Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados
| dc.contributor.author | Báez Cruz, Ricardo Eulises | spa |
| dc.date.accessioned | 2019-07-02T11:28:05Z | spa |
| dc.date.available | 2019-07-02T11:28:05Z | spa |
| dc.date.issued | 2015 | spa |
| dc.description.abstract | En la presente investigación se realizó un estudio de la interacción de nanopartículas de oro y plata con DNA genómico por medio de la Espectroscopia Raman. Se realizaron tres ciclos de síntesis de nanopartículas de oro y plata por medio del método de radiación por microondas, las nanopartículas se caracterizaron usando microscopia electrónica de trasmisión (TEM) y absorción óptica (Uv-Visible). El DNA se extrajo del bazo de cerdo y se caracterizó por absorción óptica (Uv-Visible. Se encontró que las partículas sintetizadas estabilizaban en nanoesferas y adquieran un plasmon entre los 320 y 420 nm. Del DNA se encontró que estaba desproteinizado y con un PH estable. Las dos muestras fueron conjugas de dos formas, en la primera se combinaron en solución variando los ml de nanopartículas (oro y plata) y se realizaron las mediciones Raman entre 200 y 4000 cm−1. La segunda muestra se estudió en fibra (solido) agregando ml de nanopartículas (oro y plata) en un portaobjeto con la finalidad de secar las muestras a estos sustratos se les realizo igualmente pruebas de espectroscopia Raman 200 y 4000 cm−1. Se encontró que las NPs en solución ancladas al DNA no amplificaban la señal Raman del DNA debido al apantallamiento del citrato estabilizante envolate de las nanopartículas de oro. En contraposición, las nanopartículas de plata en solución amplificaron la señal Raman de la beses nitrógenos de DNA. Respecto a las muestras solidas tantas las nanopartículas de oro y plata realizaron amplificación del %100 de las bases nitrogenadas de DNA (Texto tomado de la fuente) | spa |
| dc.description.abstract | Abstract : In this research a study of the interaction of nanoparticles of gold and silver with genomic DNA by means of Raman spectroscopy was performed. Three cycles of synthesis of nanoparticles of gold and silver by the method of microwave radiation were performed, the nanoparticles were characterized using transmission electron microscopy (TEM) and optical absorption (UV-visible). The DNA was extracted from pig spleen and was characterized by optical absorption (UV-Vis. It was found that the synthesized particles stabilized in nanospheres and purchase a plasmon between 320 and 420 nm. The DNA was found to be deproteinized and a PH stable. The two samples were conjugas in two ways, in the first solution were combined in varying ml nanoparticles (gold and silver) and Raman measurements between 200 and 4000 cm−1 were performed. The second sample was studied fiber (solid) was added ml of nanoparticles (gold and silver) on a slide with the aim of drying the samples at these substrates were subjected to Raman spectroscopy testing igualemnte 200 and 4000 cm−1. It was found that NPs DNA in solution anchored not amplify the Raman signal due to shielding DNA citrate envolate stabilizing the gold nanoparticles. In contrast, the silver nanoparticles in solution Raman amplified signal DNA nitrogenous base. Regarding the many samples solid gold nanoparticles and silver amplification performed % 100 of the nitrogenous bases of DNA | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.eprints | http://bdigital.unal.edu.co/51237/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/55774 | |
| dc.language.iso | spa | spa |
| dc.relation.ispartof | Universidad Nacional de Colombia Sede Manizales Facultad de Ciencias Exactas y Naturales Departamento de Física y Química | spa |
| dc.relation.ispartof | Departamento de Física y Química | spa |
| dc.relation.references | La cromatina durante el ciclo celular. | spa |
| dc.relation.references | A Khan, S Alrokayan M Alsalhi M Alhoshan A S.: | spa |
| dc.relation.references | A. Serrano, V. Collado J. Rubio-Zuazo C. Monton G. ; García, M. A.: Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy. | eng |
| dc.relation.references | Angshuman Pal, Surekha D.: Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. En: Materials Chemistry and Physics 114 2009() (2009), p. 530–532 | eng |
| dc.relation.references | Anju K. Augustine, M. K.: Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. 125 (2014) (2014), p. 6696–6699 | eng |
| dc.relation.references | Aoune Barhoumi, Felicia T. ; Halas, Naomi J.: Surface-Enhanced Raman Spectroscopy of DNA. 130 (2008), p. 5523–5529 | eng |
| dc.relation.references | Atwater, Harry A.: The Promise of PLASMONICS. | eng |
| dc.relation.references | B, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. 56 (2) (2010), p. 147–154 | spa |
| dc.relation.references | B, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. XXXVI (2012), p. 138 | spa |
| dc.relation.references | B. Aswathy, G.S. Avadhani R. Aswathy S. Suganthi G. S.: Microwave assisted one pot synthesis of biocompatible gold nanoparticles in Triton X-100 aqueous micellar medium using tryptophan as reducing agent. 0928-4931 (2015), p. 298–309 | eng |
| dc.relation.references | Barrio, Justo V.: Sintesis de nanoparticulas de oro y plata y estudio de su deposicion sobre nanoestructuras de base silicea. (2012), p. 2 | spa |
| dc.relation.references | C. Otto, F. F. M.: Surface enhanced Raman spectroscopy of DNA bases. 17 (2005), p. 289–298 | eng |
| dc.relation.references | Catalina David, Hong Shen Timothee T. ; de la Chapelle., Marc L.: SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. 21 (2010), p. 475501 (6pp) | eng |
| dc.relation.references | Cristina M. Muntean, Carmen Tripon Ana Coste Adela H.: Surface-enhanced Raman spectroscopy of genomic DNA fromin vitro grown tomato (Lycopersicon esculentumMill.) cultivars before and after plant cryopreservation. 22 (2006), p. 1735–1741 | eng |
| dc.relation.references | D. A. Guzman-Embus, M. Orrego C. ; Vargas-Hernandez, C.: Genomic DNA characterization of pork spleen by Raman spectroscopy. En: J. Appl.Polym. Sci. 114 (2013), p. 1–8 | eng |
| dc.relation.references | D. Yamini a, J. Kumar b V. R.: Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. 117 (2014), p. 299–303 | eng |
| dc.relation.references | E Sassaroli, K C P L. ; O’Neill, B E.: Radio frequency absorption in gold nanoparticle suspensions: a phenomenological study. 45 (2012) 075303 (2012), p. 1–15 | eng |
| dc.relation.references | FERREIRA, SZPINIAC Beatriz; GRASSI E.: Manual de Genetica. | spa |
| dc.relation.references | Garcia, M A.: surface plasmons in metallic nanoparticles : fundamentals and applications. 44 (2011), p. 283001 | eng |
| dc.relation.references | Garc´ıa-Etxarri, Aitzol ; Jennifer A. Dionne, Surface-enhanced circular dichroisspectroscopymediated by nonchiral n.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 87 (2013), p. 235409 | eng |
| dc.relation.references | Ghodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144 | eng |
| dc.relation.references | Goia, D V. ; E, Matijevic: Metal Nanoparticles: Synthesis, Characterization, and Applications. (1998), p. 221203 | eng |
| dc.relation.references | Gonc¸alves, Manuel R.: Plasmonic nanoparticles: fabrication, simulation and experiments. 47 (2014) 213001 (2014), p. 1–45 | eng |
| dc.relation.references | Gonzalez, Edgar E.: La nueva era de los nanomateriales. 1 (2013), p. 35–45 | spa |
| dc.relation.references | Gutiérrez-Wing, C. ; Esparza, R. ; Vargas-Hern´andez, C. ; Fern´andez Garc´ıa, M. E. ; Jos´e-Yacam´an, M.: Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. En: Nanoscale 4 (2012), p. 2281–2287 | eng |
| dc.relation.references | He Xu, Liping Zeng Yuezhong Xian Guoyue Shi Litong J.: Microwave-enhanced voltammetric detection of copper(II) at gold nanoparticles-modified platinum microelectrodes. 0022-0728 (2009), p. 53–59 | eng |
| dc.relation.references | He Xu, Sujie Xing Guoyue Shi Yuezhong Xian Litong J.: Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). 1388-2481 (2008), p. 1839–1843 | eng |
| dc.relation.references | Hengbo Yin, Tetsushi Yamamoto Yuji Wada Shozo Y.: Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. En: Materials Chemistry and Physics 83 (2004) (2004), p. 66–70 | eng |
| dc.relation.references | Hongjin Jiang, Zhuqing Zhang Suresh Pothukuchi C.P. W.: Variable frequency microwave synthesis of silver nanoparticles. En: Journal of Nanoparticle Research 8(2006) (2006), p. 117–124 | eng |
| dc.relation.references | Hongwei Liao, Collen L N. ; Hafner, Jason H.: Biomedical applications of plasmon resonant metal nanoparticles. 2 (2006), p. 201–208 | eng |
| dc.relation.references | J Binoy, V S Jayakumar O F N. ; Aubard., J: DFT based relaxed PES scan studies and SERS of anti cancer drug, Combretastatin A-4. 2 (2005), p. 544–550 | eng |
| dc.relation.references | Jhnson, P.B. ; Christy, R. W.: Optical Constants of the Noble Metals. 6 (1972), p. 4370–4739 | eng |
| dc.relation.references | JSujata Patra, Ayan Kumar Barui Anirban Gangulya Bojja Sreedhar Chitta Ranjan P.: Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. 0928-4931 (2015), p. 298–309 | eng |
| dc.relation.references | Julian Restrepo, M. Isabel Burguete Eduardo Garc´ıa-Verdugo Santiago V. L.: Gold nanoparticles immobilized onto supported ionic liquid-likephases for microwave phenylethanol oxidation in water. 0920-5861 (2015), p. 1–8 | eng |
| dc.relation.references | K. Krishnan, F.A.Sc: Raman and infrared spectra of ethylene glycol. (1996), p. 111–122 | eng |
| dc.relation.references | K. Uchida, D. Kikuchi S. Ito Z. Qiu S. M. ; Saitoh, E.: Generation of spin currents by surface plasmon resonance. DOI: 10.1038/ncomms6910 (2015), p. 1–8 | eng |
| dc.relation.references | Kappeler, R.: Engineering the Field Enhancement at the apex of a Structured Noble Metal. | eng |
| dc.relation.references | Kazuo Nakamoto, Gary D. S.: DRUG–DNA INTERACTIONS STRUCTURES AND SPECTRA. | eng |
| dc.relation.references | L, Fedlheim D. ; A, Foss C.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 314 (2001) | eng |
| dc.relation.references | Long, Derek A. ; Long, DA: The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Vol. 8. Wiley Chichester, 2002 | eng |
| dc.relation.references | Lu Qiua, Peng Liu Li Zhao Meiqiong Wena Haiyan Yang Shuguo Fan Linzong Z.: Analysis of plant genomic DNAs and the genetic relationship among plants by using surface-enhanced Raman spectroscopy. 72 (2014), p. 134–141 | eng |
| dc.relation.references | Luis, José: ADN: Estructura molecular. | spa |
| dc.relation.references | M, J J.: Green synthesis and applications of Au–Ag bimetallic nanoparticles. En: D Philip,Spectrochimica acta Part A: Molecular and Biomolecular and Biomolecular Spectroscopy137 137 (2015) (2015), p. 185–192 | eng |
| dc.relation.references | M A Molina, M C Miras D L. ; Barbero, C A.: Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation. 245504 (2011), p. 1–8 | eng |
| dc.relation.references | Mie, Gustav: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. 25 (3) (1908), p. 377–445 | eng |
| dc.relation.references | N, Raul: Biologia Moleculas Antes y despues de la doble helice. | spa |
| dc.relation.references | Namrata Jayanth, Srinivas R. ; Puranik, Mrinalini: Solution Structure of the DNA Damage Lesion 8-Oxoguanosine from Ultraviolet Resonance Raman Spectroscopy. 113 (2009), p. 1459–1471 | eng |
| dc.relation.references | O, Nestor: ADN:una molecula maravillosa. | spa |
| dc.relation.references | Oldenburg, Steven J.: Light scattering from gold nanoshells. Rice University, 2000 | eng |
| dc.relation.references | Oliva M. Primera-Pedrozoa, Jorge Castellanos a Hilsamar Felix-Riveraa Oscar Resto b Samuel P. Hern´andez-Riveraa: Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions. 87 (2012), p. 77–85 | eng |
| dc.relation.references | P Dou, W Wang A Sarreshteh X Qiao X Qiu J C.: One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity. En: Journal of Photochemistry and Photobiology A:Chemistry 302 (2015) (2015), p. 17–22 | eng |
| dc.relation.references | Perkampus, Heinz-Helmut: UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013 | eng |
| dc.relation.references | Ponkumar, P. D. ; Iyandurai, N.: Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy. 3 (2011), p. 135–140 | eng |
| dc.relation.references | Resham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306 | eng |
| dc.relation.references | Resham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306 | eng |
| dc.relation.references | Rolf Dootz, Binyang Du Stephan Herminghaus Thomas P.: Raman and Surface Enhanced Raman Microscopy of Microstructured Polyethylenimine/DNA Multilayers. 22 (2006), p. 1735–1741 | eng |
| dc.relation.references | S C. Motshekga, M S. Onyango M N.B. M.: Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. En: Journal of Hazardous Materials 262 (2013) (2013), p. 439– 446. | eng |
| dc.relation.references | Samar Najjar, Le onard Schue Yannick Coffinier Sabine Szunerits Rabah Boukherroub Laurent Servant Vincent Rodriguez Sebastien B.: Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles. 118 (2013), p. 1174–1181 | eng |
| dc.relation.references | y Santiago Sanchez-Cortes, Jose Vicente Garcia-Ramos: Espectroscopía vibracional sobre nanoestructuras metálicas (SERS y SEIR): nuevos sustratos y aplicaciones. 39 (2) (2006), p. 147–154 | spa |
| dc.relation.references | Santillan, Jesica Maria J.: Estudios de las propiedades opticas de materiales nanoestructurados y aplicaciones. (2013), p. 11–24 | spa |
| dc.relation.references | Sinencio., V Altuzar. C Mendoza Barrera. ML Munoz. JG Mendoza Alvarezy. F S.: Analisis cuantitativo de interacciones moleculares proteina proteina mediante la combinacion de microarreglos y un lector optico basado en el fenomeno de resonancia de plasmones superficiales. 36 (138) (2012), p. 15–24 | spa |
| dc.relation.references | Solorzano, Daniel M.: Determinacion de tamanos de nanoparticulas metalicas mediante tecnicas espectroscopicas y polarimetricas. (2012), p. 13–18 | spa |
| dc.relation.references | S.R. Bhuvanasree, Anantanarayanan Rajaram Rama R.: Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation. 106 (2013) (2013), p. 190–196 | eng |
| dc.relation.references | Szymanski, Herman A.: Raman spectroscopy: theory and practice. Springer Science & Business Media, 2012 | eng |
| dc.relation.references | T. Ghodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144 | eng |
| dc.relation.references | Tognalli, Nicolas G.: Nanoestructuras metalicas para espectroscopia SERS de sistemas biomimeticos y de sensado. (2008), p. 48 | spa |
| dc.relation.references | Ulla Jakobsen, Stefan V.: DNA-Controlled Assembly of Soft Nanoparticles. 9 (2008), p. 10462–10463 | eng |
| dc.relation.references | Vargas-Hernandez, C. ; Mariscal, M. M. ; Esparza, R. ; Yacaman, M. J.: A synthesis route of gold nanoparticles without using a reducing agent. En: Applied Physics Letters 96 (2010), Nr. 21, p. 1–4. – ISSN 00036951 | eng |
| dc.relation.references | Jose de la Venta, Enrique Fernández Pinel Miguel A. García Cesar de Julián Fernández Patricia Crespo Paolo Mazzoldi Giacomo R. ; Hernando, Antonio: Magnetism in Polymers with Embedded Gold Nanoparticles. 19 (2007), p. 875–877 | eng |
| dc.relation.references | Vo Ke Thanh Ngo, Trong Phat Huynh Nguyen Nguyen Pham Tran Quang Vinh L. ; Huynh, Thanh D.: Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. 6 (2015) 035015 (2015), p. 1–6 | eng |
| dc.relation.references | Williams, David B. ; Carter, C B.: The transmission electron microscope. En: Transmission electron microscopy. Springer, 1996, p. 3–17 | eng |
| dc.relation.references | Won Joon Cho, Suenghoon Han Sung-Min Lee Taewook Kang Kun-Hong Lee Kyung Cheol C. ; Kim, Jin K.: Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation. e167 (2015), p. 1–7 | eng |
| dc.relation.references | X Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial acivity. En: Colloids and Surfaces A: Physicochem. Eng. Aspects 444 (2014) (2014), p. 180–188. | eng |
| dc.relation.references | X Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. En: Colloids and Surfaces A: Physicochem 444 (2014) (2014), p. 180–188 | eng |
| dc.relation.references | Xihui Zhaoa, Qun Li Xiaomei Ma-Fengyu Quana Cunzhen Genga Zhenyu H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. 0927-7757 (2014), p. 180– 188 | eng |
| dc.relation.references | Youngmin Lee, Natalie A. Frey H. ; of the Catalytic Properties of Au- Fe3O4 Nanoparticles, Shouheng Sun . Synthetic T.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 49 (2010), p. 1271 –1274 | eng |
| dc.relation.references | ZHANG, QINGNAN: Investigating Polymer Conformation in Poly (Ethylene Oxide) (PEO) Based Systems for Pharmaceutical Applications. (2011), p. 22 | eng |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.ddc | 5 Ciencias naturales y matemáticas / Science | spa |
| dc.subject.ddc | 53 Física / Physics | spa |
| dc.subject.proposal | Nanopartículas oro y plata | spa |
| dc.subject.proposal | Raman | spa |
| dc.subject.proposal | DNA | spa |
| dc.subject.proposal | Nanoparticles Au y Ag | spa |
| dc.title | Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados | spa |
| dc.title.translated | SERS spectroscopic study of genomic DNA interacting with Au and Ag nanoparticles through localized plasmons | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- 1013589528.2015.pdf
- Tamaño:
- 34.86 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Cargando...
- Nombre:
- U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdf
- Tamaño:
- 216.53 KB
- Formato:
- Adobe Portable Document Format
- Descripción:

