Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela

dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.advisorHuertas Carranza, Bellanid
dc.contributor.authorCarrillo Cortés, Yeny Paola
dc.date.accessioned2022-08-31T13:35:12Z
dc.date.available2022-08-31T13:35:12Z
dc.date.issued2022-08-27
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractEl suelo, segundo reservorio global de carbono (C), es importante en la regulación del ciclo biogeoquímico de este elemento. Sin embargo, el equilibrio de este ciclo se ve perturbado por actividades antropogénicas que disminuyen el contenido de C en el suelo, aumentando sus concentraciones en la atmósfera. Las estrategias de conservación de suelo adoptadas desde el sector agrícola surgen como una propuesta a la mitigación de estos cambios, ya que le permiten recuperar sus facultades como regulador y depósito de C. El cultivo de caña de azúcar (Saccharum officinarum) para producción de panela presenta un alto potencial en la captura de carbono y su estabilidad en el suelo. Por lo cual, el objetivo de investigación fue evaluar la distribución espacial del stock de Carbono Orgánico del Suelo (COS) en paisajes ocupados por cultivos de caña de azúcar para panela. Para esto, se caracterizaron los paisajes agrícolas de caña panelera en los municipios de Quebradanegra y Nocaima mediante procesamiento de información geoespacial. Se utilizó el método de Hipercubo Latino para definir una muestra de 13 fincas con geoformas y manejos representativos donde se determinó el stock del COS y su distribución en una profundidad de 50 cm. Con esta información, las correlaciones entre variables y el entrenamiento de un modelo no paramétrico se pudo establecer un modelo conceptual sobre la influencia de las covariables ambientales en las existencias de COS. Se evidenció que el COS es controlado por las características propias de cada sitio, tanto de propiedades del suelo como factores clima, organismos y relieve. Específicamente, los factores importantes en la determinación del COS fueron la humedad del suelo (R2=0,38), contenido de arcillas (R2=0,36), diámetro ponderado medio (R2=0,20) y temperatura (R2=0,33). (Texto tomado de la fuente)spa
dc.description.abstractSoil is the second global carbon (C) reservoir and it is important regulating the biogeochemical cycle of this element. However, balance in this cycle is disturbed by anthropogenic activities that decrease C content in the soil, while increasing its concentration in the atmosphere. Soil conservation strategies adopted in the agricultural sector emerge as a proposal to mitigate these changes, since they allow soil to recover its potential as a regulator and deposit of C. Sugar cane (Saccharum officinarum) cultivation to produce panela has a high potential in C sequestration and its stability in the soil. Therefore, the objective of this study was to evaluate Soil Organic Carbon (SOC) spatial distribution in landscapes occupied by sugar cane crops for panela production. Agricultural landscapes of sugarcane for panelera were characterized in the municipalities of Quebradanegra and Nocaima (Colombia) using geospatial information processing; sugar cane producers and management strategies were also characterized. Samples were defined using a Latin Hypercube in 13 farms of representative geoforms and agricultural management where SOC stock and its distribution in the first 50cm were determined. With this information, a conceptual nonparametric model of the influence of environmental covariates on SOC stocks was built. Model showed that SOC is controlled by local characteristics, such as soil properties and climate factors, organisms and topography. Specifically, the most important factors determining SOC were soil humidity (R2=0,38), clay content (R2=0,36), weighted average diameter (R2=0,20) and temperature (R2=0,33).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaSuelos y Aguasspa
dc.format.extent124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82205
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbaunza, C. A., Forero, C. A., García, G. O., y Carvajal, G. H. (2012). Zonificación y organización de clúster empresariales para las cadenas de caña panelera, frutales y papa criolla en Cundinamarca. 116.spa
dc.relation.referencesAguiar, S. B. (2001). Bases tecnicas para el establecimiento y manejo del cultivo de caña en el departamento de Casanare.spa
dc.relation.referencesAguilar-Rivera, N., Rodríguez L, D. A., R.V., E., Castillo M, S. A., y Herrera, A. (2012). The Mexican Sugarcane Industry : Overview , Constraints , Current Status and Long-Term Trends. 14(September), 207–222. https://doi.org/10.1007/s12355-012-0151-3spa
dc.relation.referencesAguirre, N. (2018). Paisaje Agropecuario: incorporación en la planificación territorial.spa
dc.relation.referencesAhammad, H., Clark, H., Dong, H., Elsidding, E., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N., Rice, C., Robledo, C., Romanovskaya, A., Sperling, F., y Tubiello, F. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 811–922).spa
dc.relation.referencesÁlvarez, R., y Lavado, R. S. (1997). Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina (p. Geoderma).spa
dc.relation.referencesAnderson, N. M., Ford, R. M., y Williams, K. J. H. (2017). Contested beliefs about land-use are associated with divergent representations of a rural landscape as place. Landscape and Urban Planning, 157, 75–89. https://doi.org/10.1016/j.landurbplan.2016.05.020spa
dc.relation.referencesBaquero, J., Ralish, R., de Conti, C., y Guimaraes, M. de F. (2012). Soil Physical ProPerties and Sugarcane root growth in a red oxisol. Revista Brasileña de La Ciencia Del Suelo, 1, 63–70.spa
dc.relation.referencesBaral, H., Keenan, R. J., Fox, J. C., Stork, N. E., y Kasel, S. (2013). Spatial assessment of ecosystem goods and services in complex production landscapes: A case study from south-eastern Australia. Ecological Complexity, 13, 35–45. https://doi.org/10.1016/j.ecocom.2012.11.001spa
dc.relation.referencesBesoain, E. (1985). Mineralogia de arcillas de suelos.spa
dc.relation.referencesBishop, T. F. A., McBratney a, A. B., y Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 27–45.spa
dc.relation.referencesBlum, W. E. H. (2005). Functions of soil for society and the environment. 4, 75–79. https://doi.org/10.1007/s11157-005-2236-xspa
dc.relation.referencesBolivar, A., Camacho, C., Ordoñez, N., Gutierrez, J., Alvarez, G., Guevara, M., Olivera, C., Olmedo, G., Bunning, S., y Vargas, R. (2021). aeet. Ecosistemas, 30(1), 1–11.spa
dc.relation.referencesBone, J., Head, M., Barraclough, D., Archer, M., Voulvoulis, N., and Scheib, C. (2010). Soil Quality Assessment under Emerging Regulatory Requirements. Environment International, 36, 609–622.spa
dc.relation.referencesBraakhekke, M. C., Beer, C., Hoosbeek, M. R., Reichstein, M., Kruijt, B., Schrumpf, M., and Kabat, P. (2011). Somprof: A vertically explicit soil organic matter model. Ecological Modelling, 222(10), 1712–1730. https://doi.org/10.1016/j.ecolmodel.2011.02.015spa
dc.relation.referencesBronick, C. J., y Lal, R. (2004). Soil structure and management: a review. 124(2005), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005spa
dc.relation.referencesCarvalho, L., Moniz, R., De Souza, E., Vieira, G., G R Schaefer, C. E., and Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(December 2017), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007spa
dc.relation.referencesCastillo, J., Navia, J., y Menjivar, J. (2008). Estimación de la estabilidad estructural de dos suelos al sur de Colombia con diferentes tipos de manejo. Acta Agronómica, 31–34.spa
dc.relation.referencesCastillo Poveda, M. (2016). Contextualización histórica del concepto de paisaje, sus implicaciones filosóficas y científicas. Revista de Filosofía de La Universidad de Costa Rica, 55(143), 11–24.spa
dc.relation.referencesCerri, C. C., Galdos, M. V. ., Maia, S. M. ., Bernoux, M., Feigl, B. . J. ., Powlsonc, D., y Cerri, C. E. P. (2011). Effect of sugarcane harvesting systems on soil carbon stocks in Brazil : an examination of existing data. February, 23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.xspa
dc.relation.referencesChenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., y Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188(April 2018), 41–52. https://doi.org/10.1016/j.still.2018.04.011spa
dc.relation.referencesCherubin, M. R., Franco, A. L. C., Cerri, C. E. P., Oliveira, D. M. da S., Davies, C. A., y Cerri, C. C. (2015). Sugarcane expansion in Brazilian tropical soils-Effects of land use change on soil chemical attributes. Agriculture, Ecosystems and Environment, 211(2015), 173–184. https://doi.org/10.1016/j.agee.2015.06.006spa
dc.relation.referencesde Carvalho, W., da Silva, C., Muselli, A., Koenow, H., Rendeiro, N., y Barge, S. (2014). MÉTODO DO HIPERCUBO LATINO CONDICIONADO PARA A AMOSTRAGEM DE SOLOS NA PRESENÇA DE COVARIÁVEIS AMBIENTAIS VISANDO O. Revista Brasileira de Ciencia Do Solo, 38(June), 386–396. https://doi.org/10.1590/S0100-06832014000200003spa
dc.relation.referencesde Oliveira, R., Lal, R., Ronquim, C. C., Barretto, E., Nunes, J. L., Maldonado, W., Bastos, D., y La Scala, N. (2017). Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems and Environment, 240, 54–65. https://doi.org/10.1016/j.agee.2017.02.016spa
dc.relation.referencesde Oliveira, R., Santos, L. M., Carneiro, L., Lal, R., Pereira, D. M., Kolln, O. T., Junqueira, H. C., y Nunes Carvalho, J. L. (2018). Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 328(March), 79–90. https://doi.org/10.1016/j.geoderma.2018.05.003spa
dc.relation.referencesDeb, S., Mandal, B., Bhadoria, P. B. S., Singh, H. B., y Rakshit, A. (2015). Soil organic carbon: Towards better soil health, productivity and climate change mitigation. Climate Change and Environmental Sustainability, 3(1), 26. https://doi.org/10.5958/2320-642x.2015.00003.4spa
dc.relation.referencesEllili, Y., Walter, C., Michot, D., Pichelin, P., y Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale Geoderma Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(May), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005spa
dc.relation.referencesEstrada, N., Hart, A. K., DeClerck, F. A. J., Harvey, C. A., y Milder, J. C. (2014). Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. Landscape and Urban Planning, 129, 1–11. https://doi.org/10.1016/j.landurbplan.2014.05.001spa
dc.relation.referencesEtter, A. (1991). INTRODUCCIÓN A LA ECOLOGÍA DEL PAISAJE: Un Marco de Integración para los Levantamientos Ecológicos (Issue October 1991). https://doi.org/10.13140/2.1.4464.5121spa
dc.relation.referencesFAO. (2002). Captura de carbono en los suelos para un mejor manejo de la tierra.spa
dc.relation.referencesFAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps.spa
dc.relation.referencesFAO. (2017a). Carbono Organico del suelo potencial oculto.spa
dc.relation.referencesFAO. (2017b). Liberación del potencial del carbono orgánico del suelo - Documento de resultados. http://www.fao.org/3/b-i7268s.pdf%0Awww.fao.org/publicationsspa
dc.relation.referencesFernández-christlieb, F. (2010). El nacimiento del concepto de paisaje y su contraste en dos ámbitos culturales : el viejo y el nuevo mundo (pp. 55–79).spa
dc.relation.referencesFernández, L., González, M., y Sáez Sáez, V. (2016). Relación entre un índice de estabilidad estructural de suelo, la zona bioclimática y la posición fisiográfica en Venezuela. Terra Nueva Etapa.spa
dc.relation.referencesFissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M., y Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140–149. https://doi.org/10.1016/j.catena.2016.09.016spa
dc.relation.referencesFontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., y Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(December). https://doi.org/10.1038/nature06275spa
dc.relation.referencesFries, A., Rollenbeck, R., Nauß, T., Peters, T., y Bendix, J. (2012). Agricultural and Forest Meteorology Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agricultural and Forest Meteorology, 152, 17–30. https://doi.org/10.1016/j.agrformet.2011.08.004spa
dc.relation.referencesGarcía-Meléndez, E. (2007). Módulo VII : Sistemas de Información Geográfica y Teledetección, análisis visual de imágenes.spa
dc.relation.referencesGarcía, H., L, A., Toscano LaTorre, A., Santana, N., y Insuasty, O. (2007). Guia tecnologica para el manejo integral del sistema productivo de la caña panelera. In Republica de Colombia (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesGeissen, V., Sánchez-hernández, R., Kampichler, C., Ramos-reyes, R., y Sepulveda-lozada, A. (2009). Geoderma Effects of land-use change on some properties of tropical soils — An example from Southeast Mexico. Geoderma, 151(3–4), 87–97. https://doi.org/10.1016/j.geoderma.2009.03.011spa
dc.relation.referencesGholizadeh, A., Zizala, D., Saberioon, M., y Boruvka, L. (2018). Soil Organic Carbon and Texture Retrieving and Mapping using Proximal , Airborne and Sentinel-2 Spectral Imaging. Remote Sensing of Environment, December. https://doi.org/10.1016/j.rse.2018.09.015spa
dc.relation.referencesGómez, E., y Miranda, J. (2009). Manejo agronómico de la caña panelera con énfasis en el control biológico. Fondo Nacional de La Panela, 32. http://www.fedepanela.org.co/publicaciones/cartillas/manejo_agronomico_de_la_cana_panelera.pdfspa
dc.relation.referencesGougoulias, C., Clark, J. M., y Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577spa
dc.relation.referencesGray, J. M., Bishop, T. F. A., y Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741. https://doi.org/10.2136/sssaj2015.06.0224spa
dc.relation.referencesGrimm, R., Behrens, T., Märker, M., y Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using Random Forests analysis. Geoderma, 146(1–2), 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008spa
dc.relation.referencesIDEAM. (2016). Inventario nacional y departamental de gases de efecto invernadero - Colombia.spa
dc.relation.referencesIGAC. (2000). Estudio general de suelos y zonificación de tierras del departamento de Cundinamarca.spa
dc.relation.referencesIGAC. (2018). Sistema de clasificación geomorfológica aplicado a los levantamientos de suelos.spa
dc.relation.referencesIGAC. (2019). Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. In Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. Tomo 2 (Vol. 53, Issue 9, pp. 1689–1699). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesJha, P., Garg, N., Lakaria, B. L., Biswas, A. K., y Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. ttps://doi.org/https://doi.org/10.1016/j.still.2012.01.018spa
dc.relation.referencesJordan, N., y Warner, K. D. (2010). Enhancing the Multifunctionality of US Agriculture. BioScience, 60(January), 60–66. https://doi.org/10.1525/bio.2009.60.1.10spa
dc.relation.referencesKämpf, I., Hölzel, N., Störrle, M., Broll, G., y Kiehl, K. (2016). Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment, 566–567, 428–435. https://doi.org/10.1016/j.scitotenv.2016.05.067spa
dc.relation.referencesKassambara, A. (2017). Practical Guide to Principal Component Methods in R.spa
dc.relation.referencesKeesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., Van Der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., y Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016spa
dc.relation.referencesKumar, A., y Singh, P. (2021). Sugar and Sugar Derivatives : Changing Consumer Preferences. April. https://doi.org/10.1007/978-981-15-6663-9spa
dc.relation.referencesLacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., y Walter, C. (2014). High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213(January 2014), 296–311. https://doi.org/10.1016/j.geoderma.2013.07.002spa
dc.relation.referencesLal, R. (2004). World cropland soils as a source or sink for atmospheric carbon. 71, 145–191. https://doi.org/10.1016/s0065-2113(01)71014-0spa
dc.relation.referencesLal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. 304(June), 1623–1627.spa
dc.relation.referencesLal, Rattan. (2009). Soil Science. European Journam of Soil Science, April, 158–169. https://doi.org/10.1111/j.1365-2389.2008.01114.xspa
dc.relation.referencesLal, Rattan. (2016). Soil health and carbon management. 1. https://doi.org/10.1002/fes3.96spa
dc.relation.referencesLal, Rattan, Follett, R. F., Kimble, J., y V, C. C. (1999). Managing U.S. cropland to sequester carbon in soil. Soil and Water Conservation.spa
dc.relation.referencesLeiva Gutiérrez, N. (2012). Metodología para el cálculo de la humedad del suelo usando parámetros topográficos(MDE), climáticos y edáficos en un sector del piedemonte depositacional del municipio de Villavicencio. 145. http://www.bdigital.unal.edu.co/8910/1/795068.2012.pdfspa
dc.relation.referencesLisboa, I. P., Cherubin, M. R., Satiro, L. S., Siqueira-Neto, M., Lima, R. P., Gmach, M. R., Wienhold, B. J., Schmer, M. R., Jin, V. L., Cerri, C. C., y Cerri, C. E. P. (2019). Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops and Products, 129(June 2018), 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004spa
dc.relation.referencesLobo, D., y Pulido, M. (2006). Métodos e índices para evaluar la estabilidad estructural de los suelos Methods and index for evaluating soil structure stability. Venesuelos, 14, 22–37.spa
dc.relation.referencesLorenz, K., Lal, R., y Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations ’ Sustainable Development Goals. Land Degrad Dev, December 2017, 824–838. https://doi.org/10.1002/ldr.3270spa
dc.relation.referencesLovell, S. T., DeSantis, S., Nathan, C. A., Olson, M. B., Ernesto Méndez, V., Kominami, H. C., Erickson, D. L., Morris, K. S., y Morris, W. B. (2010). Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agricultural Systems, 103(5), 327–341. https://doi.org/10.1016/j.agsy.2010.03.003spa
dc.relation.referencesLovell, S. T., y Johnston, D. M. (2009). Creating multifunctional landscapes : how can the field of ecology inform the design of the landscape ? May 2009. https://doi.org/10.1890/070178spa
dc.relation.referencesLuengo, A. (2013). Los paisajes agrícolas del Patrimonio Mundial. Patrimonio Mundial, 69, 9–15.spa
dc.relation.referencesMa, S., Karkee, M., y Zhang, Q. (2013). Sugarcane Harvesting System : a Critical Overview Sugarcane Harvesting System : a Critical Overview. July. https://doi.org/10.13031/aim.20131574361spa
dc.relation.referencesMachado, F., Lima, E., Bacis, M., Urquiaga, S., Alves, B., y Moddey, R. (2010). Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant Soil, 333(February), 71–80. https://doi.org/10.1007/s11104-010-0320-7spa
dc.relation.referencesMalone, B. P., Mcbratney, A. B., Minasny, B., y Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007spa
dc.relation.referencesMarini, F., y Santamaría, M. (2019). Evaluación de índices verdes convencionales e índices del “borde rojo” en la discriminación de cultivos a nivel regional. Nadir: Rev. Elect. Geogr. Austral.spa
dc.relation.referencesMartínez Ardila, N. J., López Salgado, H. J., Samacá Torres, W., Vargas Tejedor, S. S., y Vargas Hernández, W. F. (2017). Tecnologías de la información para la consolidación ambiental y productiva del territorio. Análisis Geográficos, 53, 17–24.spa
dc.relation.referencesMartínez, E., Fuentes, J. P., y Acevedo, E. (2008). CARBONO ORGÁNICO Y PROPIEDADES DEL SUELO. 68–96.spa
dc.relation.referencesMeersmans, J., Wesemael, B. Van, Ridder, F. De, Geel, T. M., y Baets, S. De. (2009). Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands , 1960 – 2006. July 2019. https://doi.org/10.1111/j.1365-2486.2009.01855.xspa
dc.relation.referencesMeier, I. C., y Leuschner, C. (2010). Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology, 16, 1035–1045. https://doi.org/10.1111/j.1365-2486.2009.02074.xspa
dc.relation.referencesMinasny, B., y McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information $. Computers and Geosciences, 32, 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009spa
dc.relation.referencesMishra, G., y Francaviglia, R. (2021). Land Uses , Altitude and Texture Effects on Soil Parameters . A Comparative Study in Two Districts of Nagaland , Northeast India.spa
dc.relation.referencesMontenegro, J., y Chaves, M. (2011). Contribución del Sector Cañero a la Mitigación del Cambio Climático. XVIII Congreso Azucarero Nacional ATACORI, 506, 1–14.spa
dc.relation.referencesNieder, R., y Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5spa
dc.relation.referencesNunes, J. L., Otto, R., Junqueira, H., y Ocheuze, P. C. (2013). Input of sugarcane post-harvest residues into the soil. Scientia Agricola, October, 336–344.spa
dc.relation.referencesOostindie, H., Roep, D., y Renting, H. (2006). Definitions , references and interpretations of the concept of multifunctionality in The Netherlands. January.spa
dc.relation.referencesOsman, K. T. (2014). Chemical Soil Degradation. In Soil Degradation, Conservation and Remediation. https://doi.org/10.1007/978-94-007-7590-9spa
dc.relation.referencesOsorio, G. (2007). Buenas Prácticas agrícolas y buenas prácticas de manufactura en la producción de caña panelera. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesPerez, J. (1992). Estudio de la estabilidad estructural del suelo en relación con el complejo de cambio.spa
dc.relation.referencesPilgaard, S. B. (2016). Agriculture and landscape interaction—landowners’ decision-making and drivers of land use change in rural Europe. Land Use Policy, 57, 759–763. https://doi.org/10.1016/j.landusepol.2016.05.025spa
dc.relation.referencesPremrov, A., Cummins, T., y Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses , sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030spa
dc.relation.referencesPretty, J.,y Ball, A. (2001). Agricultural influences on carbon emissions and sequestration: a review of evidence and the emerging trading options. Occasional Paper, May 2014, 03.spa
dc.relation.referencesPulido, M., Lobo-Lujan, A. D., y Lozano-Pérez, Z. (2009). Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de venezuela. Agrociencia.spa
dc.relation.referencesRíos, G., Romero Carrascal, M., Botero Ospina, M. J., Franco, G., Pérez Cárdenas, J. C., Morales Muñoz, J. E., Gallego Duque, J. L., y Echeverry Agudelo, D. I. (2004). Zonificación, caracterización y tipificación de los sistemas de producción de lulo ( Solanum quitoense Lam) en el Eje Cafetero *. 5, 22–30.spa
dc.relation.referencesRodriguez, G., Garcia, H., Roa, Z., y Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina. Fao, 98. http://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdfspa
dc.relation.referencesRodriguez, G., Huertas, B., Polo, S., Gonzáles, C., Tauta, J., Rodriguez, J., Ramírez, J., Velasquez, F., Espitia, J., y López, R. (2020). Modelo productivo de la caña de azúcar para la producción de panela en Cundinamarca.spa
dc.relation.referencesRoudier, P., Brugnard, C., Beaudette, D., y Louis, B. (2020). Package ‘ clhs .’ https://doi.org/10.1201/b12728>spa
dc.relation.referencesRumpel, C., Chabbi, A., y Marschner, B. (2012). Carbon storage and sequestration in subsoil horizons: Knowledge, Gaps and potentials. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (Issue December 2014, pp. 1–559). https://doi.org/10.1007/978-94-007-4159-1spa
dc.relation.referencesSaggar, S., Parshotam, A., Sparling, G. P., Feltham, C. W., y Hart, P. (1996). 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biol Biochem, vo, 1677–1686. https://doi.org/10.1016/S0038-0717(96)00250-7spa
dc.relation.referencesSalas, R. (2017). ARQUEOLOGÍA DEL PAISAJE Colores en el valle de El Dorado Valle del Cauca-Colombia (100-1550 d.C.).spa
dc.relation.referencesSánchez, M., Prager M, M., Naranjo, R. E., y Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34.spa
dc.relation.referencesSantos, M. L., Cantarella, H., Junqueira, H., Kölln, O. T., Borges, T. M., Martineli, G., Cândida, S., y Nunes Carvalho, J. L. (2017). Comprehensive assessment of sugarcane straw : implications for biomass and bioenergy production. Biofuels, Bioprod. Bioref., 1–17. https://doi.org/10.1002/bbb.1760spa
dc.relation.referencesSchmiedt, T. M., Mariano, E., Boschiero, B. N., y Otto, R. (2017). Soil carbon and nitrogen dynamics as affected by land use change and successive nitrogen fertilization of sugarcane. Agriculture, Ecosystems and Environment, 247(October 2016), 63–74. https://doi.org/10.1016/j.agee.2017.06.005spa
dc.relation.referencesSchulten, H., y Leinweber, P. (2000). New insights into organic-mineral particles : composition , properties and models of molecular structure. Biol Fertil Soils, 30, 399–432.spa
dc.relation.referencesSelim, H. M., Newman, A., Zhang, L., Arceneaux, A., Tubaña, B., y Gaston, L. A. (2016). Distributions of organic carbon and related parameters in a Louisiana sugarcane soil. Soil and Tillage Research, 155, 401–411. https://doi.org/10.1016/j.still.2015.09.010spa
dc.relation.referencesSenapati, N., Ghosh, S., Daniel, H., y Rakshit, A. (2014). Modelling and Simulation of Diffusive Processes. https://doi.org/10.1007/978-3-319-05657-9spa
dc.relation.referencesSerrato, P. K. (2009). LA CLASIFICACIÓN FISIOGRÁFICA DEL TERRENO APARTIR DE LA INCLUSION NUEVOS ELEMENTOS CONCEPTUALES. Revista Perspectiva Geográfica, 14.spa
dc.relation.referencesSGC, S. G. C. (2014). Geolog+ia de la Plancha 208 Villeta.spa
dc.relation.referencesSierra, C. A., Jorge, I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., y Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region , Colombia. 243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026spa
dc.relation.referencesSix, J., Conant, R., Paul, E. A., y Paustian, K. (2002). Stabilization mechanisms of protected versus unprotected soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176.spa
dc.relation.referencesSix, J., Paustian, K., Elliot, E., y Combrink, C. (2000). Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Science Society of America Journal, 64. https://doi.org/10.2136/sssaj2000.642681xspa
dc.relation.referencesSmith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R. M., Namara, N. P. M. C., Powlson, D., Cowie, A., Noordwijk, M. V. A. N., Sarah, C., Stuart, J., Kirton, A., y Eggar, D. (2012). Towards an integrated global framework to assess the impacts of land use and management change on soil carbon : current capability and future vision. March, 2089–2101. https://doi.org/10.1111/j.1365-2486.2012.02689.xspa
dc.relation.referencesStockmann, U., Padarian, J., Mcbratney, A., Minasny, B., Brogniez, D. De, Montanarella, L., Young, S., Rawlins, B. G., y Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security, 6, 9–16. https://doi.org/10.1016/j.gfs.2015.07.001spa
dc.relation.referencesTaiz, L., y Zeiger, E. (2006). Photosynthesis: Carbon Reactions. In Plant Phisiology.spa
dc.relation.referencesTargulian, V. O., y Krasilnikov, P. V. (2007). Soil system and pedogenic processes : Self-organization , time scales , and environmental significance. 71, 373–381. https://doi.org/10.1016/j.catena.2007.03.007spa
dc.relation.referencesThorburn, P. J., Meier, E. A., Collins, K., y Robertson, F. A. (2012). Soil & Tillage Research Changes in soil carbon sequestration , fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil & Tillage Research, 120, 99–111. https://doi.org/10.1016/j.still.2011.11.009spa
dc.relation.referencesTisdall, M. J., y Oades, M. J. (1982). Organic matter and water-stable aggregates in soils.spa
dc.relation.referencesTotsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., y Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451spa
dc.relation.referencesTrumbore, S. (1997). Potential responses of soil organic carbon to global environmental change. 94(August), 8284–8291.spa
dc.relation.referencesTrumbore, S. E., Torn, M. S., Rasse, D. P., Janssens, I. A., Abiven, S., Dittmar, T., Kleber, M., Guggenberger, G., Kögel-Knabner, I., Lehmann, J., Schmidt, M. W. I., Weiner, S., Manning, D. A. C., y Nannipieri, P. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386spa
dc.relation.referencesUSDA. (2010). Kays to soil taxonomy.spa
dc.relation.referencesUSDA. (2014a). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service.spa
dc.relation.referencesUSDA. (2014b). Soil Survey Field and Laboratory Methods Manual. 51.spa
dc.relation.referencesVagen, T.-G., y Winowiecki, L. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. https://doi.org/10.1088/1748-9326/8/1/015011spa
dc.relation.referencesVan Zuidam, R. A. (1985). AERIAL PHOTO-INTERPRETATION IN TERRAIN ANALYSIS AND GEOMORPHOLOGIC MAPPING. International Institue for Aerospace Survey and Earth Sciences.spa
dc.relation.referencesVerbruggen, E., Jansa, J., Hammer, E. C., y Rillig, M. C. (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? Journal of Ecology, 104(1), 261–269. https://doi.org/10.1111/1365-2745.12496spa
dc.relation.referencesVillota, H. (1997). Una nueva aproximacion a la clasificacion fisiografica del terreno. CIAF.spa
dc.relation.referencesWezel, A., Brives, H., Casagrande, M., Clément, C., y Dufour, A. (2016). Agroecology and Sustainable Food Systems Agroecology territories : places for sustainable agricultural and food systems and biodiversity conservation Agroecology territories : places for sustainable agricultural. 3565(January). https://doi.org/10.1080/21683565.2015.1115799spa
dc.relation.referencesWhitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131).spa
dc.relation.referencesWiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J.,y Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333(July 2018), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026spa
dc.relation.referencesWu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., y Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4spa
dc.relation.referencesXiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G., y Comerford, N. B. (2014). Interaction effects of climate and land use / land cover change on soil organic carbon sequestration. Science of the Total Environment, 493, 974–982. https://doi.org/10.1016/j.scitotenv.2014.06.088spa
dc.relation.referencesYu, P., Han, K., Li, Q., y Zhou, D. (2017). Soil organic carbon fractions are affected by different land uses in an agro-pastoral transitional zone in Northeastern China. Ecological Indicators, 73, 331–337. https://doi.org/10.1016/j.ecolind.2016.10.002spa
dc.relation.referencesZapata, R. (2002). Química de los procesos pedogenéticos del suelo.spa
dc.relation.referencesZhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., y Cheng, X. (2016). Alterations in soil microbial community composition and biomass following agricultural land use change. Nature Publishing Group, June, 1–10. https://doi.org/10.1038/srep36587spa
dc.relation.referencesZhou, M., Liu, C., Wang, J., Meng, Q., Ye, Y., y Ma, X. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Scientific Reports, 1–13. https://doi.org/10.1038/s41598-019-57193-1spa
dc.relation.referencesZiegler, S. E., Billings, S. A., Lane, C. S., Li, J., y Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001spa
dc.relation.referencesZinck, J A. (2012). Geopedología.spa
dc.relation.referencesZinck, Joseph Alfred, Metternicht, G., Bocco, G., y Del valle, H. (2016). Geopedology.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.proposalCarbono orgánico del suelospa
dc.subject.proposalPaisaje agrícolaspa
dc.subject.proposalCaña de azúcar para panelaspa
dc.subject.proposalCovariables ambientalesspa
dc.subject.proposalSoil organic carboneng
dc.subject.proposalAgriculture landscapeeng
dc.subject.proposalSugarcaneeng
dc.subject.proposalEnvironmental covariateseng
dc.subject.proposalJaggeryeng
dc.subject.unescoUso de la tierraspa
dc.subject.unescoLand useeng
dc.titleDistribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panelaspa
dc.title.translatedSpatial distribution of soil organic carbon stock in landscapes occupied by sugarcane (Saccharum officinarum) for panelaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022371862.2022.pdf
Tamaño:
6.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: