Estudio observacional de la dinámica de puntos brillantes en una zona del sol en calma

dc.contributor.advisorVargas Dominguez, Santiago
dc.contributor.advisorUtz, Dominik
dc.contributor.authorBerrios Saavedra, Yeimy Gerardine
dc.contributor.researchgroupGroup of Solar Astrophysicsspa
dc.date.accessioned2021-06-08T16:21:05Z
dc.date.available2021-06-08T16:21:05Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLas observaciones en alta resolución de la fotosfera solar han revelado la existencia de estructuras compuestas de diminutos Puntos Magnéticos Brillantes o MBPs (por sus siglas en inglés). Tales estructuras a pequeña escala están asociadas con regiones de campo magnético fuerte del orden de kilogauss (kG) (Beck et al., 2007). Diversas investigaciones han encontrado que el diámetro promedio de un MBP está en el rango de 100 - 300 km, su velocidad horizontal promedio entre 0,2 - 5 kms−1 y su tiempo de vida de 2,5 a 10 minutos en promedio (Utz et al., 2009b). Es relevante estudiar estos elementos magnéticos y establecer su contribución al comportamiento de la atmósfera solar, y particularmente al bien conocido problema del calentamiento coronal. Aunque pequeños, los MBPs podrían contribuir significativamente a la energía requerida en la corona debido a que cubren toda la superficie del Sol y albergan intensos campos magnéticos. Teóricamente, el movimiento del punto de anclaje de un MBP genera un flujo de energía que asciende a la corona y puede contribuir a su calentamiento (Choud-huri et al., 1993). En este trabajo, el análisis de MBPs se hace a través del uso de series de tiempo de imágenes de la fotosfera solar adquiridas con telescopios solares de alta resolución, tanto en tierra como espaciales i.e., el instrumento SOT/Hinode (Telescopio Óptico Solar) y HiFI/GREGOR (generador de imágenes de alta resolución) en la banda G (4308 ̊A). Con el fin de detectar los MBPs, se hace uso de un algoritmo automático de segmentación e identificación, a partir del cual se rastrean estos elementos pequeños para medir su movimiento propio. Posteriormente, se lleva a cabo un análisis estadístico de cientos de MBPs por medio de histogramas de área y diámetro, así como analizando curvas de luz que evidencian su variación en intensidad. Adicional a esto, se mide la velocidad horizontal promedio de estas estructuras para caracterizarlas durante la evolución de la región solar bajo estudio. Los resultados establecen que las medidas de los parámetros dinámicos de los MBPs están influenciadas por el instrumento utilizado, ya que con el cambio de la resolución espacial y temporal se obtienen parámetros diferentes. Con una resolución de 0,108 arcseg/px se obtuvo para el área de los MBPs un valor medio de 37000·|÷1,7 km2, para el diámetro promedio260· | ÷1,5 km y una velocidad horizontal media de 1,1 - 2,3 kms−1(se encontraron dos poblaciones de MBPs en los resultados de velocidad). Por su parte, para una resolución de 0,0286 arcseg/px se encontraron dos poblaciones de MBPs cuyas áreas promedios fueron de 5700·|÷1,6 km2 y 20000·|÷1,6 km2 respectivamente, para el diámetro un valor medio de 80· | ÷1,3 km para el primer grupo de MBPs y de 150· | ÷1,5 km para el segundo y una velocidad promedio de 1,9 kms−1 y 7,5 kms−1 para cada una de las poblaciones.spa
dc.description.abstractHigh-resolution observations of the solar photosphere reveal a large fine structure compo-sed of tiny Magnetic Bright Points (MBPs), which are small-scale features associated withstrong magnetic field regions of the order of kilogauss (kG) (Beck et al., 2007). Differentinvestigations have found that the average diameter of a MBP lays in a range of 100 - 300km, its horizontal average velocity between 0,2-5 kms−1and its lifetime of 2,5 to 10 minuteson average (Utz et al., 2009b).It is relevant to study these magnetic elements and establish their contribution to the beha-viour of the solar atmosphere, and ultimately to the well known coronal heating problem.Although being small, MBPs could significantly contribute to the energy budget in the coronaas they cover the entire surface of the Sun and harbour strong magnetic fields. Theoretically,the movement of the footpoint of an MBP generates a flow of energy that ascends to thecorona and can contribute to its heating (Choudhuri et al., 1993).In this work, the analysis of MBPs is done by means of time series of images of the solarphotosphere acquired with high resolution ground-based and space-borned solar telesco-pes, i.e. SOT/Hinode instrument (Solar Optical Telescope) and the HiFI/GREGOR (Hight-resolution Fast Imager) in the G-band (4308 ̊A).In order to detect MBPs, an automatic segmentation and identification algorithm is used,and these small elements are subsequently tracked to measure its proper motions. A statisti-cal analysis of hundreds of MBPs is carried out, as well as histograms of their area and size,and light curves displaying their variation in intensity. In addition, the average horizontalvelocity of these structures is measured to characterize them during the evolution of thesolar region under study. The results establish that the measurements of the dynamic parameters of the MBPs areinfluenced by the instrument used since with the change of the spatial and temporal reso-lution different values are obtained. With a resolution of 0,108 arcsec/px, was obtained forthe area of the MBPs an average value of 37000· | ÷1,7 km2, for the mean diameter 260· | ÷1,5 km and a mean horizontal velocity of 1,1 - 2,3 kms−1(two populations of MBPswere found in the velocity results).On the other hand, for a resolution of 0,0286 arcse/px, two populations of MBPs were foundwhose mean areas were 5700·|÷1,6 and 20000·|÷1,6 km2respectively, for the diameteran average value of 80·|÷1,3 km for the first group of MBPs and 150·|÷1,5 km for thesecond and an mean velocity of 1,9 kms−1and 7,5 kms−1for each of the populations.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Astronomíaspa
dc.description.researchareaAstrofísica solarspa
dc.format.extent1 recurso en linea (114 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79614
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentObservatorio Astronómico Nacionalspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesBabcock, H. (1961). The topology of the sun’s magnetic field and the 22-year cycle.TheAstrophysical Journal, 133:572.spa
dc.relation.referencesBeck, C., Mikurda, K., Bellot Rubio, L., Schlichenmaier, R., and S ̈utterlin, P. (2007). Mag-netic properties of g-band bright points. In Modern solar facilities-advanced solar science,page 165.spa
dc.relation.referencesBerger, T. (1998). Measurements of solar magnetic element motion from high-resolutionfiltergrams.The Astrophysical Journal, 495:973.spa
dc.relation.referencesBerger, T. et al. (1996). On the dynamics of small-scale solar magnetic elements.TheAstrophysical Journal, 463:365.spa
dc.relation.referencesBlanco, J., Cabello, I., Vargas, S., Balmaceda, L., and Domingo, V. (2017). Observing timeproposal form 2017 for sst at the observatorio del roque de los muchachos la palma, spain.spa
dc.relation.referencesChaplin, W. J. (2006).Music of the Sun.spa
dc.relation.referencesChoudhuri, A. R., Auffret, H., and Priest, E. R. (1993). Implications of rapid footpointmotions of photospheric flux tubes for coronal heating.Solar physics, 143(1):49–68.spa
dc.relation.referencesDe Pontieu, B., Mart ́ınez-Sykora, J., and Chintzoglou, G. (2017). What causes the high appa-rent speeds in chromospheric and transition region spicules on the sun?The AstrophysicalJournal Letters, 849(1):L7.spa
dc.relation.referencesDel Moro, D., Berrilli, F., Duvall, T., and Kosovichev, A. (2004). Dynamics and structureof supergranulation.Solar Physics, 221(1):23–32.spa
dc.relation.referencesDenker, C., Kuckein, C., Verma, M., Manrique, S. J. G., Diercke, A., Enke, H., Klar, J.,Balthasar, H., Louis, R. E., and Dineva, E. (2018). High-cadence imaging and imagingspectroscopy at the gregor solar telescope—a collaborative research environment for high-resolution solar physics.The Astrophysical Journal Supplement Series, 236(1):5.spa
dc.relation.referencesDikpati, M. and Gilman, P. A. (2008). Global solar dynamo models: Simulations and pre-dictions.Journal of Astrophysics and Astronomy, 29(1-2):29–39.spa
dc.relation.referencesDomingo, V., Ermolli, I., Fox, P., Fr ̈ohlich, C., Haberreiter, M., Krivova, N., Kopp, G.,Schmutz, W., Solanki, S., Spruit, H., et al. (2009). Solar surface magnetism and irradianceon time scales from days to the 11-year cycle.Space Science Reviews, 145(3-4):337–380.spa
dc.relation.referencesDunn, R. B. and Zirker, J. B. (1973). The solar filigree.Solar Physics, 33(2):281–304.spa
dc.relation.referencesGibson, E. G. (1973). The quiet sun.spa
dc.relation.referencesHurlburt, N., Slater, G., Tarbell, T., Berger, T., and Katsukawa, Y. (2009). Hinode solaroptical telescope data analysis guide.Version, 3:58.spa
dc.relation.referencesKarttunen, H., Kr ̈oger, P., Oja, H., Poutanen, M., and Donner, K. J. (2016).Fundamentalastronomy. Springer.spa
dc.relation.referencesKawaguchi, I. (1980). Morphological study of the solar granulation. Solar Physics, 65(2):207–220.spa
dc.relation.referencesKeller, C. (1992). Resolution of magnetic flux tubes on the sun. Nature, 359(6393):307.spa
dc.relation.referencesKitchatinov, L. (2014). The solar dynamo: Inferences from observations and modeling.Geo-magnetism and Aeronomy, 54(7):867–876.spa
dc.relation.referencesKosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T.,Minesugi, K., Ohnishi, A., Yamada, T., et al. (2007). The hinode (solar-b) mission: anoverview. InThe Hinode Mission, pages 5–19. Springer.spa
dc.relation.referencesKuckein, C., Denker, C., Verma, M., Balthasar, H., Manrique, S. G., Louis, R., and Diercke,A. (2016). stools–a data reduction pipeline for the gregor fabry-p ́erot interferometer andthe high-resolution fast imager at the gregor solar telescope. Proceedings of the Interna-tional Astronomical Union, 12(S327):20–24.spa
dc.relation.referencesLimpert, E., Stahel, W. A., and Abbt, M. (2001). Log-normal distributions across thesciences: keys and clues: on the charms of statistics, and how mechanical models resemblinggambling machines offer a link to a handy way to characterize log-normal distributions,which can provide deeper insight into variability and probability—normal or log-normal:that is the question.BioScience, 51(5):341–352.spa
dc.relation.referencesLiu, Y., Xiang, Y., Erdelyi, R., Liu, Z., Li, D., Ning, Z., Bi, Y., Wu, N., and Lin, J. (2018).Studies of isolated and non-isolated photospheric bright points in an active region observedby the new vacuum solar telescope.The Astrophysical Journal, 856(1):17.spa
dc.relation.referencesMartin, S., Bilimoria, R., Tracadas, P. W., Rutten, R., and Schrijver, C. (1994). Solar surfacemagnetism.RJ Rutten and CJ.spa
dc.relation.referencesMehltretter, J. (1974). Observations of photospheric faculae at the center of the solar disk.Solar Physics, 38(1):43–57.spa
dc.relation.referencesM ̈ostl, C., Hanslmeier, A., Sobotka, M., Puschmann, K., and Muthsam, H. (2006). Dynamicsof magnetic bright points in an active region. Solar Physics, 237(1):13–23.spa
dc.relation.referencesMuller, R., Roudier, T., Vigneau, J., and Auffret, H. (1994). The proper motion of networkbright points and the heating of the solar corona.Astronomy and Astrophysics, 283:232–240.spa
dc.relation.referencesNisenson, P., Van Ballegooijen, A., De Wijn, A., and S ̈utterlin, P. (2003). Motions of isolatedg-band bright points in the solar photosphere.The Astrophysical Journal, 587(1):458.spa
dc.relation.referencesPetrie, G. (2012). Evolution of active and polar photospheric magnetic fields during the riseof cycle 24 compared to previous cycles.Solar Physics, 281(2):577–598.spa
dc.relation.referencesPetrie, G. J. (2015). Solar magnetism in the polar regions.Living Reviews in Solar Physics,12(1):5.spa
dc.relation.referencesS ́anchez, J., M ́arquez, I., Bonet, J., Cerde ̃na, I. D., and Muller, R. (2004). Bright points inthe internetwork quiet sun. The Astrophysical Journal Letters, 609(2):L91.spa
dc.relation.referencesSolanki, S. K., Inhester, B., and Sch ̈ussler, M. (2006). The solar magnetic field.Reports onProgress in Physics, 69(3):563.spa
dc.relation.referencesSteiner, O., Bruls, J., and Hauschildt, P. (2001). Why are g-band bright points bright? InAdvanced Solar Polarimetry–Theory, Observation, and Instrumentation, volume 236, page453.spa
dc.relation.referencesStix, M. (2012). The sun: an introduction. Springer Science & Business Media.spa
dc.relation.referencesSweet, P. (1969). Mechanisms of solar flares.Annual Review of Astronomy and Astrophysics,7(1):149–176.spa
dc.relation.referencesTobias, S. (2002). The solar dynamo.Philosophical Transactions of the Royal Society ofLondon. Series A: Mathematical, Physical and Engineering Sciences, 360(1801):2741–2756.spa
dc.relation.referencesTsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu,Y., Nakagiri, M., Noguchi, M., Tarbell, T., et al. (2008). The solar optical telescope forthe hinode mission: an overview.Solar Physics, 249(2):167–196.spa
dc.relation.referencesTwidell, J. and Weir, T. (2006). Renewable energy resources. by taylor and francis.Newyork,USA.spa
dc.relation.referencesUtz, D. (2007). Dynamics of magnetic bright points in the solar photosphere. Master’sthesis, University of Graz.spa
dc.relation.referencesUtz, D., del Toro Iniesta, J., Rubio, L. B., Jurˇc ́ak, J., Pillet, V. M., Solanki, S., and Sch-midt, W. (2014). The formation and disintegration of magnetic bright points observed bysunrise/imax.The Astrophysical Journal, 796(2):79.spa
dc.relation.referencesUtz, D., Hanslmeier, A., M ̈ostl, C., Muller, R., Veronig, A., and Muthsam, H. (2009a). The size distribution of magnetic bright points derived from hinode/sot observations.Astronomy and Astrophysics, 498(1):289–293.spa
dc.relation.referencesUtz, D., Hanslmeier, A., Muller, R., Veronig, A., Ryb ́ak, J., and Muthsam, H. (2009b).Dynamics of isolated magnetic bright points derived from hinode/sot g-band observations.Astronomy and Astrophysics, 511:A39.spa
dc.relation.referencesUtz, D. t., Jurˇc ́ak, J., Hanslmeier, A., Muller, R., Veronig, A., and K ̈uhner, O. (2013).Magnetic field strength distribution of magnetic bright points inferred from filtergramsand spectro-polarimetric data.Astronomy & Astrophysics, 554:A65.spa
dc.relation.referencesWiegelmann, T., Thalmann, J. K., and Solanki, S. K. (2014). The magnetic field in the solaratmosphere.The Astronomy and Astrophysics Review, 22(1):78.spa
dc.relation.referencesWiehr, E., Bovelet, B., and Hirzberger, J. (2004). Brightness and size of small-scale solarmagnetic flux concentrations.Astronomy and Astrophysics, 422(3):L63–L66.spa
dc.relation.referencesW ̈oger, F., Von der L ̈uhe, O., and Reardon, K. (2008). Speckle interferometry with adaptiveoptics corrected solar data.Astronomy and Astrophysics, 488(1):375–381spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.proposalSolspa
dc.subject.proposalPuntos magnéticos brillantesspa
dc.subject.proposalFotosferaspa
dc.subject.proposalCampo magnéticospa
dc.subject.proposalTécnicas de procesamiento de imágenesspa
dc.subject.proposalSuneng
dc.subject.proposalMagnetic bright pointseng
dc.subject.proposalPhotosphereeng
dc.subject.proposalMagnetic fieldeng
dc.subject.proposalImage processing techniqueseng
dc.subject.unescoSol
dc.subject.unescoRadiación solar
dc.titleEstudio observacional de la dinámica de puntos brillantes en una zona del sol en calmaspa
dc.title.translatedObservational study of dynamics bright spots in an area of the quiet suneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentDatasetspa
dc.type.contentModelspa
dc.type.contentSoftwarespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023902490.2021.pdf
Tamaño:
10.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: