Evaluación in vitro del efecto de estimulación eléctrica sobre condrocitos cultivados en un constructo tridimensional

dc.contributor.advisorVaca González, Juan Jairospa
dc.contributor.advisorGarzón-Alvarado, Diego A.spa
dc.contributor.authorSaiz Culma, Juan Joséspa
dc.contributor.researchgrouplaboratorio de Biomiméticos: Grupo de Mecanobiología de Órganos y Tejidosspa
dc.date.accessioned2024-07-17T00:32:14Z
dc.date.available2024-07-17T00:32:14Z
dc.date.issued2023
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractTreatment of degenerative pathologies of articular cartilage remains a clinical challenge. Biophysical stimuli such as electric fields appear to be a promising non-invasive tool for cartilage tissue restoration. In this in vitro study, the effects of capacitively coupled electric fields were evaluated with an alternating voltage of 50 V (corresponds to 7.7 mV/cm) and 100 V (corresponds to 8.7 mV/cm) with a frequency of 60 kHz during 21 days, on cultured chondrocytes in gelatin hydrogels. Cell quantification and glycosaminoglycan detection were measured from the stimulated and control samples. The results on day 7 showed a reduction in cell proliferation by 24.7% and 39.2% (p < 0.05) in the samples stimulated with electric fields of 7.7 mV /cm and 8.7 mV/cm, respectively. However, on day 7, in the samples stimulated with an electric field of 8.7 mV/cm, an increase of 35.7% (p < 0.05) was obtained with respect to the control in the production of glycosaminoglycans. In conclusion, the results indicate that electrical stimulation has an effect on the synthesis of important molecules that make up the extracellular matrix of hyaline cartilage, such as glycosaminoglycans, which allows to conclude that electric stimulation is a very promising tool to enhance articular cartilage tissue engineering outcomes in therapies that use hydrogels. (Texto tomado de la fuente)eng
dc.description.abstractEl tratamiento de las patologías degenerativas del cartílago hialino sigue siendo un desafío clínico. Los estímulos biofísicos como los campos eléctricos parecen ser una herramienta prometedora no invasiva para la restauración del tejido cartilaginoso. En este estudio in vitro, se evaluaron los efectos de los campos eléctricos acoplados capacitivamente con un voltaje en forma de onda sinusoidal de 50 V (corresponde a 7,7 mV/cm) y 100 V (corresponde a 8,7 mV/cm) con una frecuencia de 60 kHz durante 21 días, en condrocitos cultivados en hidrogeles de gelatina. A partir de las muestras estimuladas y controles, se llevaron a cabo mediciones cuantitativas de proliferación celular y detección de glicosaminoglicanos. Los resultados en el día 7, mostraron una reducción de la proliferación celular en un 24,7% y 39,2% (p < 0,05) en las muestras estimuladas con campos eléctricos de 7,7 mV/cm y 8,7 mV/cm, respectivamente. Sin embargo, en el día 7, en las muestras estimuladas con un campo eléctrico de 8,7 mV/cm, se evidenció un incremento de 35,7% (p < 0,05) con respecto al control en la producción de glicosaminoglicanos. En conclusión, los resultados indican que la estimulación eléctrica tiene un efecto en la síntesis de moléculas importantes que componen la matriz extracelular del cartílago hialino, tales como los glicosaminoglicanos, lo cual permite mejorar los tratamientos que se realizan en la actualidad en ingeniería de tejidos y medicina regenerativa con el fin de recuperar el tejido. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaIngeniería de Tejidosspa
dc.format.extentxiv, 58 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86500
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesBhosale A, Richardson J. Articular cartilage: structure, injuries and review of management. Br Med Bull 2008; 87: 77–95.spa
dc.relation.referencesAhmed T, Hincke M. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev 2010; 16: 305–329.spa
dc.relation.referencesBecerra J, Andrades J, Guerado E, et al. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev 2010; 16: 617–627.spa
dc.relation.referencesMackie E, Tatarczuch L, Mirams M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 2011; 211: 109–121.spa
dc.relation.referencesO’Conor C, Case N, Guilak F. Mechanical regulation of chondrogenesis. Stem Cell Res Ther 2013; 4: 61.spa
dc.relation.referencesBurdan F, Szumilo J, Korobowicz A, et al. Morphology and physiology of the epiphyseal growth plate. Folia Histochem Cytobiol 2009; 47: 5–16.spa
dc.relation.referencesKarsenty G, Kronenberg H, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009; 25: 629–648.spa
dc.relation.referencesQuintero M, Monfort J, Mitrovic D. Osteoartrosis: Biología, fosopatología, clínica y tratamiento. Primera. España: Médica Panamericana, 2009.spa
dc.relation.referencesSophia A, Bedi A, Rodeo S. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1: 461–468.spa
dc.relation.referencesMartin J, Buckwalter J. Articular Cartilage Biology. In: Doral MN (ed) Sports Injuries. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 685–692.spa
dc.relation.referencesHam A, Cormack D. Bone. In: Ham’s histology. Philadelphia, USA (1987): Lippincott, 2004.spa
dc.relation.referencesBallock R, O’Keefe R. The Biology of the Growth Plate. J Bone Jt Surg 2003; 85: 715–726.spa
dc.relation.referencesKandzierski G, Matuszewski Ł, Wójcik A. Shape of growth plate of proximal femur in children and its significance in the aetiology of slipped capital femoral epiphysis. Int Orthop 2012; 36: 2513–2520.spa
dc.relation.referencesAthanasiou K, Darling E, Hu JC. Articular Cartilage Tissue Engineering. Synth Lect Tissue Eng 2009; 1: 1–182.spa
dc.relation.referencesEyre D. Collagen of articular cartilage. - PubMed - NCBI. Arthritis Res Ther 2002; 4: 30–35.spa
dc.relation.referencesJohnson K, Zhu S, Tremblay MS, et al. A Stem Cell–Based Approach to Cartilage Repair. Science (80- ) 2012; 336: 717–721.spa
dc.relation.referencesChen F, Rousche K, Tuan R. Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Rev Rheumatol 2006; 2: 373–382.spa
dc.relation.referencesChen F, Thomas A, Hecht J, et al. Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J Biol Chem 2005; 280: 32655–32661.spa
dc.relation.referencesKronenberg H. Developmental regulation of the growth plate. Nature 2003; 423: 332–336.spa
dc.relation.referencesGarzón-Alvarado D, Roa M, Ramírez A. Factores que influyen en el crecimiento endocondral: experimentos y modelos. Rev Cuba Ortop y Traumatol 2008; 22: 1–10.spa
dc.relation.referencesAkiyama H, Chaboissier M, Martin J, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002; 16: 2813–2828.spa
dc.relation.referencesStricker S, Fundele R, Vortkamp A, et al. Role of Runx Genes in Chondrocyte Differentiation. Dev Biol 2002; 245: 95–108.spa
dc.relation.referencesSt-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13: 2072–2086.spa
dc.relation.referencesKronenberg H. PTHrP and skeletal development. Ann N Y Acad Sci 2006; 1068: 1–13.spa
dc.relation.referencesProvot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 2005; 328: 658–665.spa
dc.relation.referencesBrouwers J, van Donkelaar C, Sengers B, et al. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? J Biomech 2006; 39: 2774–2782.spa
dc.relation.referencesYang Y, Tan Y, Wong R, et al. The role of vascular endothelial growth factor in ossification. Int J Oral Sci 2012; 4: 64–68.spa
dc.relation.referencesMaes C, Carmeliet G. Vascular and Nonvascular Roles of VEGF in Bone Development. In: VEGF in Development. New York, NY: Springer New York, pp. 79–90.spa
dc.relation.referencesRabie A, Hagg U. Factors regulating mandibular condylar growth. Am J Orthod Dentofac Orthop 2002; 122: 401–409.spa
dc.relation.referencesCarreira A, Lojudice F, Halcsik E, et al. Bone Morphogenetic Proteins: Facts, Challenges, and Future Perspectives. J Dent Res 2014; 93: 335–345.spa
dc.relation.referencesZhou N, Li Q, Lin X, et al. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res 2016; 366: 101–111.spa
dc.relation.referencesCohen N, Foster R, Mow V. Composition and Dynamics of Articular Cartilage: Structure, Function, and Maintaining Healthy State. J Orthop Sport Phys Ther 1998; 28: 203–215.spa
dc.relation.referencesPoveda-Reyes S. Protein-based injectable hydrogels towards the regeneration of articular cartilage. Universitat Politècnica de València, 2016.spa
dc.relation.referencesMeyer U, Handschel J. Influence of Biomechanical Loads. In: Fundamentals of Tissue Engineering and Regenerative Medicine. 2009, pp. 705–717.spa
dc.relation.referencesWilliamson A, Chen A, Masuda K, et al. Tensile mechanical properties of bovine articular cartilage: Variations with growth and relationships to collagen network components. J Orthop Res 2006; 21: 872–880.spa
dc.relation.referencesElder B, Athanasiou K. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev 2009; 15: 43–53.spa
dc.relation.referencesSetton L, Tohyama H, Mow V. Swelling and Curling Behaviors of Articular Cartilage. J Biomech Eng 1998; 120: 355–361.spa
dc.relation.referencesMaroudas A, Bullough P. Permeability of Articular Cartilage. Nature 1968; 219: 1260–1261.spa
dc.relation.referencesMeng Q, An S, Damion R, et al. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage. J Mech Behav Biomed Mater 2017; 65: 439–453.spa
dc.relation.referencesLawless B, Sadeghi H, Temple D, et al. Viscoelasticity of articular cartilage: Analysing the effect of induced stress and the restraint of bone in a dynamic environment. J Mech Behav Biomed Mater 2017; 75: 293–301.spa
dc.relation.referencesLi L, Herzog W. The role of viscoelasticity of collagen fibers in articular cartilage: Theory and numerical formulation. Biorheology 2004; 41: 181–194.spa
dc.relation.referencesParra N, Garzón-Alvarado D. Phenomenology work setting for articular cartilage damage. Rev Cuba Ortop Traumatol 2009; 23: 1–28.spa
dc.relation.referencesLories R, Luyten F. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 2011; 7: 43–49.spa
dc.relation.referencesTemenoff J, Mikos A. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000; 21: 431–440.spa
dc.relation.referencesStemberger R, Kerschan-Schindl K. Osteoarthritis: physical medicine and rehabilitation—nonpharmacological management. Wiener Medizinische Wochenschrift 2013; 163: 228–235.spa
dc.relation.referencesGoldring M. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 2012; 4: 269–285.spa
dc.relation.referencesGoldring B, Goldring R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192: 230–237.spa
dc.relation.referencesMueller M, Tuan R. Anabolic/Catabolic Balance in Pathogenesis of Osteoarthritis: Identifying Molecular Targets. PM&R 2011; 3: 3–11.spa
dc.relation.referencesSeed S, Dunican K, Lynch A. Osteoarthritis: a review of treatment options. Geriatrics 2009; 64: 20–29.spa
dc.relation.referencesDiekman B, Guilak F. Stem cell-based therapies for osteoarthritis: challenges and opportunities. Curr Opin Rheumatol 2013; 25: 119–126.spa
dc.relation.referencesKuszel L, Trzeciak T, Richter M, et al. Osteoarthritis and telomere shortening. J Appl Genet 2014; 56: 169–176.spa
dc.relation.referencesEriksen E, Ringe J. Bone marrow lesions: a universal bone response to injury? Rheumatol Int 2012; 32: 575–584.spa
dc.relation.referencesGuevara J. Analysis of the mechanical environment within the growth plate during bone development: physiological and pathological implications. Pontificia Universidad Javeriana, 2015.spa
dc.relation.referencesBonafe L, Cormier-D, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet Part A 2015; 167: 2869–2892.spa
dc.relation.referencesCoutinho M, Lacerda L, Alves S. Glycosaminoglycan Storage Disorders: A Review. Biochem Res Int 2012; 1–16.spa
dc.relation.referencesMcAlindon T, Bannuru R, Sullivan M, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil 2014; 22: 363–388.spa
dc.relation.referencesŻylińska B, Silmanowicz P, Sobczyńska-Rak A, et al. Treatment of Articular Cartilage Defects: Focus on Tissue Engineering. In Vivo (Brooklyn) 2018; 32: 1289 LP – 1300.spa
dc.relation.referencesKnutsen G, Drogset JO, Engebretsen L, et al. A Randomized Multicenter Trial Comparing Autologous Chondrocyte Implantation with Microfracture: Long-Term Follow-up at 14 to 15 Years. JBJS; 98, https://journals.lww.com/jbjsjournal/Fulltext/2016/08170/A_Randomized_Multicenter_Trial_Comparing.2.aspx (2016).spa
dc.relation.referencesFlanigan DC, Everhart JS, Early NA. Autologous Chondrocyte Implantation: Scaffold-Based Solutions. In: Zorzi AR, Miranda JB de (eds). Rijeka: IntechOpen, p. Ch. 8.spa
dc.relation.referencesLiu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017; 5: 17014.spa
dc.relation.referencesMeyer U. The History of Tissue Engineering and Regenerative Medicine in Perspective. In: Meyer U, Handschel J, Wiesmann HP, et al. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer Berlin Heidelberg, pp. 5–12.spa
dc.relation.referencesYen Y, Cascio B, O’brien L, et al. Treatment of Osteoarthritis of the Knee with Microfracture and Rehabilitation. Med Sci Sport Exerc 2008; 40: 200–205.spa
dc.relation.referencesBreinan H, Minas T, Hsu H, et al. Autologous chondrocyte implantation in a canine model: change in composition of reparative tissue with time. J Orthop Res 2001; 19: 482–492.spa
dc.relation.referencesRedman S, Oldfield S, Archer C. Current strategies for articular cartilage repair. Eur Cell Mater 2005; 9: 23–32.spa
dc.relation.referencesO’Sullivan J, D’Arcy S, Barry F, et al. Mesenchymal chondroprogenitor cell origin and therapeutic potential. Stem Cell Res Ther 2011; 2: 1–7.spa
dc.relation.referencesGeorge E. Intra-articular hyaluronan treatment for osteoarthritis. Ann Rheum Dis 1998; 57: 637–640.spa
dc.relation.referencesGoldberg A, Mitchell K, Soans J, et al. The use of mesenchymal stem cells for cartilage repair and regeneration: A systematic review. J Orthop Surg Res 2017; 12: 1–30.spa
dc.relation.referencesWong K, Lee K, Tai B, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: A prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthrosc - J Arthrosc Relat Surg 2013; 29: 2020–2028.spa
dc.relation.referencesDjouad F, Tuan R. Mesenchymal Stem Cells: New Insights Into Tissue Engineering and Regenerative Medicine. In: Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, 2009, pp. 177–195.spa
dc.relation.referencesPuetzer J, Petitte J, Loboa E. Comparative Review of Growth Factors for Induction of Three-Dimensional In Vitro Chondrogenesis in Human Mesenchymal Stem Cells Isolated from Bone Marrow and Adipose Tissue. Tissue Eng Part B Rev 2010; 16: 435–444.spa
dc.relation.referencesPark Y, Sugimoto M, Watrin A, et al. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthr Cartil 2005; 13: 527–536.spa
dc.relation.referencesMa H, Hung S, Lin S, et al. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res 2003; 64A: 273–281.spa
dc.relation.referencesCharles-Huang C, Reuben P, D’Ippolito G, et al. Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec 2004; 278A: 428–436.spa
dc.relation.referencesAwad H, Wickham M, Leddy H, et al. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004; 25: 3211–3222.spa
dc.relation.referencesMauck R, Yuan X, Tuan R. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr Cartil 2006; 14: 179–189.spa
dc.relation.referencesMasuoka K, Asazuma T, Hattori H, et al. Tissue Engineering of Articular Cartilage With Autologous Cultured Adipose Tissue-Derived Stromal Cells Using Atelocollagen Honeycomb-Shaped Scaffold With a Membrane Sealing in Rabbits. J Biomed Mater Res B Appl Biomater 2006; 79B: 25–34.spa
dc.relation.referencesYokoyama A, Sekiya I, Miyazaki K, et al. In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res 2005; 322: 289–298.spa
dc.relation.referencesVan Vlierberghe S, Dubruel P, Schacht E. Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011; 12: 1387–1408.spa
dc.relation.referencesZwingmann J, Mehlhorn A, Südkamp N, et al. Chondrogenic Differentiation of Human Articular Chondrocytes Differs in Biodegradable PGA/PLA Scaffolds. Tissue Eng 2007; 13: 2335–2343.spa
dc.relation.referencesFreed L, Marquis J, Nohria A, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993; 27: 11–23.spa
dc.relation.referencesAigner J, Tegeler J, Hutzler P, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 1998; 42: 172–181.spa
dc.relation.referencesNa K, Kim S, Woo D, et al. Synergistic effect of TGFβ-3 on chondrogenic differentiation of rabbit chondrocytes in thermo-reversible hydrogel constructs blended with hyaluronic acid by in vivo test. J Biotechnol 2007; 128: 412–422.spa
dc.relation.referencesSolchaga L, Temenoff J, Gao J, et al. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthr Cartil 2005; 13: 297–309.spa
dc.relation.referencesChung C, Burdick J. Influence of Three-Dimensional Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2009; 15: 243–254.spa
dc.relation.referencesSerafin A, Culebras M, Collins MN. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. Int J Biol Macromol 2023; 233: 123438.spa
dc.relation.referencesGhorbani F, Ghalandari B, Khajehmohammadi M, et al. Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. Int Mater Rev 2023; 1–42.spa
dc.relation.referencesZhu J, Marchant R. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 2011; 8: 607–626.spa
dc.relation.referencesBao W, Li M, Yang Y, et al. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front Chem 2020; 8: 1–18.spa
dc.relation.referencesCalabrese G, Forte S, Gulino R, et al. Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro. Front Physiol 2017; 8: 1–13.spa
dc.relation.referencesCao C, Zhang Y, Ye Y, et al. Effects of cell phenotype and seeding density on the chondrogenic capacity of human osteoarthritic chondrocytes in type I collagen scaffolds. J Orthop Surg Res 2020; 15: 1–11.spa
dc.relation.referencesGentile P, Ghione C, Ferreira AM, et al. Alginate-based hydrogels functionalised at the nanoscale using layer-by-layer assembly for potential cartilage repair. Biomater Sci 2017; 5: 1922–1931.spa
dc.relation.referencesChen P, Ning L, Qiu P, et al. Photo-crosslinked gelatin-hyaluronic acid methacrylate hydrogel-committed nucleus pulposus-like differentiation of adipose stromal cells for intervertebral disc repair. J Tissue Eng Regen Med 2019; 13: 682–693.spa
dc.relation.referencesGhorbani F, Zamanian A, Behnamghader A, et al. Bioactive and biostable hyaluronic acid-pullulan dermal hydrogels incorporated with biomimetic hydroxyapatite spheres. Mater Sci Eng C 2020; 112: 110906.spa
dc.relation.referencesDovedytis M, Liu ZJ, Bartlett S. Hyaluronic acid and its biomedical applications: A review. Eng Regen 2020; 1: 102–113.spa
dc.relation.referencesZerbinati N, Esposito C, Cipolla G, et al. Chemical and mechanical characterization of hyaluronic acid hydrogel cross-linked with polyethylen glycol and its use in dermatology. Dermatol Ther 2020; 33: e13747.spa
dc.relation.referencesLi Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012; 41: 2193–2221.spa
dc.relation.referencesCollins M, Birkinshaw C. Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. J Appl Polym Sci 2007; 104: 3183–3191.spa
dc.relation.referencesKhoirunnisa D, Harmita, Rukmana T. Isolation and Characteristics of Bovine Skin Gelatin and Analysis of Glycine, Proline, and Hydroxyproline by High-Performance Liquid Chromatography-Fluorescence. Int J Appl Pharm 2018; 10: 269–275.spa
dc.relation.referencesSchrieber R, Gareis H. From Collagen to Gelatine. Epub ahead of print 12 April 2007. DOI: doi:10.1002/9783527610969.ch2.spa
dc.relation.referencesSilva M, Bode F, Grillo I, et al. Exploring the Kinetics of Gelation and Final Architecture of Enzymatically Cross-Linked Chitosan/Gelatin Gels. Biomacromolecules; 16. Epub ahead of print 15 March 2015. DOI: 10.1021/acs.biomac.5b00205.spa
dc.relation.referencesEsteghlal S, Niakousari M, Hosseini SMH. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. Int J Biol Macromol 2018; 114: 1–9.spa
dc.relation.referencesCampiglio CE, Contessi Negrini N, Farè S, et al. Cross-Linking Strategies for Electrospun Gelatin Scaffolds. Materials 2019; 12: 1–23.spa
dc.relation.referencesSakai S, Hirose K, Taguchi K, et al. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials 2009; 30: 3371–3377.spa
dc.relation.referencesHu M, Kurisawa M, Deng R, et al. Cell immobilization in gelatin–hydroxyphenylpropionic acid hydrogel fibers. Biomaterials 2009; 30: 3523–3531.spa
dc.relation.referencesLe Thi P, Son J, Lee Y, et al. Enzymatically Crosslinkable Hyaluronic Acid-Gelatin Hybrid Hydrogels as Potential Bioinks for Tissue Regeneration. Macromol Res 2020; 28: 400–406.spa
dc.relation.referencesKripotou S, Stefanopoulou E, Culebras-Martínez M, et al. Water dynamics and thermal properties of tyramine-modified hyaluronic acid - Gelatin hydrogels. Polymer (Guildf) 2019; 178: 121598.spa
dc.relation.referencesBalakrishnan B, Mohanty M, Umashankar P, et al. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005; 26: 6335–6342.spa
dc.relation.referencesIshida O, Tanaka Y, Morimoto I, et al. Chondrocytes Are Regulated by Cellular Adhesion Through CD44 and Hyaluronic Acid Pathway. J Bone Miner Res 2009; 12: 1657–1663.spa
dc.relation.referencesMogoşanu G, Grumezescu A. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 2014; 463: 127–136.spa
dc.relation.referencesRuoslahti E, Pierschbacher M. Arg-Gly-Asp: A versatile cell recognition signal. Cell 1986; 44: 517–518.spa
dc.relation.referencesSarker B, Singh R, Silva R, et al. Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel. PLoS One 2014; 9: 1–12.spa
dc.relation.referencesEke G, Mangir N, Hasirci N, et al. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 2017; 129: 188–198.spa
dc.relation.referencesWu S, Deng L, Hsia H, et al. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing. J Biomater Appl 2017; 31: 1380–1390.spa
dc.relation.referencesYoo K, Murphy S, Skardal A. A Rapid Crosslinkable Maleimide-Modified Hyaluronic Acid and Gelatin Hydrogel Delivery System for Regenerative Applications. Gels 2021; 7: 1–17.spa
dc.relation.referencesMoulisová V, Poveda-Reyes S, Sanmartín-Masiá E, et al. Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS Omega 2017; 2: 7609–7620.spa
dc.relation.referencesFan Z, Zhang Y, Fang S, et al. Bienzymatically crosslinked gelatin/hyaluronic acid interpenetrating network hydrogels: preparation and characterization. RSC Adv 2015; 5: 1929–1936.spa
dc.relation.referencesXu Y, Wang Z, Hua Y, et al. Photocrosslinked natural hydrogel composed of hyaluronic acid and gelatin enhances cartilage regeneration of decellularized trachea matrix. Mater Sci Eng C 2021; 120: 1–11.spa
dc.relation.referencesKumar P, Ciftci S, Barthes J, et al. A composite Gelatin/hyaluronic acid hydrogel as an ECM mimic for developing mesenchymal stem cell-derived epithelial tissue patches. J Tissue Eng Regen Med 2020; 14: 45–57.spa
dc.relation.referencesSakai S, Ohi H, Hotta T, et al. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking. Biopolymers 2018; 109: e23080.spa
dc.relation.referencesPoveda-Reyes S, Moulisova V, Sanmartín-Masiá E, et al. Gelatin — Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromol Biosci 2016; 16: 1311–1324.spa
dc.relation.referencesJohnstone B, Hering T, Caplan A, et al. In Vitro Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells. Tissue Eng 1998; 9: 265–272.spa
dc.relation.referencesPelttari K, Steck E, Richter W. The use of mesenchymal stem cells for chondrogenesis. Injury 2008; 39: 58–65.spa
dc.relation.referencesSalamon A, van Vlierberghe S, van Nieuwenhove I, et al. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. Materials (Basel) 2014; 7: 1342–1359.spa
dc.relation.referencesDvořáková J, Kučera L, Kučera J, et al. Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan. J Biomed Mater Res Part A 2013; 102: 3523–3530.spa
dc.relation.referencesJin Y, Koh R, Kim S, et al. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Mater Sci Eng C 2020; 115: 1–11.spa
dc.relation.referencesWang Y, Chen Y, Xu Y, et al. Effects of the bonding intensity between hyaluronan and gelatin on chondrogenic phenotypic maintenance. J Mater Chem B 2020; 8: 9062–9074.spa
dc.relation.referencesLin H, Beck A, Shimomura K, et al. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. J Tissue Eng Regen Med 2019; 13: 1418–1429.spa
dc.relation.referencesLevett P, Melchels F, Schrobback K, et al. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 2014; 10: 214–223.spa
dc.relation.referencesAngele P, Müller R, Schumann D, et al. Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2009; 91: 416–427.spa
dc.relation.referencesPfeifer GC, Berner A, Koch M, et al. Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid–Gelatin Composite Scaffold. Materials 2016; 9: 1–15.spa
dc.relation.referencesChen Y, Su W, Yang S, et al. In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration. Acta Biomater 2013; 9: 5181–5193.spa
dc.relation.referencesYang R, Xue W, Ma X, et al. Engineering the dynamics of biophysical cues in supramolecular hydrogels to facile control stem cell chondrogenesis for cartilage regeneration. Compos Part B Eng 2023; 250: 110429.spa
dc.relation.referencesNedunchezian S, Wu C-W, Wu S-C, et al. Characteristic and Chondrogenic Differentiation Analysis of Hybrid Hydrogels Comprised of Hyaluronic Acid Methacryloyl (HAMA), Gelatin Methacryloyl (GelMA), and the Acrylate-Functionalized Nano-Silica Crosslinker. Polymers; 14. Epub ahead of print 2022. DOI: 10.3390/polym14102003.spa
dc.relation.referencesGe Y, Li Y, Wang Z, et al. Effects of Mechanical Compression on Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells in Agarose Hydrogel. Frontiers in Bioengineering and Biotechnology; 9, https://www.frontiersin.org/articles/10.3389/fbioe.2021.697281 (2021).spa
dc.relation.referencesAisenbrey EA, Bilousova G, Payne K, et al. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci 2019; 7: 5388–5403.spa
dc.relation.referencesMcDermott AM, Eastburn EA, Kelly DJ, et al. Effects of chondrogenic priming duration on mechanoregulation of engineered cartilage. J Biomech 2021; 125: 110580.spa
dc.relation.referencesCochis A, Grad S, Stoddart MJ, et al. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep 2017; 7: 1–12.spa
dc.relation.referencesLin S, Lee WYW, Feng Q, et al. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Res Ther 2017; 8: 221.spa
dc.relation.referencesDavachi SM, Haramshahi SMA, Akhavirad SA, et al. Development of chitosan/hyaluronic acid hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. Mater Today Commun 2022; 30: 103230.spa
dc.relation.referencesHuang B, Li P, Chen M, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnology 2022; 20: 25.spa
dc.relation.referencesWuttisiriboon K, Tippayawat P, Daduang J, et al. Three-dimensional silk fibroin-gelatin/chondroitin sulfate/hyaluronic acid–aloe vera scaffold supports in vitro chondrogenesis of bone marrow mesenchymal stem cells and reduces inflammatory effect. J Biomed Mater Res Part B Appl Biomater; n/a. Epub ahead of print 29 March 2023. DOI: https://doi.org/10.1002/jbm.b.35254spa
dc.relation.referencesMa X, Yang R, Wang P, et al. Bioinspired dual dynamic network hydrogels promote cartilage regeneration through regulating BMSC chondrogenic differentiation. Mater Today Chem 2022; 23: 100648.spa
dc.relation.referencesKawakami Y, Rodriguez-Leon J, Izpisua-Belmonte J. The role of TGFbetas and Sox9 during limb chondrogenesis. Curr Opin Cell Biol 2006; 18: 723–729.spa
dc.relation.referencesGhandforoushan P, Hanaee J, Aghazadeh Z, et al. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro. Int J Biol Macromol 2022; 201: 270–287.spa
dc.relation.referencesTekari A, Luginbuehl R, Hofstetter W, et al. Transforming Growth Factor Beta Signaling Is Essential for the Autonomous Formation of Cartilage-Like Tissue by Expanded Chondrocytes. PLoS One 2015; 10: e0120857.spa
dc.relation.referencesAhn J, Arai Y, Kim BJ, et al. Combinatorial physicochemical stimuli in the three-dimensional environment of a hyaluronic acid hydrogel amplify chondrogenesis by stimulating phosphorylation of the Smad and MAPK signaling pathways. NPG Asia Mater 2022; 14: 46.spa
dc.relation.referencesLiu Q, Dai W, Gao Y, et al. The synergistic regulation of chondrogenesis by collagen-based hydrogels and cell co-culture. Acta Biomater 2022; 154: 194–211.spa
dc.relation.referencesStaubli F, Stoddart MJ, D’Este M, et al. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomater 2022; 143: 253–265.spa
dc.relation.referencesKim I, Mauck R, Burdick J. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011; 32: 8771–8782.spa
dc.relation.referencesMurphy C, Matsiko A, Haugh M, et al. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J Mech Behav Biomed Mater 2012; 11: 53–62.spa
dc.relation.referencesBurnsed O, Schwartz Z, Marchand K, et al. Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater 2016; 43: 139–149.spa
dc.relation.referencesShu X, Liu Y, Palumbo F, et al. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 2003; 24: 3825–3834.spa
dc.relation.referencesVanderhooft J, Alcoutlabi M, Magda J, et al. Rheological Properties of Cross-Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering. Macromol Biosci 2008; 9: 20–28.spa
dc.relation.referencesCamci-Unal G, Cuttica D, Annabi N, et al. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules 2013; 14: 1085–1092.spa
dc.relation.referencesCasado J, Gomez-Mauricio G, Alvarez V, et al. Comparative phenotypic and molecular characterization of porcine mesenchymal stem cells from different sources for translational studies in a large animal model. Vet Immunol Immunopathol 2012; 147: 104–112.spa
dc.relation.referencesVaca-González J. Escobar J, Guevara J, et al. Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry 2019, vol. 126, pp. 1-11.spa
dc.relation.referencesVaca-González J. The effect of electric fields on hyaline cartilage: an in vitro and in silico study. Universidad Nacional de Colombia, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsCondrocitosspa
dc.subject.decsChondrocyteseng
dc.subject.decsCartílago hialinospa
dc.subject.decsHyaline cartilageeng
dc.subject.decsTerapia por estimulación eléctricaspa
dc.subject.decsElectric stimulation therapyeng
dc.subject.decsGlicosaminoglicanosspa
dc.subject.decsGlycosaminoglycanseng
dc.subject.decsIngeniería de tejidosspa
dc.subject.decsTissue engineeringeng
dc.subject.decsRegeneración tisular dirigidaspa
dc.subject.decsGuided tissue regenerationeng
dc.subject.decsMateriales biomiméticosspa
dc.subject.decsBiomimetic materialseng
dc.subject.proposalCartílago hialinospa
dc.subject.proposalHyaline cartilageeng
dc.subject.proposalCampos eléctricosspa
dc.subject.proposalElectric fieldseng
dc.subject.proposalCondrocitosspa
dc.subject.proposalChondrocyteseng
dc.subject.proposalProliferación celularspa
dc.subject.proposalCell proliferationeng
dc.subject.proposalGlicosaminoglicanosspa
dc.subject.proposalGlycosaminoglycanseng
dc.subject.proposalEstímulos biofísicosspa
dc.subject.proposalBiophysical stimulieng
dc.titleEvaluación in vitro del efecto de estimulación eléctrica sobre condrocitos cultivados en un constructo tridimensionalspa
dc.title.translatedIn vitro evaluation of the effect of electrical stimulation on cultured chondrocytes in a three-dimensional constructeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032486187.2023.pdf
Tamaño:
3.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: