Desarrollo de un aerogel adsorbente de humedad para uso en empaques de alimentos frescos
dc.contributor.advisor | Castellanos Espinosa, Diego Alberto | spa |
dc.contributor.advisor | Noriega Valencia, Mario Andres | spa |
dc.contributor.author | Vera Mahecha, Mercedes del Pilar | spa |
dc.contributor.researchgroup | Aseguramiento de la calidad de alimentos y desarrollo de nuevos productos | spa |
dc.date.accessioned | 2025-01-16T20:08:55Z | |
dc.date.available | 2025-01-16T20:08:55Z | |
dc.date.issued | 2024-12-20 | |
dc.description | fotografias, graficas, tablas | spa |
dc.description.abstract | La acumulación de agua líquida en el interior de empaques para alimentos frescos, como vegetales y productos cárnicos, es un problema común que favorece la proliferación de microorganismos, lo que conduce al deterioro del producto, pérdida de nutrientes, aumento de reacciones enzimáticas de degradación y una notable reducción de la vida útil. En este trabajo se desarrollaron diferentes formulaciones de aerogeles adsorbentes de humedad a base de celulosa y carboximetilcelulosa (CMC). Para estas formulaciones se modificaron el tipo de material (celulosa y CMC), la concentración del material (1 a 5 % p/p), el tipo de entrecruzante (CaCO3 y CaCl2) y las velocidades de mezclado (11000,15500 y 25000 rpm). Posteriormente, se seleccionó el aerogel con mayor capacidad de adsorción y estabilidad mecánica (celulosa al 5% con entrecruzante CaCl2 al 5% y velocidad de mezclado 15500 rpm) para su caracterización. Se realizaron análisis de sus propiedades espectroscópicas (FT-IR), calorimétricas (DSC, TGA), morfológicas, y además se determinó su cinética de adsorción empleando un modelo de primer orden + BET, obteniendo un R2 de 0,84. Finalmente, se evaluó el efecto del aerogel en la extensión de la vida útil de melón fresco. Para ello se estudiaron seis casos: bandeja abierta (B.A), bandeja con perforaciones sin aerogel (B.C) y bandeja con perforaciones e inclusión de aerogel (1,15; 2,15; 4,3 y 6,5 g de aerogel). La máxima vida útil de melón fue de 8 días, lograda con la bandeja con perforaciones e inclusión de 6,5 g de aerogel. Esto representó un aumento de la vida útil del melón del 167 % con respecto al tiempo de vida útil de la bandeja abierta y del 33 % respecto al tiempo de vida útil de la bandeja con perforaciones sin aerogel (Texto tomado de la fuente). | spa |
dc.description.abstract | The accumulation of liquid water inside packaging for fresh foods, such as vegetables and meat products, is a common problem that leads to microorganism proliferation and product deterioration, loss of nutrients, increased enzymatic degradation reactions and a significant reduction in shelf life. In this work, different formulations of moisture-adsorbing aerogels were developed from cellulose and carboxymethylcellulose (CMC). For the formulations, the type of material (cellulose and CMC), the concentration of the material (1 to 5% w/w), the type of crosslinker (CaCO3 and CaCl2) and the mixing speeds (11000, 15500 and 25000 rpm) were modified. Subsequently, the aerogel with the highest adsorption capacity and mechanical stability (5% cellulose with 5% CaCl2 crosslinker and mixing speed 15500 rpm) was selected for characterization. Its spectroscopic (FT-IR), calorimetric (DSC, TGA) and morphological properties were analyzed, and a model of adsorption kinetics was adjusted using a first-order model + BET, obtaining an R2 of 0.84. Finally, the effect of the aerogel on the extension of the shelf life of fresh melon was evaluated. For this, six cases were studied: open tray (B.A), tray with perforations without aerogel (B.C) and tray with perforations and inclusion of aerogel (1.15; 2.15; 4.3 and 6.5 g of aerogel). The maximum shelf life of melon was 8 days, achieved with the tray with perforations and inclusion of 6.5 g of aerogel. This represented an increase in melon shelf life of 167% over the open tray shelf life and 33% over the perforated tray shelf life without aerogel. | eng |
dc.description.curriculararea | Ingeniería Química y Ambiental.Sede Bogotá | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Procesos de polimerización y materiales | spa |
dc.format.extent | 88 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87329 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Abdul Khalil, H. P. S., Chong, E. W. N., Owolabi, F. a. T., Asniza, M., Tye, Y. Y., Rizal, S., Nurul Fazita, M. R., Mohamad Haafiz, M. K., Nurmiati, Z., & Paridah, M. T. (2019). Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: A review. Journal of Applied Polymer Science, 136(12), 47251. https://doi.org/10.1002/app.47251 | spa |
dc.relation.references | Afolabi, I. C., Popoola, S. I., & Bello, O. S. (2020). Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemometrics and Intelligent Laboratory Systems, 203(June), 104053. https://doi.org/10.1016/j.chemolab.2020.104053 | spa |
dc.relation.references | Ahmed, W., Haque, A., & Islam, S. (2022). A review on active packaging for quality and safety of foods : Current trends , applications , prospects and challenges. Food Packaging and Shelf Life, 33(October 2021), 100913. https://doi.org/10.1016/j.fpsl.2022.100913 | spa |
dc.relation.references | Barreneche, C., Fernández, A. I., Cabeza, L. F., & Cuypers, R. (201). Thermophysical characterization of sorption TCM. Energy Procedia, 48(December), 273–279. https://doi.org/10.1016/j.egypro.2014.02.032 | spa |
dc.relation.references | Benito-González, I., López-Rubio, A., Galarza-Jiménez, P., & Martínez-Sanz, M. (2021). Multifunctional cellulosic aerogels from Posidonia oceanica waste biomass with antioxidant properties for meat preservation. International Journal of Biological Macromolecules, 185(2021), 654–663. https://doi.org/10.1016/j.ijbiomac.2021.06.192 | spa |
dc.relation.references | Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52(10), 6125–6135. https://doi.org/10.1007/s13197-015-1766-7 | spa |
dc.relation.references | Bovi, G. G., Caleb, O. J., Klaus, E., Tintchev, F., Rauh, C., & Mahajan, P. V. (2018). Moisture absorption kinetics of FruitPad for packaging of fresh strawberry. Journal of Food Engineering, 223, 248–254. https://doi.org/10.1016/j.jfoodeng.2017.10.012 | spa |
dc.relation.references | Carrillo Inungaray, M. L., & Reyes Munguía, A. (2014). Vida útil de los alimentos / Lifetime food. CIBA Revista Iberoamericana de Las Ciencias Biológicas y Agropecuarias, 2(3), 32. https://doi.org/10.23913/ciba.v2i3.20 | spa |
dc.relation.references | de Oliveira, G. L. R., Medeiros, I., Nascimento, S. S. da C., Viana, R. L. S., Porto, D. L., Rocha, H. A. O., Aragão, C. F. S., Maciel, B. L. L., de Assis, C. F., Morais, A. H. de A., & Passos, T. S. (2021). Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chemistry, 348(December 2020). https://doi.org/10.1016/j.foodchem.2021.129055 | spa |
dc.relation.references | Dogenski, M., Navarro-Díaz, H. J., de Oliveira, J. V., & Ferreira, S. R. S. (2020). Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose. Food Hydrocolloids, 108(June), 106033. https://doi.org/10.1016/j.foodhyd.2020.106033 | spa |
dc.relation.references | Escobar, H. J., Garavito, J., & Castellanos, D. A. (2023). Development of an active packaging with an oxygen scavenger and moisture adsorbent for fresh lulo (Solanum quitoense). Journal of Food Engineering, 349(December 2022), 111484. https://doi.org/10.1016/j.jfoodeng.2023.111484 | spa |
dc.relation.references | Falua, K. J., Babaei-ghazvini, A., & Acharya, B. (2024). International Journal of Biological Macromolecules Comparative study of the structure and mechanical properties of starch aerogels fabricated from air-classified and isolated pulse starches. International Journal of Biological Macromolecules, 257(P1), 128478. https://doi.org/10.1016/j.ijbiomac.2023.128478 | spa |
dc.relation.references | Fontes-Candia, C., Erboz, E., Martínez-Abad, A., López-Rubio, A., & Martínez-Sanz, M. (2019). Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass. Food Hydrocolloids, 96(May), 151–160. https://doi.org/10.1016/j.foodhyd.2019.05.011 | spa |
dc.relation.references | Fornaris, G. (2020). Conjunto Tecnológico para la Producción de Melón “Cantaloupe” y “Honeydew” 1. Universidad de Puerto Rico, Publicación 155, 100. https://www.upr.edu/eea/wp-content/uploads/sites/17/2016/03/MELON-COSECHA-Y-MANEJO-POSTCOSECHA.pdf | spa |
dc.relation.references | Gaikwad, K. K., Singh, S., & Ajji, A. (2019). Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17(2), 609–628. https://doi.org/10.1007/s10311-018-0810-z | spa |
dc.relation.references | Gallardo, X. B. (2017). Universidad Nacional De San. Universidad Nacional de San Martín, 1, 1–125. https://repositorio.unsa.edu.pe/handle/UNSA/5720 | spa |
dc.relation.references | Gaona-Forero, A., Agudelo-Rodríguez, G., Herrera, A. O., & Castellanos, D. A. (2018). Modeling and simulation of an active packaging system with moisture adsorption for fresh produce. Application in ‘Hass’ avocado. Food Packaging and Shelf Life, 17(June), 187–195. https://doi.org/10.1016/j.fpsl.2018.07.005 | spa |
dc.relation.references | Garavito, J., Herrera, A. O., & Castellanos, D. A. (2021). A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (Physalis peruviana) fruits. Biosystems Engineering, 208, 152–163. https://doi.org/10.1016/j.biosystemseng.2021.05.015 | spa |
dc.relation.references | Garavito, J., Mendoza, S. M., & Castellanos, D. A. (2022). Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits. Journal of Food Engineering, 314(August 2021), 110761. https://doi.org/10.1016/j.jfoodeng.2021.110761 | spa |
dc.relation.references | Giacinti Baschetti, M., & Minelli, M. (2020). Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polymer Testing, 89(May), 106606. https://doi.org/10.1016/j.polymertesting.2020.106606 | spa |
dc.relation.references | Gidado, M. J., Gunny, A. A. N., Gopinath, S. C. B., Ali, A., Wongs-Aree, C., & Salleh, N. H. M. (2024). Challenges of postharvest water loss in fruits: Mechanisms, influencing factors, and effective control strategies – A comprehensive review. Journal of Agriculture and Food Research, 17(June), 101249. https://doi.org/10.1016/j.jafr.2024.101249 | spa |
dc.relation.references | González, A., Pérez, B., & Martínez, C. (2024). Análisis de grupos funcionales en materiales adsorbentes de humedad utilizando espectroscopia infrarroja por transformadas de Fourier. Journal of Material Science, 45(3), 235-247. https://doi.org/10.1016/j.jmat.2024.05.001 | spa |
dc.relation.references | Han, X., Ding, S., Zhu, L., & Wang, S. (2023). Energy & Buildings Preparation and characterization of flame-retardant and thermal insulating bio-based composite aerogels. Energy & Buildings, 278, 112656. https://doi.org/10.1016/j.enbuild.2022.112656 | spa |
dc.relation.references | Herrero, C. S. (2018). Desarrollo de nuevos aerogeles de aplicación industrial mediante la técnica de liofilización. | spa |
dc.relation.references | Hu, X., Zhang, S., Yang, B., Hao, M., Chen, Z., Liu, Y., Wang, X., & Yao, J. (2023). Preparation of ambient-dried multifunctional cellulose aerogel by freeze-linking technique. Chemical Engineering Journal, 477(July), 147044. https://doi.org/10.1016/j.cej.2023.147044 | spa |
dc.relation.references | Huang, Y., Zhou, T., He, S., Xiao, H., Dai, H., Yuan, B., Chen, X., & Yang, X. (2019). Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus. Applied Surface Science, 497(July), 143775. https://doi.org/10.1016/j.apsusc.2019.143775 | spa |
dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). (2008). NTC 832: Frutas frescas. Melones. Especificaciones. Instituto Colombiano de Normas Técnicas y Certificación. | spa |
dc.relation.references | Javier, H., & Pi, E. (2022). Evaluación de un removedor de oxígeno y un adsorbente de humedad en el desarrollo de un empaque activo para la preservación de lulo ( Solanum quitoense ) en fresco. | spa |
dc.relation.references | Koh, P. C., Noranizan, M. A., Nur Hanani, Z. A., Karim, R., & Rosli, S. Z. (2017). Application of edible coatings and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo L. reticulatus cv. Glamour). Postharvest Biology and Technology, 129, 64–78. https://doi.org/10.1016/j.postharvbio.2017.03.003 | spa |
dc.relation.references | Koontz, J. L. (2018). Special delivery : Controlled release of active ingredients from food and beverage packaging Italian Packaging Technology Award ( IPTA ) Paper Competition Special delivery : Controlled release of active ingredients from food and beverage packaging John L. February 2006. | spa |
dc.relation.references | Kim, H., Jeong, H., Jeon, J., & Bae, S. (2021). Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water, 6(2), 1-9. https://doi.org/10.3390/w8040127 | spa |
dc.relation.references | Kim, S. H., Park, J. I., Lee, S., An, H. R., Kim, H., Son, B., Seo, J., Kim, C. Y., Jeong, Y., Choi, K., Jeong, S., & Lee, H. U. (2024). Enhancing adsorption efficiency for environmentally-friendly removal of As(V) and Pb(II) using a biochar-iron oxide composite. Applied Surface Science, 667(April), 160348. https://doi.org/10.1016/j.apsusc.2024.160348 | spa |
dc.relation.references | Labuza, T. P., & Altunakar, B. (2020). Water Activity Prediction and Moisture Sorption Isotherms. Water Activity in Foods: Fundamentals and Applications, 161–205. https://doi.org/10.1002/9781118765982.ch7 | spa |
dc.relation.references | Li, G., Wang, J., & Sun, L. (2020). "Effect of salts on biological treatment of wastewater: A review." Environmental Science and Pollution Research, 27(13), 14564-14579. DOI: 10.1007/s11356-019-06743-6. | spa |
dc.relation.references | Liao, Q., Zhou, J., Zheng, Y., Xian, X., Deng, G., Zhang, C., Duan, X., Wu, Z., & Li, S. (2024). Adsorption kinetics of CH4 and CO2 on shale: Implication for CO2 sequestration. Separation and Purification Technology, 337(January), 126427. https://doi.org/10.1016/j.seppur.2024.126427 | spa |
dc.relation.references | Long, L. Y., Weng, Y. X., & Wang, Y. Z. (2018). Cellulose aerogels: Synthesis, applications, and prospects. Polymers, 8(6), 1–28. https://doi.org/10.3390/polym10060623 | spa |
dc.relation.references | Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017). https://doi.org/10.1098/rsta.2013.0309 | spa |
dc.relation.references | Mahajan, P. V., Rodrigues, F. A. S., Motel, A., & Leonhard, A. (2008). Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biology and Technology, 48(3), 408–414. https://doi.org/10.1016/j.postharvbio.2007.11.007 | spa |
dc.relation.references | Mahajan, P. V, & Sun, D. (2023). Postharvest Biology and Technology Modified atmosphere and moisture condensation in packaged fresh produce : Scientific efforts and commercial success. Postharvest Biology and Technology, 198(October 2022), 112235. https://doi.org/10.1016/j.postharvbio.2022.112235 | spa |
dc.relation.references | Malena Negro Norma la, E. Y., Valeria, M., Mónika, K., Cristina, R., Moira, F., & supuesto Ana De, por V. (2004). Caracterización de medios porosos y procesos percolativos y de transporte. | spa |
dc.relation.references | Manzocco, L., Mikkonen, K. S., & García-González, C. A. (2021). Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Structure, 28(December 2020). https://doi.org/10.1016/j.foostr.2021.100188 | spa |
dc.relation.references | Mirmoeini, S. S., Moradi, M., Tajik, H., Almasi, H., & Gama, F. M. (2023). Cellulose/Salep-based intelligent aerogel with red grape anthocyanins: Preparation, characterization and application in beef packaging. Food Chemistry, 425(May), 136493. https://doi.org/10.1016/j.foodchem.2023.136493 | spa |
dc.relation.references | Morais, P. L., Dias, N. S., & Prisco, H. T. (2020). Physiological aspects of melon (Cucumis melo L.) as a function of salinity. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10147-4 | spa |
dc.relation.references | N’Tsoukpoe, K. E., Rammelberg, H. U., Lele, A. F., Korhammer, K., Watts, B. A., Schmidt, T., & Ruck, W. K. L. (2015). A review on the use of calcium chloride in applied thermal engineering. Applied Thermal Engineering, 75, 513–531. https://doi.org/10.1016/j.applthermaleng.2014.09.047 | spa |
dc.relation.references | Nguyen, T. T. Van, Nguyen, Q. K., Thieu, N. Q., Nguyen, H. D. T., Ho, T. G. T., Do, B. L., Pham, T. T. P., Nguyen, T., & Ky Phuong Ha, H. (2023). Magnetite nanoparticles decorated on cellulose aerogel for p-nitrophenol Fenton degradation: Effects of the active phase loading, cross-linker agent and preparation method. Heliyon, 9(11), e22319. https://doi.org/10.1016/j.heliyon.2023.e22319 | spa |
dc.relation.references | Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73. https://doi.org/10.1016/j.foodres.2016.02.018 | spa |
dc.relation.references | Postharvest Technology Center. (2022). Melon, honeydew: Produce facts. University of California, Davis. https://postharvest.ucdavis.edu/es/produce-facts-sheets/melon-honeydew | spa |
dc.relation.references | Qin, H., Zhang, Y., Jiang, J., Wang, L., Song, M., Bi, R., Zhu, P., & Jiang, F. (2021). Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Ice-Templating Assembly. Advanced Functional Materials, 31(46), 1–9. https://doi.org/10.1002/adfm.202106269 | spa |
dc.relation.references | Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121(3), 313–327. https://doi.org/10.1016/j.ijfoodmicro.2007.11.010 | spa |
dc.relation.references | Reshetnikov, S., Budaev, Z., Livanova, A., Meshcheryakov, E., & Kurzina, I. (2019). Effect of particle size on adsorption kinetics of water vapor on porous aluminium oxide material. Journal of Physics: Conference Series, 1145(1). https://doi.org/10.1088/1742-6596/1145/1/012033 | spa |
dc.relation.references | Rux, G., Mahajan, P. V, Linke, M., Pant, A., Sängerlaub, S., Caleb, O. J., & Geyer, M. (2016). Humidity-Regulating Trays : Moisture Absorption Kinetics and Applications for Fresh Produce Packaging. Ivv. https://doi.org/10.1007/s11947-015-1671-0 | spa |
dc.relation.references | Şahin, İ., Özbakır, Y., İnönü, Z., Ulker, Z., & Erkey, C. (2018). Kinetics of supercritical drying of gels. Gels, 4(1). https://doi.org/10.3390/gels4010003 | spa |
dc.relation.references | Schneider, J., & Baiker, A. (2020). Effect of pore size distribution on adsorption capacity and performance of silica aerogels. Journal of Materials Science, 55(14), 5632-5644. https://doi.org/10.1007/s10853-020-04512-6 | spa |
dc.relation.references | Sequeiros, C., Sbirrazzuoli, N., & Al-Malaika, S. (2018). Thermal degradation and stabilization of cellulose: Mechanisms and analyses by TGA/FTIR, TGA/MS, and Py-GC/MS. Polymer Degradation and Stability, 150, 30-42. https://doi.org/10.1016/j.polymdegradstab.2018.01.019 | spa |
dc.relation.references | Silveira, A. C., Moreira, G. C., Artés, F., & Aguayo, E. (2015). Vanillin and cinnamic acid in aqueous solutions or in active modified packaging preserve the quality of fresh-cut Cantaloupe melon. Scientia Horticulturae, 192, 271–278. https://doi.org/10.1016/j.scienta.2015.06.029 | spa |
dc.relation.references | Soltani Firouz, M., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141(July 2020), 110113. https://doi.org/10.1016/j.foodres.2021.110113 | spa |
dc.relation.references | Song, X., Peng, W., Zhang, S., & Hu, Y. (2016). Thermal decomposition behavior of calcium chloride hexahydrate for heat storage. Journal of Thermal Analysis and Calorimetry, 123(3), 2475-2483. https://doi.org/10.1007/s10973-016-5374-9 | spa |
dc.relation.references | U.S. National Institute of Standards and Technology. (n.d.). N,N-Dimethylformamide. NIST Chemistry WebBook. https://webbook.nist.gov/cgi/cbook.cgi?ID=C10043524&Mask=80 | spa |
dc.relation.references | Wörmeyer, K., & Smirnova, I. (2013). Adsorption of CO2, moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels. Chemical Engineering Journal, 225, 350–357. https://doi.org/10.1016/j.cej.2013.02.022 | spa |
dc.relation.references | Yeng, L. C., Wahit, M. U., & Othman, N. (2015). Thermal and flexural properties of regenerated cellulose(RC)/poly(3- hydroxybutyrate)(PHB)biocomposites. Jurnal Teknologi, 75(11), 107–112. https://doi.org/10.11113/jt.v75.5338 | spa |
dc.relation.references | Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2018). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165–199. https://doi.org/10.1111/1541-4337.12322 | spa |
dc.relation.references | Zhang, X., Zhang, C., Feng, X., Yu, S., Li, X., Fang, Q., & Chen, G. (2019). Study on the moisture adsorption isotherms and different forms of water for lignite after hydrothermal and thermal upgrading. Fuel, 246(March), 340–348. https://doi.org/10.1016/j.fuel.2019.02.126 | spa |
dc.relation.references | Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie - International Edition, 57(26), 7580–7608. https://doi.org/10.1002/anie.201709014 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.proposal | Celulosa | spa |
dc.subject.proposal | Aerogel | spa |
dc.subject.proposal | Cinética de adsorción | spa |
dc.subject.proposal | Humedad relativa | spa |
dc.subject.proposal | Condensación | spa |
dc.subject.proposal | Melón | spa |
dc.subject.proposal | Vida útil | spa |
dc.subject.proposal | Cellulose | eng |
dc.subject.proposal | Adsorption kinetics | eng |
dc.subject.proposal | Relative humidity | eng |
dc.subject.proposal | Condensation | eng |
dc.subject.proposal | Shelf life | eng |
dc.subject.unesco | Adsorción de humedad | spa |
dc.subject.unesco | Conservación de alimentos | spa |
dc.subject.unesco | Empaque de alimentos | spa |
dc.title | Desarrollo de un aerogel adsorbente de humedad para uso en empaques de alimentos frescos | spa |
dc.title.translated | Development of a moisture-absorbing aerogel for use in fresh food packaging | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1106787527.2024.pdf
- Tamaño:
- 2.47 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: