Desarrollo de una línea de producción piloto de Flash Explosión para la obtención de puré de gulupa (Passiflora edulis Sims) y uchuva (Physallis peruviana L.)
dc.contributor.advisor | Cortés Rodríguez, Misael | |
dc.contributor.author | Arias Osorio, Claudia Janett | |
dc.contributor.orcid | Arias Osorio, Claudia [0000-0003-1803-0980] | spa |
dc.contributor.researchgroup | Innovaciones tecnológicas para agregar valor a recursos agrícolas (ITAV) Corporación Colombiana de Investigación Agropecuaria | spa |
dc.contributor.researchgroup | Grupo de Alimentos Funcionales (GAF) Universidad Nacional De Colombia | spa |
dc.date.accessioned | 2024-10-29T14:01:42Z | |
dc.date.available | 2024-10-29T14:01:42Z | |
dc.date.issued | 2022-11 | |
dc.description | Ilustraciones, gráficas, fotografías | spa |
dc.description.abstract | Los frutos de uchuva (Physallis peruviana L) y gulupa (Passiflora edulis Sims) son considerados como frutos tropicales, muy apreciados por el consumidor por su aroma intenso y sabor entre dulce y dulce-amargo. Estos frutos presentan un alto interés comercial, debido a su composición y potencial efecto benéfico sobre la salud. El objetivo fue, estandarizar las condiciones operativas de una línea de proceso de flash explosión para la obtención de purés de gulupa y uchuva. Se evaluó el impacto del tiempo de calentamiento y aplicación de presión de vacío sobre las propiedades fisicoquímicas, reológicas, sensoriales y microbiológicas y vida útil de los purés de uchuva y gulupa. En este contexto, la investigación se planteó en dos etapas: En la 1ª etapa se planteó la evaluación del proceso de Flash Explosión sobre los atributos de calidad fisicoquímico, microbiológico y sensorial. Los purés de uchuva y gulupa se obtuvieron utilizando una línea piloto Flash Explosión (FE), compuesta por una cámara cilíndrica de acero inoxidable unida por una válvula neumática que se acopla a una cámara de expansión de vacío donde se instala una despulpadora giratoria. El equipo se conecta a dos tanques asépticos para la recuperación de productos y coproductos. Los procesos FE se llevaron a cabo con 4 repeticiones. El análisis de datos se realizó mediante el software estadístico XLSTAT 2022.1.1 (Addinsoft) teniendo en cuenta las variables independientes: para el diseño experimental que se realizó para gulupa así: tiempos de calentamiento 80, 95 y 110s, proceso con presión de vacío 5 kPa y proceso sin presión de vacío (presión atmosférica de aproximadamente 80 kPa). Las variables dependientes evaluadas fueron: Mohos y levaduras, aerobios mesófilos, coliformes fecales, coliformes totales; rendimiento (Y) %, pH, L*, a*, b*, SS (g.L-1, β-carotenos (mg/100 g PF), WAIR (g/100 g AIR), AIR (g/100 g PF), SIS (g/100 g PF), índice de consistencia (K), comportamiento de flujo (n), Viscosidad a σ: 50 s-1 (mPa s), cianidina 3 glucósido (mg/100g PF). Se definió un mejor tratamiento para los purés de gulupa con las variables de proceso T: 90 ºC (110s) y presión de vacío a 5 kPa, con atributos de calidad: mohos y levaduras:0; coliformes fecales y totales: 0; aerobios mesófilos: 0; % rendimiento (Y) %: 47.29±5.95; pH: 3.15±0.04; acidez: 1.69±0.11; SS (g.L-1): 10.43±1.34; L*:23.82±2.24 ; a*:30.63±5.01; b*:21.61±5.66; WAIR (g/100g AIR); 14.48±1.61; AIR (g/100g PF): 5.49±0.08; SIS (g/100g PF):100±0.00; índice de consistencia (K): 10.69±0.11; comportamiento de flujo (n): 0.58±0.00; Viscosidad a σ: 50 s-1 (mPa•s): 2078.19±6.67; β-carotenos (mg/100g PF): 2.58±0.25; cianidina 3 glucósido (mg/100g PF): 20,0±5.01. Las variables independientes evaluadas para uchuva fueron: tiempos de calentamiento 30, 40 y 50s, proceso con presión de vacío 5 kPa y proceso sin presión de vacío (presión atmosférica de aproximadamente 80 kPa). Las variables dependientes evaluadas fueron: Mohos y levaduras, aerobios mesófilos, coliformes fecales, coliformes totales; rendimiento (Y) %, pH, L*, a*, b*, diferencias de color totales (ΔE*), índice de pardeamiento (BI), SS (g.L-1), ácido ascórbico (mg/100 g PF), β-carotenos (mg/100 g PF), se realizó simulación de transferencia de calor utilizando el programa COMSOL. Se definió un mejor tratamiento para los purés de uchuva con las variables de proceso: T:50 ºC (40s) con presión de vacío a 5 kPa, con atributos de calidad: mohos y levaduras: 0; coliformes fecales y totales: 0; aerobios mesófilos: 0; rendimiento(Y) %: 68,25±0,07; pH: 3,86±0,07; L*: 52,24±0,44; a*: 24,42±0,24; b*:65,35±1,31; SS (g.L-1): 13,10±1,22; Ácido ascórbico (mg/100g PF): 39,69±3,62); acidez:1.45±0.10; β-carotenos(mg/100gPF):2,89±0,02; BI:31.57±0.43b; ΔE*:4.93±0.51. En la segunda etapa se realizó la evaluación de la vida útil, a través de estudios de almacenamiento en tiempo real, considerando las variables independientes: temperatura (4 y 20 ºC) y tiempo (90 y 16 días respectivamente), para gulupa y uchuva, las variables dependientes fueron: mohos y levaduras, aerobios mesófilos, coliformes fecales y totales color (L, a*, b) y biocompuestos: uchuva (ácido ascórbico y β- caroteno) y gulupa (β- caroteno y antocianinas). Las variables dependientes se determinaron para 20 °C durante16 días y con tiempos de control cada 8 días; mientras que, para 4°C se determinaron durante 90 días y tiempos de control cada 30 días hasta el día 60 y después cada 15 días hasta el día 90. Para gulupa se realizó una evaluación general de la calidad utilizando una escala hedónica de 9 puntos. La vida útil de los purés de gulupa y de uchuva en función de la calidad nutricional, sensorial y microbiológica, se extendió hasta 90 días a temperatura de refrigeración. Estos resultados demuestran que el proceso FE, permite obtener purés de gulupa y de uchuva de alta calidad y con una vida útil promedio de tres meses a temperatura de refrigeración comercial. (Tomado de la fuente) | spa |
dc.description.abstract | Cape gooseberry (Physallis peruviana L) and gulupa (Passiflora edulis Sims) fruits are considered tropical fruits, highly appreciated by consumers for their intense aroma and taste between sweet and sweet-bitter. These fruits have a high commercial interest, due to their composition and potential beneficial effect on health. The objective was to standardize the operating conditions of a flash explosion process line to obtain gulupa and cape gooseberry purees. The impact of heating time and application of vacuum pressure on the physicochemical, rheological, sensory and microbiological properties and shelf life of cape gooseberry and gulupa purees was evaluated. In this context, the research was planned in two stages: In the 1 stage, the evaluation of the Flash Explosion process was proposed on the physicochemical, microbiological and sensory quality attributes. Cape gooseberry and gulupa purées were obtained using a Flash Explosion (FE) pilot line, composed of a cylindrical stainless steel chamber connected by a pneumatic valve that is coupled to a vacuum expansion chamber where a rotating pulper is installed. The equipment is connected to two aseptic tanks for the recovery of products and co-products. The FE processes were carried out with 4 repetitions. The data analysis was carried out using the statistical software XLSTAT 2022.1.1 (Addinsoft) considering the independent variables: for the experimental design of gulupa as follows: heating times 80, 95 and 110s, process with vacuum pressure 5 kPa and process without vacuum pressure (atmospheric pressure of about 80 kPa). The dependent variables evaluated were: molds and yeasts, mesophilic aerobes, fecal coliforms, total coliforms; yield (Y) %, pH, L*, a*, b*, SS (g.L-1, β-carotenes (mg/100 g FW), WAIR (g/100 g AIR), AIR (g/100 g FW ), SIS (g/100 g FW), consistency index (K), flow behavior (n), Viscosity at σ: 50 s-1 (mPa s), cyanidin 3 glucoside (mg/100g FW). A better treatment was defined for the gulupa purées with the process variables: T: 90 ºC (110s) with vacuum pressure at 5 kPa, with quality attributes: molds and yeasts: 0; fecal and total coliforms: 0; mesophilic aerobes: 0; % yield (Y )%: 47.29±5.95, pH: 3.15±0.04; acidity: 1.69±0.11; SS (g.L-1): 10.43±1.34; L*:23.82±2.24 ; a*:30.63±5.01; b*:21.61±5.66; WAIR (g/100g AIR); 14.48±1.61; AIR (g/100g FW): 5.49±0.08; SIS (g/100g FW):100±0.00; consistency index (K): 10.69±0.11; flow behavior (n): 0.58±0.00; Viscosity at σ: 50 s-1 (mPa•s): 2078.19±6.67; β-carotene (mg/100g FW): 2.58±0.25; cyanidin 3 glucoside (mg/100g FW): 20.0±5.01. The independent variables evaluated for cape gooseberry were: heating times 30, 40 and 50s, process with vacuum pressure 5 kPa and process without vacuum pressure (atmospheric pressure of approximately 80 kPa). The dependent variables evaluated were: molds and yeasts, mesophilic aerobes, fecal coliforms, total coliforms; yield (Y) %, pH, L*, a*, b*, total color differences (ΔE*), browning index (BI), SS (g.L-1), ascorbic acid (mg/100 g FW), β-carotene (mg/100 g FW), heat transfer simulation was performed using the COMSOL program. A better treatment was defined for cape gooseberry purees with the process variables: T: 50 ºC (40s) with vacuum pressure at 5 kPa, with quality attributes: molds and yeasts: 0; fecal and total coliforms: 0; mesophilic aerobes: 0; yield(Y)%: 68.25±0.07; pH: 3.86±0.07; L*: 52.24±0.44; a*: 24.42±0.24; b*:65.35±1.31; SS (g.L-1): 13.10±1.22; Ascorbic acid (mg/100g FW): 39.69±3.62); acidity:1.45±0.10; β-carotene(mg/100gFW):2.89±0.02; BI:31.57±0.43b; ΔE*:4.93±0.51. In the second stage, the evaluation of the useful life was carried out, through real-time storage studies, considering the independent variables: temperature (4 and 20 ºC) and time (90 and 16 days, respectively), for gulupa and cape gooseberry, the dependent variables were: molds and yeasts, mesophilic aerobes, fecal coliforms and total color (L, a*, b) and bio compounds: cape gooseberry (ascorbic acid and β-carotene) and gulupa (β-carotene and anthocyanins). The dependent variables were determined for 20 °C for 16 days and with control times every 8 days; while, for 4°C, they were determined for 90 days and control times every 30 days until day 60 and then every 15 days until day 90. For gulupa, a general quality evaluation was carried out using a 9-point hedonic scale. The shelf life of the gulupa and cape gooseberry purées, depending on the nutritional, sensory and microbiological quality, was extended up to 90 days at refrigeration temperature. These results demonstrate that the FE process allows obtaining high-quality gulupa and cape gooseberry purées with an average shelf life of three months at commercial refrigeration temperature. | eng |
dc.description.curriculararea | Agro Ingeniería Y Alimentos.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Ciencia y Tecnología de los alimentos | spa |
dc.description.researcharea | Investigación y desarrollo | spa |
dc.description.sponsorship | Agrojar | spa |
dc.description.sponsorship | CARIBBEAN EXOTICS | spa |
dc.format.extent | 73 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87093 | |
dc.language.iso | spa | spa |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | AOAC. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005 | spa |
dc.relation.references | Agrónomo, I., & Lasprilla, D. M. (2011). Estado Actual De Fruticultura Colombiana Y Perspectivas Para Su Desarrollo 1 Actual State of Colombian Pomology and Prospects for Its Development. Rev. Bras. Frutic, 199–205 | spa |
dc.relation.references | Al-Ghamdi, S., Sonar, C. R., Patel, J., Albahr, Z., & Sablani, S. S. (2020). High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: Microbial safety, nutrient, quality, and packaging evaluation. Food Control, 114. https://doi.org/10.1016/j.foodcont.2020.107233 | spa |
dc.relation.references | Allaf, T.; Allaf, K. Instant Controlled Pressure Drop (D.I.C.) in Food Processing. From Fundamental to Industrial Applications; Springer: New York, NY, USA, 2014; pp. 3–57. | spa |
dc.relation.references | Arias, C., Rodríguez, P., Cortés, M., Soto, I., Quintero, J., & Vaillant, F. (2022). Innovative Process Coupling Short Steam Blanching with Vacuum Flash-Expansion Produces in One Single Stage High-Quality Purple Passion Fruit Smoothies. Foods, 11(6), 832. https://doi.org/10.3390/foods11060832. | spa |
dc.relation.references | Baena Aristizabal, C. M. (2015). Vectorización del extracto de Physalis peruviana L. en nuevos sistemas de liberación de uso farmacéutico. 49–71 | spa |
dc.relation.references | Ballesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada-Alfonso, F., Cifuentes, A., & Valdés, A. (2019). Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J. Funct. Foods, 63(June), 103567. https://doi.org/10.1016/j.jff.2019.103567 | spa |
dc.relation.references | Boschetti, S., Cilla, A., García-Llatas, G., Gilabert, V., Boix, R., & Alegría, A. (2013). Kinetics of ascorbic acid degradation in fruit-based infant foods during storage. J. Food Eng., 116(2), 298–303. https://doi.org/10.1016/j.jfoodeng.2012.12.003 | spa |
dc.relation.references | Brat, P., Olle, D., Reynes, M., Cogat, P.-O., & Brillouet, J.-M. (2001). Preparation of passion fruit puree by flash vacuum-expansion. J. Food Sci., 66(4), 542–547. https://doi.org/10.1111/j.1365-2621.2001.tb04599.x | spa |
dc.relation.references | Brito, B., Rodríguez, M., Samaniego, I., Jaramillo, M. I., & Vaillant, F. (2008). Characterising polysaccharides in cherimoya (Annona cherimola Mill.) purée and their enzymatic liquefaction. European Food Research and Technology, 226(3), 355–361. https://doi.org/10.1007/s00217-006-0545-0 | spa |
dc.relation.references | Buera, M. P., Lozano, R. D., & Petriella, C. (1986). Definition of colour in the non enzymatic browning process. Die Farbe, 32(33), 318–322. https://bit.ly/3ypwGLi | spa |
dc.relation.references | Castro, A., Rodríguez, L., & Vargas, E. (2008). Secado de uchuva (Physalis peruviana L.) por aire caliente con pretratamiento de osmodeshidratación. Vitae, 15(2), 226–231. https://bit.ly/3kWhAEU | spa |
dc.relation.references | Castro Sánchez, A. M., Puentes Montañez, G. A., & Botía Rodríguez, Y. (2014). Alternativas de procesamiento de uchuva (Physalis peruviana L.) para el aprovechamiento de frutos no aptos para la comercialización en fresco. Revista de Investigación Agraria y Ambiental, 5(1), 121. https://doi.org/10.22490/21456453.939 | spa |
dc.relation.references | CELY, J. A. B., RODRÍGUEZ, F. E., ALMARIO, C. G., & MENESES, L. S. B. (2015). Variabilidad genética de parentales y poblaciones F1 inter e intraespecíficas de Physalis peruviana L. y P. floridana Rydb. Revista Brasileira de Fruticultura, 37(1), 179–192. https://doi.org/10.1590/0100-2945-002/14 | spa |
dc.relation.references | Codex Alimentarius. (2019). Programa Conjunto FAO/OMS sobre Normas Alimentarias Comité del Codex sobre Aditivos Alimentarios. Journal of Chemical Information and Modeling, 53(9), 1689–1699 | spa |
dc.relation.references | Cortés Díaz, G. M., Prieto Suárez, G. A., & Rozo Nuñez, W. E. (2015). Bromatological and physicochemical characterization of Physalis peruviana L. and its potential as a nutraceutic food. Ciencia En Desarrollo, 20(1), 87–97 | spa |
dc.relation.references | DNP. (2014). Propuesta para desarrollar un modelo eficiente de comercialización y distribución de productos. Documento Técnico Para La Misión Para La Transformación Del Campo, 61 | spa |
dc.relation.references | dos Reis, L. C. R., Facco, E. M. P., Salvador, M., Flôres, S. H., & de Oliveira Rios, A. (2018). Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. Journal of Food Science and Technology, 55(7), 2679–2691. https://doi.org/10.1007/s13197-018-3190-2 | spa |
dc.relation.references | Ekpunobi, U. E., Chijioke Ukatu, S., Ngene, B. O., Thankgod Onyema, C., Ofora, P. U., Uche, E., Ekpunobi, S., Chijioke Ukatu, B. O., Ngene, C., Thankgod Onyema, P., & Uche, O. (2014). Investigation of the thermal properties of selected fruits and vegetables. Am. J. Sci. Technol., 1(5), 293–297. http://www.aascit.org/journal/ajst | spa |
dc.relation.references | Enartis USA. (2015). FLASH DÉTENTE Recommendations for color stabilization in red wines produced by flash détente (Issue December) | spa |
dc.relation.references | Etzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chem., 245, 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120 | spa |
dc.relation.references | Ferrari, G., Maresca, P., & Ciccarone, R. (2010). The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice. J. Food Eng. 100(2), 245–253. https://doi.org/10.1016/j.jfoodeng.2010.04.006 | spa |
dc.relation.references | Franco, G., Cartagena V, J. R., Correa L, C. G., Rojano, C. B., & Piedrahita C, A. M. (2014). Antioxidant activity of passiflora edulis sims (Purple passion fruit) juice in the postharvest period. Revista Cubana de Plantas Medicinales, 19(3), 154–166 | spa |
dc.relation.references | Gallón Bedoya, M., Eraso Grisales, S. K., & Cortés Rodríguez, M. (2021). Avances tecnológicos en el proceso de transformación de la uchuva: una revisión. Revista Facultad de Ciencias Básicas, 16(1), 7–18. https://doi.org/10.18359/rfcb.5019 | spa |
dc.relation.references | García-Villalba, R., Espín, J. C., Aaby, K., Alasalvar, C., Heinonen, M., Jacobs, G., Voorspoels, S., Koivumäki, T., Kroon, P. A., Pelvan, E., Saha, S., & Tomás-Barberán, F. A. (2015). Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. Journal of Agricultural and Food Chemistry, 63(29), 6555–6566. https://doi.org/10.1021/acs.jafc.5b02062 | spa |
dc.relation.references | Ghada, B., Pereira, E., Pinela, J., Prieto, M. A., Pereira, C., Calhelha, R. C., Stojković, D., & Sok, M. (2020). Recovery of anthocyanins from passion fruit epicarp for food colorants: Extraction process optimization and evaluation of bioactive properties. Molecules, 25(3203), 2–14. https://doi.org/10.3390/molecules25143203 | spa |
dc.relation.references | Granados Perez, W., & Lara Prado, L. (2018). Indicadores e instrumentos mayo - junio 2018 indicadores generales. Ministerio de Agricultura, 20 | spa |
dc.relation.references | Gutiérrez Valencia, T. M., Hoyos Saavedra, O. L., & Cuervo Ochoa, G. (2016). Estudio cinético de la degradación térmica de trans-x-caroteno en uchuva. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(1), 126. https://doi.org/10.18684/bsaa(14)126-134 | spa |
dc.relation.references | Hamoud-Agha, M. M., & Allaf, K. (2020). Instant controlled pressure drop (DIC) technology in food preservation: Fundamental and industrial applications. In S. A. Socaci, A. C. Fărcaș, J. C. Laguerre, & T. Aussenac (Eds.), Food preservation and waste exploitation (pp. 5–24). IntechOpen: London, UK | spa |
dc.relation.references | Hidayat, D. D., Luthfiyanti, R., Iwansyah, A. C., Herminiati, A., Rahman, T., Rahman, N., & Andriansyah, R. (2021). Identification and evaluation of physical and mechanical properties of Physalis peruviana L. IOP Conference Series: Earth and Environmental Science, 672(1). https://doi.org/10.1088/1755-1315/672/1/012056 | spa |
dc.relation.references | Hou, X., Sun, F., Yan, D., Xu, H., Dong, Z., Li, Q., & Yang, Y. (2014). Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. Journal of Cleaner Production, 83, 454–462. https://doi.org/10.1016/j.jclepro.2014.07.018 | spa |
dc.relation.references | Huang, W., Bi, X., Zhang, X., Liao, X., Hu, X., & Wu, J. (2013). Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol., 18, 74–82. https://doi.org/10.1016/j.ifset.2013.01.001 | spa |
dc.relation.references | ICONTEC. (1999). Frutas frescas. Uchuva: especificaciones en Norma Técnica Colombiana 4580 | spa |
dc.relation.references | ISO 4121. (2003). Sensory analysis—Guidelines for the use of quantitative response scales (2nd ed.). Technical Committee, ISO/TC 34/SC 12 Sensory Analysis: Geneva, Switzerland | spa |
dc.relation.references | ISO 8589:2007/AMD 1. (2014). Sensory analysis—General guidance for the design of test rooms—Amendment 1 (2nd ed.). Technical Committee, ISO/TC 34/SC 12 Sensory Analysis: Geneva, Switzerland | spa |
dc.relation.references | Jiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912–1918. https://doi.org/10.1016/j.foodres.2010.11.007 | spa |
dc.relation.references | Joaquín, R., Costa, D. A., Fernando, P., Gómez, M., Eliecer, J., & Díaz, R. (2022). su matriz y su firma de maduración : una revisión matrix and ripening signature : a review. 19(1), 15–27 | spa |
dc.relation.references | KWOK, S. C. M., CHAN, H. T., NAKAYAMA, T. O. M., & BREKKE, J. E. (1974). Passion Fruit Starch and Effect on Juice Viscosity. Journal of Food Science, 39(3), 431–433. https://doi.org/10.1111/j.1365-2621.1974.tb02918.x | spa |
dc.relation.references | Ladha-Sabur, A., Bakalis, S., Fryer, P. J., & Lopez-Quiroga, E. (2019). Mapping energy consumption in food manufacturing. Trends Food Sci. Technol, 86(2019), 270–280. https://doi.org/10.1016/j.tifs.2019.02.034 | spa |
dc.relation.references | Lee, K., Eun, J., & Hwang, J. (2016). Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Sci. Biotechnol., 25(5), 1345–1351. https://doi.org/10.1007/s10068-016-0211-7 | spa |
dc.relation.references | Magán, Á. C. (2019). Evaluación de las nuevas tecnologías en el desarrollo de productos cárnicos saludables. Universidad Politecnica de Madrid, 10 | spa |
dc.relation.references | Martinez Giron, J., Figueroa Sepúlveda, K., & Castillo Robles, N. Z. (2021). Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(2), 271–285. https://doi.org/10.18684/bsaa.v19.n2.2021.1772 | spa |
dc.relation.references | Martínez-Meza, Y., Pérez-Jiménez, J., Rocha-Guzmán, N. E., Rodríguez-García, M. E., Alonzo-Macías, M., & Reynoso-Camacho, R. (2021). Modification on the polyphenols and dietary fiber content of grape pomace by instant controlled pressure drop. Food Chemistry, 360(May). https://doi.org/10.1016/j.foodchem.2021.130035 | spa |
dc.relation.references | Mazen Hamoud-Agha, M., & Allaf, K. (2020). Instant Controlled Pressure Drop (DIC) Technology in Food Preservation: Fundamental and Industrial Applications. Food Preservation and Waste Exploitation, February. https://doi.org/10.5772/intechopen.83439 | spa |
dc.relation.references | Mazorra, M. F. (2003). Análisis sobre el desarrollo y la madurez fisiológica del fruto de la uchuva ( Physalis peruviana L .) en la zona de Sumapaz ( Cundinamarca ) 1 maturity in the Sumapaz area ( Cundinamarca ) 1. Agronomia Colombiana, 21(3), 175–189 | spa |
dc.relation.references | Md Nor, S., & Ding, P. (2020). Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Res. Inter. 134(2020), 109208. https://doi.org/10.1016/j.foodres.2020.109208 | spa |
dc.relation.references | Medina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., & Gil-Izquierdo, A. (2017). Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chemistry, 229, 1–8. https://doi.org/10.1016/j.foodchem.2017.02.049 | spa |
dc.relation.references | Mertz, C., Cheynier, V., Günata, Z., & Brat, P. (2007). Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. Journal of Agricultural and Food Chemistry, 55(21), 8616–8624. https://doi.org/10.1021/jf071475d | spa |
dc.relation.references | Miladi, R., Frikha, N., & Gabsi, S. (2020). Jo ur na l P re of. Renewable Energy. https://doi.org/10.1016/j.renene.2020.10.136 | spa |
dc.relation.references | Mounir, S., Albitar, N., Allaf, K. (2014). DIC Decontamination of Solid and Powder Foodstuffs. In: Allaf, T., Allaf, K. (eds) Instant Controlled Pressure Drop (D.I.C.) in Food Processing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8669-5_5 | spa |
dc.relation.references | Mu, B., Xu, H., Li, W., Xu, L., & Yang, Y. (2019). Spinnability and rheological properties of globular soy protein solution. Food Hydrocolloids, 90(December 2018), 443–451. https://doi.org/10.1016/j.foodhyd.2018.12.049 | spa |
dc.relation.references | Oliveira, A., Pintado, M., & Almeida, D. P. F. (2012). Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT-Food Sci. Technol, 49(2), 202–207. https://doi.org/10.1016/j.lwt.2012.07.008 | spa |
dc.relation.references | Oliveira, S. F., Gonçalves, F. J. A., Correia, P. M. R., & Guiné, R. P. F. (2016). Physical properties of Physalis peruviana L. Open Agric., 1(1), 55–59. https://doi.org/10.1515/opag-2016-0007 | spa |
dc.relation.references | Olivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci. Technol, 57, 83–92. https://doi.org/10.1016/j.tifs.2016.09.009 | spa |
dc.relation.references | Olivares-Tenorio, M. L., Dekker, M., van Boekel, M. A. J. S., & Verkerk, R. (2017). Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana L.). LWT - Food Science and Technology, 80, 523–530. https://doi.org/10.1016/j.lwt.2017.03.027 | spa |
dc.relation.references | Olivares-Tenorio, M. L., Verkerk, R., Van Boekel, M. A. J. S., & Dekker, M. (2017). Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). J. Funct. Foods, 32, 46–57. https://doi.org/10.1016/j.jff.2017.02.021 | spa |
dc.relation.references | Ordóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem., 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114 | spa |
dc.relation.references | Orjuela Baquero, N. M., Alba, S. C., & Melgarejo, L. M. (2009). Manual de manejo poscosecha de la gulupa (Passiflora edulis Sims), 7–22 | spa |
dc.relation.references | Orjuella Barquero, N. M., Campos Alba, S., Sánchez Nieves, J., Melgarejo, L. M., & Hernández, M. S. (2011). Manual de manejo poscosecha de la gulupa (Passiflora edulis Sims). Poscosecha de La Gulupa (Passiflora Edulis Sims), April 2016, 7–22 | spa |
dc.relation.references | Ortiz Valero, J. M. (2013). Nuevas tecnologías para la elaboración de vinos tintos: Flash Detente. Universidad de la Rioja | spa |
dc.relation.references | Paranjpe, S. S., Ferruzzi, M., & Morgan, M. T. (2012a). Effect of a flash vacuum expansion process on grape juice yield and quality. LWT - Food Science and Technology, 48(2), 147–155. https://doi.org/10.1016/j.lwt.2012.02.021 | spa |
dc.relation.references | Paranjpe, S. S., Ferruzzi, M., & Morgan, M. T. (2012b). Effect of a flash vacuum expansion process on grape juice yield and quality. LWT - Food Science and Technology, 48(2), 147–155. https://doi.org/10.1016/j.lwt.2012.02.021 | spa |
dc.relation.references | Patras, A., Brunton, N. P., O’Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. In Trends in Food Science and Technology (Vol. 21, Issue 1, pp. 3–11). https://doi.org/10.1016/j.tifs.2009.07.004 | spa |
dc.relation.references | Pech-Almeida, J. L., Téllez-Pérez, C., Alonzo-Macías, M., Teresa-Martínez, G. D., Allaf, K., Allaf, T., & Cardador-Martínez, A. (2021). An overview on food applications of the instant controlled pressure-drop technology, an innovative high pressure-short time process. Molecules, 26(21). https://doi.org/10.3390/molecules26216519 | spa |
dc.relation.references | Procolombia. (2021). Cadena de agroalimentos 2021. 1–43 | spa |
dc.relation.references | Ramadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042 | spa |
dc.relation.references | Ramadan, M. F., & Moersel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J. Sci. Food and Agric., 87(3), 452–460. https://doi.org/10.1002/JSFA.2728 | spa |
dc.relation.references | Ranjbar, N., Eikani, M. H., Javanmard, M., & Golmohammad, F. (2016). Impact of instant controlled pressure drop on phenolic compounds extraction from pomegranate peel. Innovative Food Science and Emerging Technologies, 37, 177–183. https://doi.org/10.1016/j.ifset.2016.08.017 | spa |
dc.relation.references | Repo de Carrasco, R., & Encina, C. R. (2008). Determinación De La Capacidad Antioxidante Y Compuestos Bioactivos De Frutas Nativas Peruanas. Rev Soc Quím Perú, 2, 108–124. http://www.redalyc.org/articulo.oa?id=371937609004 | spa |
dc.relation.references | Rop, O., Mlcek, J., Jurikova, T., & Valsikova, M. (2012). Bioactive content and antioxidant capacity of Cape gooseberry fruit. Cent. Eur. J. Bio, 7(4), 672–679. https://doi.org/10.2478/s11535-012-0063-y | spa |
dc.relation.references | Sabogal-Palma, A. C., Chávez-Marín, J., Oliveros-Gómez, D. F., Murillo-Perea, E., & Méndez-Arteaga, J. J. (2016). Funcionalidades biológicas de Passiflora maliformis del Sur Macizo Colombiano. Bioagro, 28(1), 3–12 | spa |
dc.relation.references | Salazar, M. R., Jones, J. W., Chaves, B., & Cooman, A. (2008). A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Sci. Hortic. (Amsterdam), 115(2), 142–148. https://doi.org/10.1016/j.scienta.2007.08.015 | spa |
dc.relation.references | Semana, N., & Agro, N. D. E. L. (2022). No. 61 – Semana del 2 al 6 de mayo de 2022. 61 | spa |
dc.relation.references | Shi, M., Ali, M. M., He, Y., Ma, S., Rizwan, H. M., Yang, Q., Li, B., Lin, Z., & Chen, F. (2021). Flavonoids accumulation in fruit peel and expression profiling of related genes in purple (Passiflora edulis f. edulis) and yellow (Passiflora edulis f. flavicarpa) passion fruits. Plants, 10(11). https://doi.org/10.3390/plants10112240 | spa |
dc.relation.references | Soukoulis, C., Fisk, I. D., & Bohn, T. (2014). Ice cream as a vehicle for incorporating health-promoting ingredients: Conceptualization and overview of quality and storage stability. In Comprehensive Reviews in Food Science and Food Safety (Vol. 13, Issue 4, pp. 627–655). Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12083 | spa |
dc.relation.references | Stănciuc, N., & Râpeanu, G. (2019). Kinetics of phytochemicals degradation during processing | spa |
dc.relation.references | Storti, M. A. (2013). Modelado numérico de pasteurización artesanal de leche y jugos naturales. XXXII, 19–22 | spa |
dc.relation.references | Téllez-Pérez, C.; Alonzo-Macías, M.; Mounir, S.; Besombes, C.; Allaf, T.; Amami, E.; Allaf, K. ( 2019). Instant Controlled Pres-sure-Drop DIC as a Strategic Technology for Different Types of Natural Functional Foods. In Funcional Food; pp. 109–132 | spa |
dc.relation.references | thermal processing of fruits beverages. In Non-alcoholic Beverages: Volume 6. The Science of Beverages. https://doi.org/10.1016/B978-0-12-815270-6.00013-X | spa |
dc.relation.references | Tirado Armesto, D. F., Yacub Bermudez, B., Cajal Barrios, J. V., Murillo Fernández, L., Leal Betancour, R. F., Franco Plata, M. Y., Escobar Ismael, B. M., & Acevedo Correa, D. (2017). Pasteurizador de leche para la elaboración de suero costeño. Entre Ciencia e Ingeniería, 11(22), 36–41. https://doi.org/10.31908/19098367.3275 | spa |
dc.relation.references | Torres-Ossandón, M. J., Vega-Gálvez, A., López, J., Stucken, K., Romero, J., & Di Scala, K. (2018). Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). J. Supercrit. Fluids, 138(2018), 215–220. https://doi.org/10.1016/j.supflu.2018.05.005 | spa |
dc.relation.references | Umaña, E. (2010). Conservación de alimentos por frio. Fondo Multilateral de Inversiones, 4(6), 85–124 | spa |
dc.relation.references | Vaillant, F., Corrales-Agudelo, V., Moreno-Castellanos, N., Ángel-Martín, A., Henao-Rojas, J., Muñoz-Durango, K., & Poucheret, P. (2021). Intervention with Golden Berry Fruit (Physalis peruviana L.), Confirming Its Impact on Insulin-Associated. Nutrients, 13(9), 1–16. https://doi.org/10.3390/nu13093125 | spa |
dc.relation.references | Valdenegro, M., Henríquez, C., Lutz, M., Almonacid, S., & Simpson, R. (2010). Drum dried, lyophilized dried and traditional drying of goldenberry (Physalis peruviana L): effects in nutritional and healthy quality. International Conference on Food Innovation. Universidad Politécnica de Valencia. https://www.researchgate.net/publication/288353222 | spa |
dc.relation.references | Vargas-Ortiz, M., Rodríguez-Jimenes, G., Salgado-Cervantes, M., & Pallet, D. (2017). Minimally processed avocado through flash vacuum-expansion: Its effect in major physicochemical aspects of the puree and stability on storage. Journal of Food Processing and Preservation, 41(3), 1–10. https://doi.org/10.1111/jfpp.12988 | spa |
dc.relation.references | Vargas-Ortiz, M., Servent, A., Salgado-Cervantes, M., & Pallet, D. (2017). Stability of the lipid fraction of avocado puree obtained by flash vacuum-expansion process. Innovative Food Science and Emerging Technologies, 41, 109–116. https://doi.org/10.1016/j.ifset.2017.02.016 | spa |
dc.relation.references | Vega-Gálvez, A., López, J., Torres-Ossandón, M. J., Galotto, M. J., Puente-Díaz, L., Quispe-Fuentes, I., & Di Scala, K. (2014). High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT-Food Sci. Technol., 58(2), 519–526. https://doi.org/10.1016/j.lwt.2014.04.010 | spa |
dc.relation.references | Villarroel, D., Romero, L., Brito, M., & Yndira, A. (2014). Luz ultravioleta: Inactivación microbiana en frutas. Universidad de Oriente, Venezuela, 27(3), 454–469. https://doi.org/ISSN 1315-0162 | spa |
dc.relation.references | Vivanco, D., Ardiles, P., Castillo, D., & Puente, L. (2021). Tecnología emergente: Campo de pulsos eléctricos (PEF) para el tratamiento de alimentos y su efecto en el contenido de antioxidantes. Revista Chilena de Nutrición, 48(4), 609–619. https://doi.org/10.4067/s0717-75182021000400609 | spa |
dc.relation.references | Wu, D., & Sun, D. W. (2013). Colour measurements by computer vision for food quality control - A review. Trends Food Sci. Technol., 29(1), 5–20. https://doi.org/10.1016/j.tifs.2012.08 | spa |
dc.relation.references | Zhang, Y., Yang, R., Zhang, W., Hu, Z., & Zhao, W. (2017). Structural characterization and physicochemical properties of protein extracted from soybean meal assisted by steam flash-explosion with dilute acid soaking. Food Chemistry, 219, 48–53. https://doi.org/10.1016/j.foodchem.2016.09.079 | spa |
dc.relation.references | Zhu, B., Liu, X., Xie, C., Liu, W., Tang, C., & Lu, L. (2018). The flow behavior in as-extruded AZ31 magnesium alloy under impact loading. Journal of Magnesium and Alloys, 6(2), 180–188. https://doi.org/10.1016/j.jma.2018.02.005 | spa |
dc.relation.references | Zuluaga, J. M. (2015). Actores Determinantes Que Afectan La Rentabilidad De Las Empresas Exportadoras De Frutas Exóticas Hacia Europa. 1–27 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura | spa |
dc.subject.lemb | Frutas tropicales | |
dc.subject.lemb | Frutas - Mercadeo | |
dc.subject.lemb | Conservación de frutas | |
dc.subject.lemb | Productos de frutas tropicales | |
dc.subject.lemb | Innovaciones agrícolas | |
dc.subject.lemb | Tecnología de alimentos | |
dc.subject.proposal | Flash vacuum expansion | eng |
dc.subject.proposal | Functional foods | eng |
dc.subject.proposal | Innovative technology | eng |
dc.subject.proposal | microbial reduction process | eng |
dc.subject.proposal | Physallis peruviana L. | spa |
dc.subject.proposal | Passiflora edulis Sims | spa |
dc.subject.proposal | Flash explosión | spa |
dc.subject.proposal | Tecnología innovadora | spa |
dc.subject.proposal | Expansión instantánea bajo vacío | spa |
dc.subject.proposal | Flash explosion | eng |
dc.subject.proposal | Instant expansion under vacuum | eng |
dc.title | Desarrollo de una línea de producción piloto de Flash Explosión para la obtención de puré de gulupa (Passiflora edulis Sims) y uchuva (Physallis peruviana L.) | spa |
dc.title.translated | Development of a pilot production line for Flash Explosion for the extraction of purée from passion fruit (Passiflora edulis Sims) and gooseberry (Physalis peruviana L.) | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Valorización agroindustrial de frutas pequeñas con potencial funcional basado en altas innovaciones tecnológicas viables a pequeña y mediana escala, mediante estrategia de prototipado, simulación comercial y escalamiento empresarial | spa |
oaire.fundername | Corporación Colombiana de Investigación Agropecuaria | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 43618476.2022.pdf
- Tamaño:
- 1.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos