Desarrollo de un aerogel adsorbente de humedad para uso en empaques de alimentos frescos

dc.contributor.advisorCastellanos Espinosa, Diego Albertospa
dc.contributor.advisorNoriega Valencia, Mario Andresspa
dc.contributor.authorVera Mahecha, Mercedes del Pilarspa
dc.contributor.researchgroupAseguramiento de la calidad de alimentos y desarrollo de nuevos productosspa
dc.date.accessioned2025-01-16T20:08:55Z
dc.date.available2025-01-16T20:08:55Z
dc.date.issued2024-12-20
dc.descriptionfotografias, graficas, tablasspa
dc.description.abstractLa acumulación de agua líquida en el interior de empaques para alimentos frescos, como vegetales y productos cárnicos, es un problema común que favorece la proliferación de microorganismos, lo que conduce al deterioro del producto, pérdida de nutrientes, aumento de reacciones enzimáticas de degradación y una notable reducción de la vida útil. En este trabajo se desarrollaron diferentes formulaciones de aerogeles adsorbentes de humedad a base de celulosa y carboximetilcelulosa (CMC). Para estas formulaciones se modificaron el tipo de material (celulosa y CMC), la concentración del material (1 a 5 % p/p), el tipo de entrecruzante (CaCO3 y CaCl2) y las velocidades de mezclado (11000,15500 y 25000 rpm). Posteriormente, se seleccionó el aerogel con mayor capacidad de adsorción y estabilidad mecánica (celulosa al 5% con entrecruzante CaCl2 al 5% y velocidad de mezclado 15500 rpm) para su caracterización. Se realizaron análisis de sus propiedades espectroscópicas (FT-IR), calorimétricas (DSC, TGA), morfológicas, y además se determinó su cinética de adsorción empleando un modelo de primer orden + BET, obteniendo un R2 de 0,84. Finalmente, se evaluó el efecto del aerogel en la extensión de la vida útil de melón fresco. Para ello se estudiaron seis casos: bandeja abierta (B.A), bandeja con perforaciones sin aerogel (B.C) y bandeja con perforaciones e inclusión de aerogel (1,15; 2,15; 4,3 y 6,5 g de aerogel). La máxima vida útil de melón fue de 8 días, lograda con la bandeja con perforaciones e inclusión de 6,5 g de aerogel. Esto representó un aumento de la vida útil del melón del 167 % con respecto al tiempo de vida útil de la bandeja abierta y del 33 % respecto al tiempo de vida útil de la bandeja con perforaciones sin aerogel (Texto tomado de la fuente).spa
dc.description.abstractThe accumulation of liquid water inside packaging for fresh foods, such as vegetables and meat products, is a common problem that leads to microorganism proliferation and product deterioration, loss of nutrients, increased enzymatic degradation reactions and a significant reduction in shelf life. In this work, different formulations of moisture-adsorbing aerogels were developed from cellulose and carboxymethylcellulose (CMC). For the formulations, the type of material (cellulose and CMC), the concentration of the material (1 to 5% w/w), the type of crosslinker (CaCO3 and CaCl2) and the mixing speeds (11000, 15500 and 25000 rpm) were modified. Subsequently, the aerogel with the highest adsorption capacity and mechanical stability (5% cellulose with 5% CaCl2 crosslinker and mixing speed 15500 rpm) was selected for characterization. Its spectroscopic (FT-IR), calorimetric (DSC, TGA) and morphological properties were analyzed, and a model of adsorption kinetics was adjusted using a first-order model + BET, obtaining an R2 of 0.84. Finally, the effect of the aerogel on the extension of the shelf life of fresh melon was evaluated. For this, six cases were studied: open tray (B.A), tray with perforations without aerogel (B.C) and tray with perforations and inclusion of aerogel (1.15; 2.15; 4.3 and 6.5 g of aerogel). The maximum shelf life of melon was 8 days, achieved with the tray with perforations and inclusion of 6.5 g of aerogel. This represented an increase in melon shelf life of 167% over the open tray shelf life and 33% over the perforated tray shelf life without aerogel.eng
dc.description.curricularareaIngeniería Química y Ambiental.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.researchareaProcesos de polimerización y materialesspa
dc.format.extent88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87329
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbdul Khalil, H. P. S., Chong, E. W. N., Owolabi, F. a. T., Asniza, M., Tye, Y. Y., Rizal, S., Nurul Fazita, M. R., Mohamad Haafiz, M. K., Nurmiati, Z., & Paridah, M. T. (2019). Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: A review. Journal of Applied Polymer Science, 136(12), 47251. https://doi.org/10.1002/app.47251spa
dc.relation.referencesAfolabi, I. C., Popoola, S. I., & Bello, O. S. (2020). Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemometrics and Intelligent Laboratory Systems, 203(June), 104053. https://doi.org/10.1016/j.chemolab.2020.104053spa
dc.relation.referencesAhmed, W., Haque, A., & Islam, S. (2022). A review on active packaging for quality and safety of foods : Current trends , applications , prospects and challenges. Food Packaging and Shelf Life, 33(October 2021), 100913. https://doi.org/10.1016/j.fpsl.2022.100913spa
dc.relation.referencesBarreneche, C., Fernández, A. I., Cabeza, L. F., & Cuypers, R. (201). Thermophysical characterization of sorption TCM. Energy Procedia, 48(December), 273–279. https://doi.org/10.1016/j.egypro.2014.02.032spa
dc.relation.referencesBenito-González, I., López-Rubio, A., Galarza-Jiménez, P., & Martínez-Sanz, M. (2021). Multifunctional cellulosic aerogels from Posidonia oceanica waste biomass with antioxidant properties for meat preservation. International Journal of Biological Macromolecules, 185(2021), 654–663. https://doi.org/10.1016/j.ijbiomac.2021.06.192spa
dc.relation.referencesBiji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52(10), 6125–6135. https://doi.org/10.1007/s13197-015-1766-7spa
dc.relation.referencesBovi, G. G., Caleb, O. J., Klaus, E., Tintchev, F., Rauh, C., & Mahajan, P. V. (2018). Moisture absorption kinetics of FruitPad for packaging of fresh strawberry. Journal of Food Engineering, 223, 248–254. https://doi.org/10.1016/j.jfoodeng.2017.10.012spa
dc.relation.referencesCarrillo Inungaray, M. L., & Reyes Munguía, A. (2014). Vida útil de los alimentos / Lifetime food. CIBA Revista Iberoamericana de Las Ciencias Biológicas y Agropecuarias, 2(3), 32. https://doi.org/10.23913/ciba.v2i3.20spa
dc.relation.referencesde Oliveira, G. L. R., Medeiros, I., Nascimento, S. S. da C., Viana, R. L. S., Porto, D. L., Rocha, H. A. O., Aragão, C. F. S., Maciel, B. L. L., de Assis, C. F., Morais, A. H. de A., & Passos, T. S. (2021). Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chemistry, 348(December 2020). https://doi.org/10.1016/j.foodchem.2021.129055spa
dc.relation.referencesDogenski, M., Navarro-Díaz, H. J., de Oliveira, J. V., & Ferreira, S. R. S. (2020). Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose. Food Hydrocolloids, 108(June), 106033. https://doi.org/10.1016/j.foodhyd.2020.106033spa
dc.relation.referencesEscobar, H. J., Garavito, J., & Castellanos, D. A. (2023). Development of an active packaging with an oxygen scavenger and moisture adsorbent for fresh lulo (Solanum quitoense). Journal of Food Engineering, 349(December 2022), 111484. https://doi.org/10.1016/j.jfoodeng.2023.111484spa
dc.relation.referencesFalua, K. J., Babaei-ghazvini, A., & Acharya, B. (2024). International Journal of Biological Macromolecules Comparative study of the structure and mechanical properties of starch aerogels fabricated from air-classified and isolated pulse starches. International Journal of Biological Macromolecules, 257(P1), 128478. https://doi.org/10.1016/j.ijbiomac.2023.128478spa
dc.relation.referencesFontes-Candia, C., Erboz, E., Martínez-Abad, A., López-Rubio, A., & Martínez-Sanz, M. (2019). Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass. Food Hydrocolloids, 96(May), 151–160. https://doi.org/10.1016/j.foodhyd.2019.05.011spa
dc.relation.referencesFornaris, G. (2020). Conjunto Tecnológico para la Producción de Melón “Cantaloupe” y “Honeydew” 1. Universidad de Puerto Rico, Publicación 155, 100. https://www.upr.edu/eea/wp-content/uploads/sites/17/2016/03/MELON-COSECHA-Y-MANEJO-POSTCOSECHA.pdfspa
dc.relation.referencesGaikwad, K. K., Singh, S., & Ajji, A. (2019). Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17(2), 609–628. https://doi.org/10.1007/s10311-018-0810-zspa
dc.relation.referencesGallardo, X. B. (2017). Universidad Nacional De San. Universidad Nacional de San Martín, 1, 1–125. https://repositorio.unsa.edu.pe/handle/UNSA/5720spa
dc.relation.referencesGaona-Forero, A., Agudelo-Rodríguez, G., Herrera, A. O., & Castellanos, D. A. (2018). Modeling and simulation of an active packaging system with moisture adsorption for fresh produce. Application in ‘Hass’ avocado. Food Packaging and Shelf Life, 17(June), 187–195. https://doi.org/10.1016/j.fpsl.2018.07.005spa
dc.relation.referencesGaravito, J., Herrera, A. O., & Castellanos, D. A. (2021). A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (Physalis peruviana) fruits. Biosystems Engineering, 208, 152–163. https://doi.org/10.1016/j.biosystemseng.2021.05.015spa
dc.relation.referencesGaravito, J., Mendoza, S. M., & Castellanos, D. A. (2022). Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits. Journal of Food Engineering, 314(August 2021), 110761. https://doi.org/10.1016/j.jfoodeng.2021.110761spa
dc.relation.referencesGiacinti Baschetti, M., & Minelli, M. (2020). Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polymer Testing, 89(May), 106606. https://doi.org/10.1016/j.polymertesting.2020.106606spa
dc.relation.referencesGidado, M. J., Gunny, A. A. N., Gopinath, S. C. B., Ali, A., Wongs-Aree, C., & Salleh, N. H. M. (2024). Challenges of postharvest water loss in fruits: Mechanisms, influencing factors, and effective control strategies – A comprehensive review. Journal of Agriculture and Food Research, 17(June), 101249. https://doi.org/10.1016/j.jafr.2024.101249spa
dc.relation.referencesGonzález, A., Pérez, B., & Martínez, C. (2024). Análisis de grupos funcionales en materiales adsorbentes de humedad utilizando espectroscopia infrarroja por transformadas de Fourier. Journal of Material Science, 45(3), 235-247. https://doi.org/10.1016/j.jmat.2024.05.001spa
dc.relation.referencesHan, X., Ding, S., Zhu, L., & Wang, S. (2023). Energy & Buildings Preparation and characterization of flame-retardant and thermal insulating bio-based composite aerogels. Energy & Buildings, 278, 112656. https://doi.org/10.1016/j.enbuild.2022.112656spa
dc.relation.referencesHerrero, C. S. (2018). Desarrollo de nuevos aerogeles de aplicación industrial mediante la técnica de liofilización.spa
dc.relation.referencesHu, X., Zhang, S., Yang, B., Hao, M., Chen, Z., Liu, Y., Wang, X., & Yao, J. (2023). Preparation of ambient-dried multifunctional cellulose aerogel by freeze-linking technique. Chemical Engineering Journal, 477(July), 147044. https://doi.org/10.1016/j.cej.2023.147044spa
dc.relation.referencesHuang, Y., Zhou, T., He, S., Xiao, H., Dai, H., Yuan, B., Chen, X., & Yang, X. (2019). Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus. Applied Surface Science, 497(July), 143775. https://doi.org/10.1016/j.apsusc.2019.143775spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación (ICONTEC). (2008). NTC 832: Frutas frescas. Melones. Especificaciones. Instituto Colombiano de Normas Técnicas y Certificación.spa
dc.relation.referencesJavier, H., & Pi, E. (2022). Evaluación de un removedor de oxígeno y un adsorbente de humedad en el desarrollo de un empaque activo para la preservación de lulo ( Solanum quitoense ) en fresco.spa
dc.relation.referencesKoh, P. C., Noranizan, M. A., Nur Hanani, Z. A., Karim, R., & Rosli, S. Z. (2017). Application of edible coatings and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo L. reticulatus cv. Glamour). Postharvest Biology and Technology, 129, 64–78. https://doi.org/10.1016/j.postharvbio.2017.03.003spa
dc.relation.referencesKoontz, J. L. (2018). Special delivery : Controlled release of active ingredients from food and beverage packaging Italian Packaging Technology Award ( IPTA ) Paper Competition Special delivery : Controlled release of active ingredients from food and beverage packaging John L. February 2006.spa
dc.relation.referencesKim, H., Jeong, H., Jeon, J., & Bae, S. (2021). Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water, 6(2), 1-9. https://doi.org/10.3390/w8040127spa
dc.relation.referencesKim, S. H., Park, J. I., Lee, S., An, H. R., Kim, H., Son, B., Seo, J., Kim, C. Y., Jeong, Y., Choi, K., Jeong, S., & Lee, H. U. (2024). Enhancing adsorption efficiency for environmentally-friendly removal of As(V) and Pb(II) using a biochar-iron oxide composite. Applied Surface Science, 667(April), 160348. https://doi.org/10.1016/j.apsusc.2024.160348spa
dc.relation.referencesLabuza, T. P., & Altunakar, B. (2020). Water Activity Prediction and Moisture Sorption Isotherms. Water Activity in Foods: Fundamentals and Applications, 161–205. https://doi.org/10.1002/9781118765982.ch7spa
dc.relation.referencesLi, G., Wang, J., & Sun, L. (2020). "Effect of salts on biological treatment of wastewater: A review." Environmental Science and Pollution Research, 27(13), 14564-14579. DOI: 10.1007/s11356-019-06743-6.spa
dc.relation.referencesLiao, Q., Zhou, J., Zheng, Y., Xian, X., Deng, G., Zhang, C., Duan, X., Wu, Z., & Li, S. (2024). Adsorption kinetics of CH4 and CO2 on shale: Implication for CO2 sequestration. Separation and Purification Technology, 337(January), 126427. https://doi.org/10.1016/j.seppur.2024.126427spa
dc.relation.referencesLong, L. Y., Weng, Y. X., & Wang, Y. Z. (2018). Cellulose aerogels: Synthesis, applications, and prospects. Polymers, 8(6), 1–28. https://doi.org/10.3390/polym10060623spa
dc.relation.referencesMahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017). https://doi.org/10.1098/rsta.2013.0309spa
dc.relation.referencesMahajan, P. V., Rodrigues, F. A. S., Motel, A., & Leonhard, A. (2008). Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biology and Technology, 48(3), 408–414. https://doi.org/10.1016/j.postharvbio.2007.11.007spa
dc.relation.referencesMahajan, P. V, & Sun, D. (2023). Postharvest Biology and Technology Modified atmosphere and moisture condensation in packaged fresh produce : Scientific efforts and commercial success. Postharvest Biology and Technology, 198(October 2022), 112235. https://doi.org/10.1016/j.postharvbio.2022.112235spa
dc.relation.referencesMalena Negro Norma la, E. Y., Valeria, M., Mónika, K., Cristina, R., Moira, F., & supuesto Ana De, por V. (2004). Caracterización de medios porosos y procesos percolativos y de transporte.spa
dc.relation.referencesManzocco, L., Mikkonen, K. S., & García-González, C. A. (2021). Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Structure, 28(December 2020). https://doi.org/10.1016/j.foostr.2021.100188spa
dc.relation.referencesMirmoeini, S. S., Moradi, M., Tajik, H., Almasi, H., & Gama, F. M. (2023). Cellulose/Salep-based intelligent aerogel with red grape anthocyanins: Preparation, characterization and application in beef packaging. Food Chemistry, 425(May), 136493. https://doi.org/10.1016/j.foodchem.2023.136493spa
dc.relation.referencesMorais, P. L., Dias, N. S., & Prisco, H. T. (2020). Physiological aspects of melon (Cucumis melo L.) as a function of salinity. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10147-4spa
dc.relation.referencesN’Tsoukpoe, K. E., Rammelberg, H. U., Lele, A. F., Korhammer, K., Watts, B. A., Schmidt, T., & Ruck, W. K. L. (2015). A review on the use of calcium chloride in applied thermal engineering. Applied Thermal Engineering, 75, 513–531. https://doi.org/10.1016/j.applthermaleng.2014.09.047spa
dc.relation.referencesNguyen, T. T. Van, Nguyen, Q. K., Thieu, N. Q., Nguyen, H. D. T., Ho, T. G. T., Do, B. L., Pham, T. T. P., Nguyen, T., & Ky Phuong Ha, H. (2023). Magnetite nanoparticles decorated on cellulose aerogel for p-nitrophenol Fenton degradation: Effects of the active phase loading, cross-linker agent and preparation method. Heliyon, 9(11), e22319. https://doi.org/10.1016/j.heliyon.2023.e22319spa
dc.relation.referencesOtoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73. https://doi.org/10.1016/j.foodres.2016.02.018spa
dc.relation.referencesPostharvest Technology Center. (2022). Melon, honeydew: Produce facts. University of California, Davis. https://postharvest.ucdavis.edu/es/produce-facts-sheets/melon-honeydewspa
dc.relation.referencesQin, H., Zhang, Y., Jiang, J., Wang, L., Song, M., Bi, R., Zhu, P., & Jiang, F. (2021). Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Ice-Templating Assembly. Advanced Functional Materials, 31(46), 1–9. https://doi.org/10.1002/adfm.202106269spa
dc.relation.referencesRaybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121(3), 313–327. https://doi.org/10.1016/j.ijfoodmicro.2007.11.010spa
dc.relation.referencesReshetnikov, S., Budaev, Z., Livanova, A., Meshcheryakov, E., & Kurzina, I. (2019). Effect of particle size on adsorption kinetics of water vapor on porous aluminium oxide material. Journal of Physics: Conference Series, 1145(1). https://doi.org/10.1088/1742-6596/1145/1/012033spa
dc.relation.referencesRux, G., Mahajan, P. V, Linke, M., Pant, A., Sängerlaub, S., Caleb, O. J., & Geyer, M. (2016). Humidity-Regulating Trays : Moisture Absorption Kinetics and Applications for Fresh Produce Packaging. Ivv. https://doi.org/10.1007/s11947-015-1671-0spa
dc.relation.referencesŞahin, İ., Özbakır, Y., İnönü, Z., Ulker, Z., & Erkey, C. (2018). Kinetics of supercritical drying of gels. Gels, 4(1). https://doi.org/10.3390/gels4010003spa
dc.relation.referencesSchneider, J., & Baiker, A. (2020). Effect of pore size distribution on adsorption capacity and performance of silica aerogels. Journal of Materials Science, 55(14), 5632-5644. https://doi.org/10.1007/s10853-020-04512-6spa
dc.relation.referencesSequeiros, C., Sbirrazzuoli, N., & Al-Malaika, S. (2018). Thermal degradation and stabilization of cellulose: Mechanisms and analyses by TGA/FTIR, TGA/MS, and Py-GC/MS. Polymer Degradation and Stability, 150, 30-42. https://doi.org/10.1016/j.polymdegradstab.2018.01.019spa
dc.relation.referencesSilveira, A. C., Moreira, G. C., Artés, F., & Aguayo, E. (2015). Vanillin and cinnamic acid in aqueous solutions or in active modified packaging preserve the quality of fresh-cut Cantaloupe melon. Scientia Horticulturae, 192, 271–278. https://doi.org/10.1016/j.scienta.2015.06.029spa
dc.relation.referencesSoltani Firouz, M., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141(July 2020), 110113. https://doi.org/10.1016/j.foodres.2021.110113spa
dc.relation.referencesSong, X., Peng, W., Zhang, S., & Hu, Y. (2016). Thermal decomposition behavior of calcium chloride hexahydrate for heat storage. Journal of Thermal Analysis and Calorimetry, 123(3), 2475-2483. https://doi.org/10.1007/s10973-016-5374-9spa
dc.relation.referencesU.S. National Institute of Standards and Technology. (n.d.). N,N-Dimethylformamide. NIST Chemistry WebBook. https://webbook.nist.gov/cgi/cbook.cgi?ID=C10043524&Mask=80spa
dc.relation.referencesWörmeyer, K., & Smirnova, I. (2013). Adsorption of CO2, moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels. Chemical Engineering Journal, 225, 350–357. https://doi.org/10.1016/j.cej.2013.02.022spa
dc.relation.referencesYeng, L. C., Wahit, M. U., & Othman, N. (2015). Thermal and flexural properties of regenerated cellulose(RC)/poly(3- hydroxybutyrate)(PHB)biocomposites. Jurnal Teknologi, 75(11), 107–112. https://doi.org/10.11113/jt.v75.5338spa
dc.relation.referencesYildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2018). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165–199. https://doi.org/10.1111/1541-4337.12322spa
dc.relation.referencesZhang, X., Zhang, C., Feng, X., Yu, S., Li, X., Fang, Q., & Chen, G. (2019). Study on the moisture adsorption isotherms and different forms of water for lignite after hydrothermal and thermal upgrading. Fuel, 246(March), 340–348. https://doi.org/10.1016/j.fuel.2019.02.126spa
dc.relation.referencesZhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie - International Edition, 57(26), 7580–7608. https://doi.org/10.1002/anie.201709014spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalCelulosaspa
dc.subject.proposalAerogelspa
dc.subject.proposalCinética de adsorciónspa
dc.subject.proposalHumedad relativaspa
dc.subject.proposalCondensaciónspa
dc.subject.proposalMelónspa
dc.subject.proposalVida útilspa
dc.subject.proposalCelluloseeng
dc.subject.proposalAdsorption kineticseng
dc.subject.proposalRelative humidityeng
dc.subject.proposalCondensationeng
dc.subject.proposalShelf lifeeng
dc.subject.unescoAdsorción de humedadspa
dc.subject.unescoConservación de alimentosspa
dc.subject.unescoEmpaque de alimentosspa
dc.titleDesarrollo de un aerogel adsorbente de humedad para uso en empaques de alimentos frescosspa
dc.title.translatedDevelopment of a moisture-absorbing aerogel for use in fresh food packagingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1106787527.2024.pdf
Tamaño:
2.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: