng
dc.relation.referencesKappeler, R.: Engineering the Field Enhancement at the apex of a Structured Noble Metal.eng
dc.relation.referencesKazuo Nakamoto, Gary D. S.: DRUG–DNA INTERACTIONS STRUCTURES AND SPECTRA.eng
dc.relation.referencesL, Fedlheim D. ; A, Foss C.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 314 (2001)eng
dc.relation.referencesLong, Derek A. ; Long, DA: The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Vol. 8. Wiley Chichester, 2002eng
dc.relation.referencesLu Qiua, Peng Liu Li Zhao Meiqiong Wena Haiyan Yang Shuguo Fan Linzong Z.: Analysis of plant genomic DNAs and the genetic relationship among plants by using surface-enhanced Raman spectroscopy. 72 (2014), p. 134–141eng
dc.relation.referencesLuis, José: ADN: Estructura molecular.spa
dc.relation.referencesM, J J.: Green synthesis and applications of Au–Ag bimetallic nanoparticles. En: D Philip,Spectrochimica acta Part A: Molecular and Biomolecular and Biomolecular Spectroscopy137 137 (2015) (2015), p. 185–192eng
dc.relation.referencesM A Molina, M C Miras D L. ; Barbero, C A.: Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation. 245504 (2011), p. 1–8eng
dc.relation.referencesMie, Gustav: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. 25 (3) (1908), p. 377–445eng
dc.relation.referencesN, Raul: Biologia Moleculas Antes y despues de la doble helice.spa
dc.relation.referencesNamrata Jayanth, Srinivas R. ; Puranik, Mrinalini: Solution Structure of the DNA Damage Lesion 8-Oxoguanosine from Ultraviolet Resonance Raman Spectroscopy. 113 (2009), p. 1459–1471eng
dc.relation.referencesO, Nestor: ADN:una molecula maravillosa.spa
dc.relation.referencesOldenburg, Steven J.: Light scattering from gold nanoshells. Rice University, 2000eng
dc.relation.referencesOliva M. Primera-Pedrozoa, Jorge Castellanos a Hilsamar Felix-Riveraa Oscar Resto b Samuel P. Hern´andez-Riveraa: Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions. 87 (2012), p. 77–85eng
dc.relation.referencesP Dou, W Wang A Sarreshteh X Qiao X Qiu J C.: One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity. En: Journal of Photochemistry and Photobiology A:Chemistry 302 (2015) (2015), p. 17–22eng
dc.relation.referencesPerkampus, Heinz-Helmut: UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013eng
dc.relation.referencesPonkumar, P. D. ; Iyandurai, N.: Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy. 3 (2011), p. 135–140eng
dc.relation.referencesResham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306eng
dc.relation.referencesResham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306eng
dc.relation.referencesRolf Dootz, Binyang Du Stephan Herminghaus Thomas P.: Raman and Surface Enhanced Raman Microscopy of Microstructured Polyethylenimine/DNA Multilayers. 22 (2006), p. 1735–1741eng
dc.relation.referencesS C. Motshekga, M S. Onyango M N.B. M.: Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. En: Journal of Hazardous Materials 262 (2013) (2013), p. 439– 446.eng
dc.relation.referencesSamar Najjar, Le onard Schue Yannick Coffinier Sabine Szunerits Rabah Boukherroub Laurent Servant Vincent Rodriguez Sebastien B.: Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles. 118 (2013), p. 1174–1181eng
dc.relation.referencesy Santiago Sanchez-Cortes, Jose Vicente Garcia-Ramos: Espectroscopía vibracional sobre nanoestructuras metálicas (SERS y SEIR): nuevos sustratos y aplicaciones. 39 (2) (2006), p. 147–154spa
dc.relation.referencesSantillan, Jesica Maria J.: Estudios de las propiedades opticas de materiales nanoestructurados y aplicaciones. (2013), p. 11–24spa
dc.relation.referencesSinencio., V Altuzar. C Mendoza Barrera. ML Munoz. JG Mendoza Alvarezy. F S.: Analisis cuantitativo de interacciones moleculares proteina proteina mediante la combinacion de microarreglos y un lector optico basado en el fenomeno de resonancia de plasmones superficiales. 36 (138) (2012), p. 15–24spa
dc.relation.referencesSolorzano, Daniel M.: Determinacion de tamanos de nanoparticulas metalicas mediante tecnicas espectroscopicas y polarimetricas. (2012), p. 13–18spa
dc.relation.referencesS.R. Bhuvanasree, Anantanarayanan Rajaram Rama R.: Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation. 106 (2013) (2013), p. 190–196eng
dc.relation.referencesSzymanski, Herman A.: Raman spectroscopy: theory and practice. Springer Science & Business Media, 2012eng
dc.relation.referencesT. Ghodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144eng
dc.relation.referencesTognalli, Nicolas G.: Nanoestructuras metalicas para espectroscopia SERS de sistemas biomimeticos y de sensado. (2008), p. 48spa
dc.relation.referencesUlla Jakobsen, Stefan V.: DNA-Controlled Assembly of Soft Nanoparticles. 9 (2008), p. 10462–10463eng
dc.relation.referencesVargas-Hernandez, C. ; Mariscal, M. M. ; Esparza, R. ; Yacaman, M. J.: A synthesis route of gold nanoparticles without using a reducing agent. En: Applied Physics Letters 96 (2010), Nr. 21, p. 1–4. – ISSN 00036951eng
dc.relation.referencesJose de la Venta, Enrique Fernández Pinel Miguel A. García Cesar de Julián Fernández Patricia Crespo Paolo Mazzoldi Giacomo R. ; Hernando, Antonio: Magnetism in Polymers with Embedded Gold Nanoparticles. 19 (2007), p. 875–877eng
dc.relation.referencesVo Ke Thanh Ngo, Trong Phat Huynh Nguyen Nguyen Pham Tran Quang Vinh L. ; Huynh, Thanh D.: Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. 6 (2015) 035015 (2015), p. 1–6eng
dc.relation.referencesWilliams, David B. ; Carter, C B.: The transmission electron microscope. En: Transmission electron microscopy. Springer, 1996, p. 3–17eng
dc.relation.referencesWon Joon Cho, Suenghoon Han Sung-Min Lee Taewook Kang Kun-Hong Lee Kyung Cheol C. ; Kim, Jin K.: Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation. e167 (2015), p. 1–7eng
dc.relation.referencesX Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial acivity. En: Colloids and Surfaces A: Physicochem. Eng. Aspects 444 (2014) (2014), p. 180–188.eng
dc.relation.referencesX Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. En: Colloids and Surfaces A: Physicochem 444 (2014) (2014), p. 180–188eng
dc.relation.referencesXihui Zhaoa, Qun Li Xiaomei Ma-Fengyu Quana Cunzhen Genga Zhenyu H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. 0927-7757 (2014), p. 180– 188eng
dc.relation.referencesYoungmin Lee, Natalie A. Frey H. ; of the Catalytic Properties of Au- Fe3O4 Nanoparticles, Shouheng Sun . Synthetic T.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 49 (2010), p. 1271 –1274eng
dc.relation.referencesZHANG, QINGNAN: Investigating Polymer Conformation in Poly (Ethylene Oxide) (PEO) Based Systems for Pharmaceutical Applications. (2011), p. 22eng
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc5 Ciencias naturales y matemáticas / Sciencespa
dc.subject.ddc53 Física / Physicsspa
dc.subject.proposalNanopartículas oro y plataspa
dc.subject.proposalRamanspa
dc.subject.proposalDNAspa
dc.subject.proposalNanoparticles Au y Agspa
dc.titleEstudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizadosspa
dc.title.translatedSERS spectroscopic study of genomic DNA interacting with Au and Ag nanoparticles through localized plasmonseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1013589528.2015.pdf
Tamaño:
34.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física
Cargando...
Miniatura
Nombre:
U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdf
Tamaño:
216.53 KB
Formato:
Adobe Portable Document Format
Descripción: