Desarrollo de una línea de producción piloto de Flash Explosión para la obtención de puré de gulupa (Passiflora edulis Sims) y uchuva (Physallis peruviana L.)

dc.contributor.advisorCortés Rodríguez, Misael
dc.contributor.authorArias Osorio, Claudia Janett
dc.contributor.orcidArias Osorio, Claudia [0000-0003-1803-0980]spa
dc.contributor.researchgroupInnovaciones tecnológicas para agregar valor a recursos agrícolas (ITAV) Corporación Colombiana de Investigación Agropecuariaspa
dc.contributor.researchgroupGrupo de Alimentos Funcionales (GAF) Universidad Nacional De Colombiaspa
dc.date.accessioned2024-10-29T14:01:42Z
dc.date.available2024-10-29T14:01:42Z
dc.date.issued2022-11
dc.descriptionIlustraciones, gráficas, fotografíasspa
dc.description.abstractLos frutos de uchuva (Physallis peruviana L) y gulupa (Passiflora edulis Sims) son considerados como frutos tropicales, muy apreciados por el consumidor por su aroma intenso y sabor entre dulce y dulce-amargo. Estos frutos presentan un alto interés comercial, debido a su composición y potencial efecto benéfico sobre la salud. El objetivo fue, estandarizar las condiciones operativas de una línea de proceso de flash explosión para la obtención de purés de gulupa y uchuva. Se evaluó el impacto del tiempo de calentamiento y aplicación de presión de vacío sobre las propiedades fisicoquímicas, reológicas, sensoriales y microbiológicas y vida útil de los purés de uchuva y gulupa. En este contexto, la investigación se planteó en dos etapas: En la 1ª etapa se planteó la evaluación del proceso de Flash Explosión sobre los atributos de calidad fisicoquímico, microbiológico y sensorial. Los purés de uchuva y gulupa se obtuvieron utilizando una línea piloto Flash Explosión (FE), compuesta por una cámara cilíndrica de acero inoxidable unida por una válvula neumática que se acopla a una cámara de expansión de vacío donde se instala una despulpadora giratoria. El equipo se conecta a dos tanques asépticos para la recuperación de productos y coproductos. Los procesos FE se llevaron a cabo con 4 repeticiones. El análisis de datos se realizó mediante el software estadístico XLSTAT 2022.1.1 (Addinsoft) teniendo en cuenta las variables independientes: para el diseño experimental que se realizó para gulupa así: tiempos de calentamiento 80, 95 y 110s, proceso con presión de vacío 5 kPa y proceso sin presión de vacío (presión atmosférica de aproximadamente 80 kPa). Las variables dependientes evaluadas fueron: Mohos y levaduras, aerobios mesófilos, coliformes fecales, coliformes totales; rendimiento (Y) %, pH, L*, a*, b*, SS (g.L-1, β-carotenos (mg/100 g PF), WAIR (g/100 g AIR), AIR (g/100 g PF), SIS (g/100 g PF), índice de consistencia (K), comportamiento de flujo (n), Viscosidad a σ: 50 s-1 (mPa s), cianidina 3 glucósido (mg/100g PF). Se definió un mejor tratamiento para los purés de gulupa con las variables de proceso T: 90 ºC (110s) y presión de vacío a 5 kPa, con atributos de calidad: mohos y levaduras:0; coliformes fecales y totales: 0; aerobios mesófilos: 0; % rendimiento (Y) %: 47.29±5.95; pH: 3.15±0.04; acidez: 1.69±0.11; SS (g.L-1): 10.43±1.34; L*:23.82±2.24 ; a*:30.63±5.01; b*:21.61±5.66; WAIR (g/100g AIR); 14.48±1.61; AIR (g/100g PF): 5.49±0.08; SIS (g/100g PF):100±0.00; índice de consistencia (K): 10.69±0.11; comportamiento de flujo (n): 0.58±0.00; Viscosidad a σ: 50 s-1 (mPa•s): 2078.19±6.67; β-carotenos (mg/100g PF): 2.58±0.25; cianidina 3 glucósido (mg/100g PF): 20,0±5.01. Las variables independientes evaluadas para uchuva fueron: tiempos de calentamiento 30, 40 y 50s, proceso con presión de vacío 5 kPa y proceso sin presión de vacío (presión atmosférica de aproximadamente 80 kPa). Las variables dependientes evaluadas fueron: Mohos y levaduras, aerobios mesófilos, coliformes fecales, coliformes totales; rendimiento (Y) %, pH, L*, a*, b*, diferencias de color totales (ΔE*), índice de pardeamiento (BI), SS (g.L-1), ácido ascórbico (mg/100 g PF), β-carotenos (mg/100 g PF), se realizó simulación de transferencia de calor utilizando el programa COMSOL. Se definió un mejor tratamiento para los purés de uchuva con las variables de proceso: T:50 ºC (40s) con presión de vacío a 5 kPa, con atributos de calidad: mohos y levaduras: 0; coliformes fecales y totales: 0; aerobios mesófilos: 0; rendimiento(Y) %: 68,25±0,07; pH: 3,86±0,07; L*: 52,24±0,44; a*: 24,42±0,24; b*:65,35±1,31; SS (g.L-1): 13,10±1,22; Ácido ascórbico (mg/100g PF): 39,69±3,62); acidez:1.45±0.10; β-carotenos(mg/100gPF):2,89±0,02; BI:31.57±0.43b; ΔE*:4.93±0.51. En la segunda etapa se realizó la evaluación de la vida útil, a través de estudios de almacenamiento en tiempo real, considerando las variables independientes: temperatura (4 y 20 ºC) y tiempo (90 y 16 días respectivamente), para gulupa y uchuva, las variables dependientes fueron: mohos y levaduras, aerobios mesófilos, coliformes fecales y totales color (L, a*, b) y biocompuestos: uchuva (ácido ascórbico y β- caroteno) y gulupa (β- caroteno y antocianinas). Las variables dependientes se determinaron para 20 °C durante16 días y con tiempos de control cada 8 días; mientras que, para 4°C se determinaron durante 90 días y tiempos de control cada 30 días hasta el día 60 y después cada 15 días hasta el día 90. Para gulupa se realizó una evaluación general de la calidad utilizando una escala hedónica de 9 puntos. La vida útil de los purés de gulupa y de uchuva en función de la calidad nutricional, sensorial y microbiológica, se extendió hasta 90 días a temperatura de refrigeración. Estos resultados demuestran que el proceso FE, permite obtener purés de gulupa y de uchuva de alta calidad y con una vida útil promedio de tres meses a temperatura de refrigeración comercial. (Tomado de la fuente)spa
dc.description.abstractCape gooseberry (Physallis peruviana L) and gulupa (Passiflora edulis Sims) fruits are considered tropical fruits, highly appreciated by consumers for their intense aroma and taste between sweet and sweet-bitter. These fruits have a high commercial interest, due to their composition and potential beneficial effect on health. The objective was to standardize the operating conditions of a flash explosion process line to obtain gulupa and cape gooseberry purees. The impact of heating time and application of vacuum pressure on the physicochemical, rheological, sensory and microbiological properties and shelf life of cape gooseberry and gulupa purees was evaluated. In this context, the research was planned in two stages: In the 1 stage, the evaluation of the Flash Explosion process was proposed on the physicochemical, microbiological and sensory quality attributes. Cape gooseberry and gulupa purées were obtained using a Flash Explosion (FE) pilot line, composed of a cylindrical stainless steel chamber connected by a pneumatic valve that is coupled to a vacuum expansion chamber where a rotating pulper is installed. The equipment is connected to two aseptic tanks for the recovery of products and co-products. The FE processes were carried out with 4 repetitions. The data analysis was carried out using the statistical software XLSTAT 2022.1.1 (Addinsoft) considering the independent variables: for the experimental design of gulupa as follows: heating times 80, 95 and 110s, process with vacuum pressure 5 kPa and process without vacuum pressure (atmospheric pressure of about 80 kPa). The dependent variables evaluated were: molds and yeasts, mesophilic aerobes, fecal coliforms, total coliforms; yield (Y) %, pH, L*, a*, b*, SS (g.L-1, β-carotenes (mg/100 g FW), WAIR (g/100 g AIR), AIR (g/100 g FW ), SIS (g/100 g FW), consistency index (K), flow behavior (n), Viscosity at σ: 50 s-1 (mPa s), cyanidin 3 glucoside (mg/100g FW). A better treatment was defined for the gulupa purées with the process variables: T: 90 ºC (110s) with vacuum pressure at 5 kPa, with quality attributes: molds and yeasts: 0; fecal and total coliforms: 0; mesophilic aerobes: 0; % yield (Y )%: 47.29±5.95, pH: 3.15±0.04; acidity: 1.69±0.11; SS (g.L-1): 10.43±1.34; L*:23.82±2.24 ; a*:30.63±5.01; b*:21.61±5.66; WAIR (g/100g AIR); 14.48±1.61; AIR (g/100g FW): 5.49±0.08; SIS (g/100g FW):100±0.00; consistency index (K): 10.69±0.11; flow behavior (n): 0.58±0.00; Viscosity at σ: 50 s-1 (mPa•s): 2078.19±6.67; β-carotene (mg/100g FW): 2.58±0.25; cyanidin 3 glucoside (mg/100g FW): 20.0±5.01. The independent variables evaluated for cape gooseberry were: heating times 30, 40 and 50s, process with vacuum pressure 5 kPa and process without vacuum pressure (atmospheric pressure of approximately 80 kPa). The dependent variables evaluated were: molds and yeasts, mesophilic aerobes, fecal coliforms, total coliforms; yield (Y) %, pH, L*, a*, b*, total color differences (ΔE*), browning index (BI), SS (g.L-1), ascorbic acid (mg/100 g FW), β-carotene (mg/100 g FW), heat transfer simulation was performed using the COMSOL program. A better treatment was defined for cape gooseberry purees with the process variables: T: 50 ºC (40s) with vacuum pressure at 5 kPa, with quality attributes: molds and yeasts: 0; fecal and total coliforms: 0; mesophilic aerobes: 0; yield(Y)%: 68.25±0.07; pH: 3.86±0.07; L*: 52.24±0.44; a*: 24.42±0.24; b*:65.35±1.31; SS (g.L-1): 13.10±1.22; Ascorbic acid (mg/100g FW): 39.69±3.62); acidity:1.45±0.10; β-carotene(mg/100gFW):2.89±0.02; BI:31.57±0.43b; ΔE*:4.93±0.51. In the second stage, the evaluation of the useful life was carried out, through real-time storage studies, considering the independent variables: temperature (4 and 20 ºC) and time (90 and 16 days, respectively), for gulupa and cape gooseberry, the dependent variables were: molds and yeasts, mesophilic aerobes, fecal coliforms and total color (L, a*, b) and bio compounds: cape gooseberry (ascorbic acid and β-carotene) and gulupa (β-carotene and anthocyanins). The dependent variables were determined for 20 °C for 16 days and with control times every 8 days; while, for 4°C, they were determined for 90 days and control times every 30 days until day 60 and then every 15 days until day 90. For gulupa, a general quality evaluation was carried out using a 9-point hedonic scale. The shelf life of the gulupa and cape gooseberry purées, depending on the nutritional, sensory and microbiological quality, was extended up to 90 days at refrigeration temperature. These results demonstrate that the FE process allows obtaining high-quality gulupa and cape gooseberry purées with an average shelf life of three months at commercial refrigeration temperature.eng
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaCiencia y Tecnología de los alimentosspa
dc.description.researchareaInvestigación y desarrollospa
dc.description.sponsorshipAgrojarspa
dc.description.sponsorshipCARIBBEAN EXOTICSspa
dc.format.extent73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87093
dc.language.isospaspa
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAOAC. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005spa
dc.relation.referencesAgrónomo, I., & Lasprilla, D. M. (2011). Estado Actual De Fruticultura Colombiana Y Perspectivas Para Su Desarrollo 1 Actual State of Colombian Pomology and Prospects for Its Development. Rev. Bras. Frutic, 199–205spa
dc.relation.referencesAl-Ghamdi, S., Sonar, C. R., Patel, J., Albahr, Z., & Sablani, S. S. (2020). High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: Microbial safety, nutrient, quality, and packaging evaluation. Food Control, 114. https://doi.org/10.1016/j.foodcont.2020.107233spa
dc.relation.referencesAllaf, T.; Allaf, K. Instant Controlled Pressure Drop (D.I.C.) in Food Processing. From Fundamental to Industrial Applications; Springer: New York, NY, USA, 2014; pp. 3–57.spa
dc.relation.referencesArias, C., Rodríguez, P., Cortés, M., Soto, I., Quintero, J., & Vaillant, F. (2022). Innovative Process Coupling Short Steam Blanching with Vacuum Flash-Expansion Produces in One Single Stage High-Quality Purple Passion Fruit Smoothies. Foods, 11(6), 832. https://doi.org/10.3390/foods11060832.spa
dc.relation.referencesBaena Aristizabal, C. M. (2015). Vectorización del extracto de Physalis peruviana L. en nuevos sistemas de liberación de uso farmacéutico. 49–71spa
dc.relation.referencesBallesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada-Alfonso, F., Cifuentes, A., & Valdés, A. (2019). Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J. Funct. Foods, 63(June), 103567. https://doi.org/10.1016/j.jff.2019.103567spa
dc.relation.referencesBoschetti, S., Cilla, A., García-Llatas, G., Gilabert, V., Boix, R., & Alegría, A. (2013). Kinetics of ascorbic acid degradation in fruit-based infant foods during storage. J. Food Eng., 116(2), 298–303. https://doi.org/10.1016/j.jfoodeng.2012.12.003spa
dc.relation.referencesBrat, P., Olle, D., Reynes, M., Cogat, P.-O., & Brillouet, J.-M. (2001). Preparation of passion fruit puree by flash vacuum-expansion. J. Food Sci., 66(4), 542–547. https://doi.org/10.1111/j.1365-2621.2001.tb04599.xspa
dc.relation.referencesBrito, B., Rodríguez, M., Samaniego, I., Jaramillo, M. I., & Vaillant, F. (2008). Characterising polysaccharides in cherimoya (Annona cherimola Mill.) purée and their enzymatic liquefaction. European Food Research and Technology, 226(3), 355–361. https://doi.org/10.1007/s00217-006-0545-0spa
dc.relation.referencesBuera, M. P., Lozano, R. D., & Petriella, C. (1986). Definition of colour in the non enzymatic browning process. Die Farbe, 32(33), 318–322. https://bit.ly/3ypwGLispa
dc.relation.referencesCastro, A., Rodríguez, L., & Vargas, E. (2008). Secado de uchuva (Physalis peruviana L.) por aire caliente con pretratamiento de osmodeshidratación. Vitae, 15(2), 226–231. https://bit.ly/3kWhAEUspa
dc.relation.referencesCastro Sánchez, A. M., Puentes Montañez, G. A., & Botía Rodríguez, Y. (2014). Alternativas de procesamiento de uchuva (Physalis peruviana L.) para el aprovechamiento de frutos no aptos para la comercialización en fresco. Revista de Investigación Agraria y Ambiental, 5(1), 121. https://doi.org/10.22490/21456453.939spa
dc.relation.referencesCELY, J. A. B., RODRÍGUEZ, F. E., ALMARIO, C. G., & MENESES, L. S. B. (2015). Variabilidad genética de parentales y poblaciones F1 inter e intraespecíficas de Physalis peruviana L. y P. floridana Rydb. Revista Brasileira de Fruticultura, 37(1), 179–192. https://doi.org/10.1590/0100-2945-002/14spa
dc.relation.referencesCodex Alimentarius. (2019). Programa Conjunto FAO/OMS sobre Normas Alimentarias Comité del Codex sobre Aditivos Alimentarios. Journal of Chemical Information and Modeling, 53(9), 1689–1699spa
dc.relation.referencesCortés Díaz, G. M., Prieto Suárez, G. A., & Rozo Nuñez, W. E. (2015). Bromatological and physicochemical characterization of Physalis peruviana L. and its potential as a nutraceutic food. Ciencia En Desarrollo, 20(1), 87–97spa
dc.relation.referencesDNP. (2014). Propuesta para desarrollar un modelo eficiente de comercialización y distribución de productos. Documento Técnico Para La Misión Para La Transformación Del Campo, 61spa
dc.relation.referencesdos Reis, L. C. R., Facco, E. M. P., Salvador, M., Flôres, S. H., & de Oliveira Rios, A. (2018). Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. Journal of Food Science and Technology, 55(7), 2679–2691. https://doi.org/10.1007/s13197-018-3190-2spa
dc.relation.referencesEkpunobi, U. E., Chijioke Ukatu, S., Ngene, B. O., Thankgod Onyema, C., Ofora, P. U., Uche, E., Ekpunobi, S., Chijioke Ukatu, B. O., Ngene, C., Thankgod Onyema, P., & Uche, O. (2014). Investigation of the thermal properties of selected fruits and vegetables. Am. J. Sci. Technol., 1(5), 293–297. http://www.aascit.org/journal/ajstspa
dc.relation.referencesEnartis USA. (2015). FLASH DÉTENTE Recommendations for color stabilization in red wines produced by flash détente (Issue December)spa
dc.relation.referencesEtzbach, L., Pfeiffer, A., Weber, F., & Schieber, A. (2018). Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chem., 245, 508–517. https://doi.org/10.1016/j.foodchem.2017.10.120spa
dc.relation.referencesFerrari, G., Maresca, P., & Ciccarone, R. (2010). The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice. J. Food Eng. 100(2), 245–253. https://doi.org/10.1016/j.jfoodeng.2010.04.006spa
dc.relation.referencesFranco, G., Cartagena V, J. R., Correa L, C. G., Rojano, C. B., & Piedrahita C, A. M. (2014). Antioxidant activity of passiflora edulis sims (Purple passion fruit) juice in the postharvest period. Revista Cubana de Plantas Medicinales, 19(3), 154–166spa
dc.relation.referencesGallón Bedoya, M., Eraso Grisales, S. K., & Cortés Rodríguez, M. (2021). Avances tecnológicos en el proceso de transformación de la uchuva: una revisión. Revista Facultad de Ciencias Básicas, 16(1), 7–18. https://doi.org/10.18359/rfcb.5019spa
dc.relation.referencesGarcía-Villalba, R., Espín, J. C., Aaby, K., Alasalvar, C., Heinonen, M., Jacobs, G., Voorspoels, S., Koivumäki, T., Kroon, P. A., Pelvan, E., Saha, S., & Tomás-Barberán, F. A. (2015). Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. Journal of Agricultural and Food Chemistry, 63(29), 6555–6566. https://doi.org/10.1021/acs.jafc.5b02062spa
dc.relation.referencesGhada, B., Pereira, E., Pinela, J., Prieto, M. A., Pereira, C., Calhelha, R. C., Stojković, D., & Sok, M. (2020). Recovery of anthocyanins from passion fruit epicarp for food colorants: Extraction process optimization and evaluation of bioactive properties. Molecules, 25(3203), 2–14. https://doi.org/10.3390/molecules25143203spa
dc.relation.referencesGranados Perez, W., & Lara Prado, L. (2018). Indicadores e instrumentos mayo - junio 2018 indicadores generales. Ministerio de Agricultura, 20spa
dc.relation.referencesGutiérrez Valencia, T. M., Hoyos Saavedra, O. L., & Cuervo Ochoa, G. (2016). Estudio cinético de la degradación térmica de trans-x-caroteno en uchuva. Biotecnología en el Sector Agropecuario y Agroindustrial, 14(1), 126. https://doi.org/10.18684/bsaa(14)126-134spa
dc.relation.referencesHamoud-Agha, M. M., & Allaf, K. (2020). Instant controlled pressure drop (DIC) technology in food preservation: Fundamental and industrial applications. In S. A. Socaci, A. C. Fărcaș, J. C. Laguerre, & T. Aussenac (Eds.), Food preservation and waste exploitation (pp. 5–24). IntechOpen: London, UKspa
dc.relation.referencesHidayat, D. D., Luthfiyanti, R., Iwansyah, A. C., Herminiati, A., Rahman, T., Rahman, N., & Andriansyah, R. (2021). Identification and evaluation of physical and mechanical properties of Physalis peruviana L. IOP Conference Series: Earth and Environmental Science, 672(1). https://doi.org/10.1088/1755-1315/672/1/012056spa
dc.relation.referencesHou, X., Sun, F., Yan, D., Xu, H., Dong, Z., Li, Q., & Yang, Y. (2014). Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. Journal of Cleaner Production, 83, 454–462. https://doi.org/10.1016/j.jclepro.2014.07.018spa
dc.relation.referencesHuang, W., Bi, X., Zhang, X., Liao, X., Hu, X., & Wu, J. (2013). Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol., 18, 74–82. https://doi.org/10.1016/j.ifset.2013.01.001spa
dc.relation.referencesICONTEC. (1999). Frutas frescas. Uchuva: especificaciones en Norma Técnica Colombiana 4580spa
dc.relation.referencesISO 4121. (2003). Sensory analysis—Guidelines for the use of quantitative response scales (2nd ed.). Technical Committee, ISO/TC 34/SC 12 Sensory Analysis: Geneva, Switzerlandspa
dc.relation.referencesISO 8589:2007/AMD 1. (2014). Sensory analysis—General guidance for the design of test rooms—Amendment 1 (2nd ed.). Technical Committee, ISO/TC 34/SC 12 Sensory Analysis: Geneva, Switzerlandspa
dc.relation.referencesJiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912–1918. https://doi.org/10.1016/j.foodres.2010.11.007spa
dc.relation.referencesJoaquín, R., Costa, D. A., Fernando, P., Gómez, M., Eliecer, J., & Díaz, R. (2022). su matriz y su firma de maduración : una revisión matrix and ripening signature : a review. 19(1), 15–27spa
dc.relation.referencesKWOK, S. C. M., CHAN, H. T., NAKAYAMA, T. O. M., & BREKKE, J. E. (1974). Passion Fruit Starch and Effect on Juice Viscosity. Journal of Food Science, 39(3), 431–433. https://doi.org/10.1111/j.1365-2621.1974.tb02918.xspa
dc.relation.referencesLadha-Sabur, A., Bakalis, S., Fryer, P. J., & Lopez-Quiroga, E. (2019). Mapping energy consumption in food manufacturing. Trends Food Sci. Technol, 86(2019), 270–280. https://doi.org/10.1016/j.tifs.2019.02.034spa
dc.relation.referencesLee, K., Eun, J., & Hwang, J. (2016). Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Sci. Biotechnol., 25(5), 1345–1351. https://doi.org/10.1007/s10068-016-0211-7spa
dc.relation.referencesMagán, Á. C. (2019). Evaluación de las nuevas tecnologías en el desarrollo de productos cárnicos saludables. Universidad Politecnica de Madrid, 10spa
dc.relation.referencesMartinez Giron, J., Figueroa Sepúlveda, K., & Castillo Robles, N. Z. (2021). Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(2), 271–285. https://doi.org/10.18684/bsaa.v19.n2.2021.1772spa
dc.relation.referencesMartínez-Meza, Y., Pérez-Jiménez, J., Rocha-Guzmán, N. E., Rodríguez-García, M. E., Alonzo-Macías, M., & Reynoso-Camacho, R. (2021). Modification on the polyphenols and dietary fiber content of grape pomace by instant controlled pressure drop. Food Chemistry, 360(May). https://doi.org/10.1016/j.foodchem.2021.130035spa
dc.relation.referencesMazen Hamoud-Agha, M., & Allaf, K. (2020). Instant Controlled Pressure Drop (DIC) Technology in Food Preservation: Fundamental and Industrial Applications. Food Preservation and Waste Exploitation, February. https://doi.org/10.5772/intechopen.83439spa
dc.relation.referencesMazorra, M. F. (2003). Análisis sobre el desarrollo y la madurez fisiológica del fruto de la uchuva ( Physalis peruviana L .) en la zona de Sumapaz ( Cundinamarca ) 1 maturity in the Sumapaz area ( Cundinamarca ) 1. Agronomia Colombiana, 21(3), 175–189spa
dc.relation.referencesMd Nor, S., & Ding, P. (2020). Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Res. Inter. 134(2020), 109208. https://doi.org/10.1016/j.foodres.2020.109208spa
dc.relation.referencesMedina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J. M., & Gil-Izquierdo, A. (2017). Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chemistry, 229, 1–8. https://doi.org/10.1016/j.foodchem.2017.02.049spa
dc.relation.referencesMertz, C., Cheynier, V., Günata, Z., & Brat, P. (2007). Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. Journal of Agricultural and Food Chemistry, 55(21), 8616–8624. https://doi.org/10.1021/jf071475dspa
dc.relation.referencesMiladi, R., Frikha, N., & Gabsi, S. (2020). Jo ur na l P re of. Renewable Energy. https://doi.org/10.1016/j.renene.2020.10.136spa
dc.relation.referencesMounir, S., Albitar, N., Allaf, K. (2014). DIC Decontamination of Solid and Powder Foodstuffs. In: Allaf, T., Allaf, K. (eds) Instant Controlled Pressure Drop (D.I.C.) in Food Processing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8669-5_5spa
dc.relation.referencesMu, B., Xu, H., Li, W., Xu, L., & Yang, Y. (2019). Spinnability and rheological properties of globular soy protein solution. Food Hydrocolloids, 90(December 2018), 443–451. https://doi.org/10.1016/j.foodhyd.2018.12.049spa
dc.relation.referencesOliveira, A., Pintado, M., & Almeida, D. P. F. (2012). Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT-Food Sci. Technol, 49(2), 202–207. https://doi.org/10.1016/j.lwt.2012.07.008spa
dc.relation.referencesOliveira, S. F., Gonçalves, F. J. A., Correia, P. M. R., & Guiné, R. P. F. (2016). Physical properties of Physalis peruviana L. Open Agric., 1(1), 55–59. https://doi.org/10.1515/opag-2016-0007spa
dc.relation.referencesOlivares-Tenorio, M. L., Dekker, M., Verkerk, R., & van Boekel, M. A. J. S. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci. Technol, 57, 83–92. https://doi.org/10.1016/j.tifs.2016.09.009spa
dc.relation.referencesOlivares-Tenorio, M. L., Dekker, M., van Boekel, M. A. J. S., & Verkerk, R. (2017). Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana L.). LWT - Food Science and Technology, 80, 523–530. https://doi.org/10.1016/j.lwt.2017.03.027spa
dc.relation.referencesOlivares-Tenorio, M. L., Verkerk, R., Van Boekel, M. A. J. S., & Dekker, M. (2017). Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). J. Funct. Foods, 32, 46–57. https://doi.org/10.1016/j.jff.2017.02.021spa
dc.relation.referencesOrdóñez-Santos, L. E., Martínez-Girón, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem., 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114spa
dc.relation.referencesOrjuela Baquero, N. M., Alba, S. C., & Melgarejo, L. M. (2009). Manual de manejo poscosecha de la gulupa (Passiflora edulis Sims), 7–22spa
dc.relation.referencesOrjuella Barquero, N. M., Campos Alba, S., Sánchez Nieves, J., Melgarejo, L. M., & Hernández, M. S. (2011). Manual de manejo poscosecha de la gulupa (Passiflora edulis Sims). Poscosecha de La Gulupa (Passiflora Edulis Sims), April 2016, 7–22spa
dc.relation.referencesOrtiz Valero, J. M. (2013). Nuevas tecnologías para la elaboración de vinos tintos: Flash Detente. Universidad de la Riojaspa
dc.relation.referencesParanjpe, S. S., Ferruzzi, M., & Morgan, M. T. (2012a). Effect of a flash vacuum expansion process on grape juice yield and quality. LWT - Food Science and Technology, 48(2), 147–155. https://doi.org/10.1016/j.lwt.2012.02.021spa
dc.relation.referencesParanjpe, S. S., Ferruzzi, M., & Morgan, M. T. (2012b). Effect of a flash vacuum expansion process on grape juice yield and quality. LWT - Food Science and Technology, 48(2), 147–155. https://doi.org/10.1016/j.lwt.2012.02.021spa
dc.relation.referencesPatras, A., Brunton, N. P., O’Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. In Trends in Food Science and Technology (Vol. 21, Issue 1, pp. 3–11). https://doi.org/10.1016/j.tifs.2009.07.004spa
dc.relation.referencesPech-Almeida, J. L., Téllez-Pérez, C., Alonzo-Macías, M., Teresa-Martínez, G. D., Allaf, K., Allaf, T., & Cardador-Martínez, A. (2021). An overview on food applications of the instant controlled pressure-drop technology, an innovative high pressure-short time process. Molecules, 26(21). https://doi.org/10.3390/molecules26216519spa
dc.relation.referencesProcolombia. (2021). Cadena de agroalimentos 2021. 1–43spa
dc.relation.referencesRamadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042spa
dc.relation.referencesRamadan, M. F., & Moersel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J. Sci. Food and Agric., 87(3), 452–460. https://doi.org/10.1002/JSFA.2728spa
dc.relation.referencesRanjbar, N., Eikani, M. H., Javanmard, M., & Golmohammad, F. (2016). Impact of instant controlled pressure drop on phenolic compounds extraction from pomegranate peel. Innovative Food Science and Emerging Technologies, 37, 177–183. https://doi.org/10.1016/j.ifset.2016.08.017spa
dc.relation.referencesRepo de Carrasco, R., & Encina, C. R. (2008). Determinación De La Capacidad Antioxidante Y Compuestos Bioactivos De Frutas Nativas Peruanas. Rev Soc Quím Perú, 2, 108–124. http://www.redalyc.org/articulo.oa?id=371937609004spa
dc.relation.referencesRop, O., Mlcek, J., Jurikova, T., & Valsikova, M. (2012). Bioactive content and antioxidant capacity of Cape gooseberry fruit. Cent. Eur. J. Bio, 7(4), 672–679. https://doi.org/10.2478/s11535-012-0063-yspa
dc.relation.referencesSabogal-Palma, A. C., Chávez-Marín, J., Oliveros-Gómez, D. F., Murillo-Perea, E., & Méndez-Arteaga, J. J. (2016). Funcionalidades biológicas de Passiflora maliformis del Sur Macizo Colombiano. Bioagro, 28(1), 3–12spa
dc.relation.referencesSalazar, M. R., Jones, J. W., Chaves, B., & Cooman, A. (2008). A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Sci. Hortic. (Amsterdam), 115(2), 142–148. https://doi.org/10.1016/j.scienta.2007.08.015spa
dc.relation.referencesSemana, N., & Agro, N. D. E. L. (2022). No. 61 – Semana del 2 al 6 de mayo de 2022. 61spa
dc.relation.referencesShi, M., Ali, M. M., He, Y., Ma, S., Rizwan, H. M., Yang, Q., Li, B., Lin, Z., & Chen, F. (2021). Flavonoids accumulation in fruit peel and expression profiling of related genes in purple (Passiflora edulis f. edulis) and yellow (Passiflora edulis f. flavicarpa) passion fruits. Plants, 10(11). https://doi.org/10.3390/plants10112240spa
dc.relation.referencesSoukoulis, C., Fisk, I. D., & Bohn, T. (2014). Ice cream as a vehicle for incorporating health-promoting ingredients: Conceptualization and overview of quality and storage stability. In Comprehensive Reviews in Food Science and Food Safety (Vol. 13, Issue 4, pp. 627–655). Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12083spa
dc.relation.referencesStănciuc, N., & Râpeanu, G. (2019). Kinetics of phytochemicals degradation during processingspa
dc.relation.referencesStorti, M. A. (2013). Modelado numérico de pasteurización artesanal de leche y jugos naturales. XXXII, 19–22spa
dc.relation.referencesTéllez-Pérez, C.; Alonzo-Macías, M.; Mounir, S.; Besombes, C.; Allaf, T.; Amami, E.; Allaf, K. ( 2019). Instant Controlled Pres-sure-Drop DIC as a Strategic Technology for Different Types of Natural Functional Foods. In Funcional Food; pp. 109–132spa
dc.relation.referencesthermal processing of fruits beverages. In Non-alcoholic Beverages: Volume 6. The Science of Beverages. https://doi.org/10.1016/B978-0-12-815270-6.00013-Xspa
dc.relation.referencesTirado Armesto, D. F., Yacub Bermudez, B., Cajal Barrios, J. V., Murillo Fernández, L., Leal Betancour, R. F., Franco Plata, M. Y., Escobar Ismael, B. M., & Acevedo Correa, D. (2017). Pasteurizador de leche para la elaboración de suero costeño. Entre Ciencia e Ingeniería, 11(22), 36–41. https://doi.org/10.31908/19098367.3275spa
dc.relation.referencesTorres-Ossandón, M. J., Vega-Gálvez, A., López, J., Stucken, K., Romero, J., & Di Scala, K. (2018). Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). J. Supercrit. Fluids, 138(2018), 215–220. https://doi.org/10.1016/j.supflu.2018.05.005spa
dc.relation.referencesUmaña, E. (2010). Conservación de alimentos por frio. Fondo Multilateral de Inversiones, 4(6), 85–124spa
dc.relation.referencesVaillant, F., Corrales-Agudelo, V., Moreno-Castellanos, N., Ángel-Martín, A., Henao-Rojas, J., Muñoz-Durango, K., & Poucheret, P. (2021). Intervention with Golden Berry Fruit (Physalis peruviana L.), Confirming Its Impact on Insulin-Associated. Nutrients, 13(9), 1–16. https://doi.org/10.3390/nu13093125spa
dc.relation.referencesValdenegro, M., Henríquez, C., Lutz, M., Almonacid, S., & Simpson, R. (2010). Drum dried, lyophilized dried and traditional drying of goldenberry (Physalis peruviana L): effects in nutritional and healthy quality. International Conference on Food Innovation. Universidad Politécnica de Valencia. https://www.researchgate.net/publication/288353222spa
dc.relation.referencesVargas-Ortiz, M., Rodríguez-Jimenes, G., Salgado-Cervantes, M., & Pallet, D. (2017). Minimally processed avocado through flash vacuum-expansion: Its effect in major physicochemical aspects of the puree and stability on storage. Journal of Food Processing and Preservation, 41(3), 1–10. https://doi.org/10.1111/jfpp.12988spa
dc.relation.referencesVargas-Ortiz, M., Servent, A., Salgado-Cervantes, M., & Pallet, D. (2017). Stability of the lipid fraction of avocado puree obtained by flash vacuum-expansion process. Innovative Food Science and Emerging Technologies, 41, 109–116. https://doi.org/10.1016/j.ifset.2017.02.016spa
dc.relation.referencesVega-Gálvez, A., López, J., Torres-Ossandón, M. J., Galotto, M. J., Puente-Díaz, L., Quispe-Fuentes, I., & Di Scala, K. (2014). High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT-Food Sci. Technol., 58(2), 519–526. https://doi.org/10.1016/j.lwt.2014.04.010spa
dc.relation.referencesVillarroel, D., Romero, L., Brito, M., & Yndira, A. (2014). Luz ultravioleta: Inactivación microbiana en frutas. Universidad de Oriente, Venezuela, 27(3), 454–469. https://doi.org/ISSN 1315-0162spa
dc.relation.referencesVivanco, D., Ardiles, P., Castillo, D., & Puente, L. (2021). Tecnología emergente: Campo de pulsos eléctricos (PEF) para el tratamiento de alimentos y su efecto en el contenido de antioxidantes. Revista Chilena de Nutrición, 48(4), 609–619. https://doi.org/10.4067/s0717-75182021000400609spa
dc.relation.referencesWu, D., & Sun, D. W. (2013). Colour measurements by computer vision for food quality control - A review. Trends Food Sci. Technol., 29(1), 5–20. https://doi.org/10.1016/j.tifs.2012.08spa
dc.relation.referencesZhang, Y., Yang, R., Zhang, W., Hu, Z., & Zhao, W. (2017). Structural characterization and physicochemical properties of protein extracted from soybean meal assisted by steam flash-explosion with dilute acid soaking. Food Chemistry, 219, 48–53. https://doi.org/10.1016/j.foodchem.2016.09.079spa
dc.relation.referencesZhu, B., Liu, X., Xie, C., Liu, W., Tang, C., & Lu, L. (2018). The flow behavior in as-extruded AZ31 magnesium alloy under impact loading. Journal of Magnesium and Alloys, 6(2), 180–188. https://doi.org/10.1016/j.jma.2018.02.005spa
dc.relation.referencesZuluaga, J. M. (2015). Actores Determinantes Que Afectan La Rentabilidad De Las Empresas Exportadoras De Frutas Exóticas Hacia Europa. 1–27spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silviculturaspa
dc.subject.lembFrutas tropicales
dc.subject.lembFrutas - Mercadeo
dc.subject.lembConservación de frutas
dc.subject.lembProductos de frutas tropicales
dc.subject.lembInnovaciones agrícolas
dc.subject.lembTecnología de alimentos
dc.subject.proposalFlash vacuum expansioneng
dc.subject.proposalFunctional foodseng
dc.subject.proposalInnovative technologyeng
dc.subject.proposalmicrobial reduction processeng
dc.subject.proposalPhysallis peruviana L.spa
dc.subject.proposalPassiflora edulis Simsspa
dc.subject.proposalFlash explosiónspa
dc.subject.proposalTecnología innovadoraspa
dc.subject.proposalExpansión instantánea bajo vacíospa
dc.subject.proposalFlash explosioneng
dc.subject.proposalInstant expansion under vacuumeng
dc.titleDesarrollo de una línea de producción piloto de Flash Explosión para la obtención de puré de gulupa (Passiflora edulis Sims) y uchuva (Physallis peruviana L.)spa
dc.title.translatedDevelopment of a pilot production line for Flash Explosion for the extraction of purée from passion fruit (Passiflora edulis Sims) and gooseberry (Physalis peruviana L.)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleValorización agroindustrial de frutas pequeñas con potencial funcional basado en altas innovaciones tecnológicas viables a pequeña y mediana escala, mediante estrategia de prototipado, simulación comercial y escalamiento empresarialspa
oaire.fundernameCorporación Colombiana de Investigación Agropecuariaspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43618476.2022.pdf
Tamaño:
1.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
licencia de autorización firmadas.pdf
Tamaño:
910.97 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia