En 20 día(s), 13 hora(s) y 5 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral

dc.contributor.advisorMuñoz Suárez, Alejandra Margaritaspa
dc.contributor.advisorParra López, Carlos Albertospa
dc.contributor.authorIshikawa, Flávia Midorispa
dc.contributor.projectleaderSalguero López, Gustavo Andrésspa
dc.contributor.researchgroupUnidad de Terapias Avanzadas Instituto Distrital de Ciencia, Biotecnología e Innovación en Saludspa
dc.date.accessioned2024-07-24T18:42:27Z
dc.date.available2024-07-24T18:42:27Z
dc.date.issued2024-06-26
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa IL-15 ha sido considerada por el National Cancer Institute como una de las inmunoterapias más promisoras para el tratamiento del cáncer, una molécula central en la activación de la inmunidad antiviral y antitumoral sin un aparente efecto dual, siendo excelente alternativa a la IL-2. La IL-15 interactúa con su receptor α formando un complejo IL-15/IL-15Rα en la membrana de células dendríticas, monocitos y macrófagos. Este complejo interactúa con los receptores IL-2Rβ/γ de las células T y NK en transpresentación, promoviendo la señalización necesaria para una potente activación y proliferación de estos tipos celulares. Sin embargo, los mecanismos y efectos de la activación celular de la IL-15/IL-15Rα no han sido completamente elucidados en el contexto humano in vivo, y se carecen de estudios en modelos preclínicos con mayor poder traslacional que puedan contribuir al entendimiento del rol de esta citoquina en el contexto clínico del cáncer. En este trabajo se investigó el potencial efecto in vivo de dos formas de complejo IL-15/IL-5Rα, uno anclado a la membrana y el otro en una forma soluble (IL-15mb vs IL-15s), en el crecimiento tumor de una línea de melanoma maligno humano. Para esto se utilizaron dos modelos murinos humanizados a partir de la cepa NRG, con la transferencia de leucocitos de sangre periférica (HuPBL) y con el trasplante de células progenitoras hematopoyéticas (HuHSC). En este estudio se demostró que la IL-15, en complejo con su receptor α, tiene un potente efecto antitumoral sobre las células inmunes, principalmente las células T y NK. El efecto antitumoral fue evidenciado a través de la reducción del crecimiento tumoral y mayor infiltración de dichas células en el tumor y en la sangre periférica. Este trabajo contribuye a la comprensión del efecto de la IL-15 en el microambiente tumoral, permitiendo identificar vías clave de esta molécula en la estimulación de la inmunidad antitumoral, lo que abre la puerta al desarrollo de posibles terapias novedosas para pacientes con cáncer. (Texto tomado de la fuente).spa
dc.description.abstractIL-15 has been considered by the National Cancer Institute as one of the most promising immunotherapies for cancer treatment, serving as a central molecule in the activation of antiviral and antitumor immunity without apparent dual effects, making it an excellent alternative to IL-2. IL-15 is frequently bound to its receptor α, forming an IL-15/IL-15Rα complex on the membrane of dendritic cells, monocytes, and macrophages. This complex interacts with IL-2Rβ/γ receptors on T and NK cells in transpresentation, promoting the necessary signaling for potent activation and proliferation of these cells. The mechanisms of action have not been fully elucidated, and there is a lack of preclinical studies with higher translational power to contribute to understanding the role of this cytokine in the clinical context of cancer. This study investigated the potential in vivo effect of two IL-15/IL-5Rα agonists, one anchored to the membrane and the other in a soluble form (IL-15mb vs. IL-15s), on the tumor growth of a human malignant melanoma cell line. Two humanized murine models were utilized, derived from the NRG strain, with the transfer of peripheral blood leukocytes (HuPBL) and the transplantation of hematopoietic stem cells (HuHSC). Here, we demonstrated that IL-15, in complex with its α receptor, has a potent antitumor effect on immune cells, primarily T and NK cells. The antitumor effect was evidenced by the reduction in tumor growth and increased infiltration of these cells in the tumor and peripheral blood. This work contributes to the understanding of the IL-15 effect in the tumor microenvironment, identifying key pathways of this potent molecule in stimulation, leading to potential novel therapies for cancer patients.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.format.extentxiii, 146 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86610
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedBiremespa
dc.relation.referencesAkdis, M., Burgler, S., Crameri, R., Eiwegger, T., Fujita, H., Gomez, E., Klunker, S., Meyer, N., O’Mahony, L., Palomares, O., Rhyner, C., Quaked, N., Schaffartzik, A., Van De Veen, W., Zeller, S., Zimmermann, M., & Akdis, C. A. (2011). Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology, 127(3), 701-721.e70. https://doi.org/10.1016/j.jaci.2010.11.050spa
dc.relation.referencesAllen, T. M., Brehm, M. A., Bridges, S., Ferguson, S., Kumar, P., Mirochnitchenko, O., Palucka, K., Pelanda, R., Sanders-Beer, B., Shultz, L. D., Su, L., & PrabhuDas, M. (2019). Humanized immune system mouse models: progress, challenges and opportunities. Nature Immunology, 20(7), 770–774. https://doi.org/10.1038/s41590-019-0416-zspa
dc.relation.referencesAwad, R. M., Lecocq, Q., Zeven, K., Ertveldt, T., De Beck, L., Ceuppens, H., Broos, K., De Vlaeminck, Y., Goyvaerts, C., Verdonck, M., Raes, G., Van Parys, A., Cauwels, A., Keyaerts, M., Devoogdt, N., & Breckpot, K. (2021). Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods & Clinical Development, 22, 172–182. https://doi.org/10.1016/j.omtm.2021.05.017spa
dc.relation.referencesBergamaschi, C., Bear, J., Rosati, M., Beach, R. K., Alicea, C., Sowder, R., Chertova, E., Rosenberg, S. A., Felber, B. K., & Pavlakis, G. N. (2012). Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood, 120(1), e1–e8. https://doi.org/10.1182/blood-2011-10-384362spa
dc.relation.referencesBessard, A., Solé, V., Bouchaud, G., Quéméner, A., & Jacques, Y. (2009). High antitumor activity of RLI, an interleukin-15 (IL-15)–IL-15 receptor α fusion protein, in metastatic melanoma and colorectal cancer. Molecular Cancer Therapeutics, 8(9), 2736–2745. https://doi.org/10.1158/1535-7163.MCT-09-0275spa
dc.relation.referencesBorish, L. C., & Steinke, J. W. (2003). 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2), S460–S475. https://doi.org/10.1067/mai.2003.108spa
dc.relation.referencesBoudko, S. P., Sasaki, T., Engel, J., Lerch, T. F., Nix, J., Chapman, M. S., & Bächinger, H. P. (2009). Crystal Structure of Human Collagen XVIII Trimerization Domain: A Novel Collagen Trimerization Fold. Journal of Molecular Biology, 392(3), 787–802. https://doi.org/10.1016/j.jmb.2009.07.057spa
dc.relation.referencesBrehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. The Journal of Infectious Diseases, 208 Suppl(Suppl 2), 125–130. https://doi.org/10.1093/infdis/jit319spa
dc.relation.referencesBreschi, A., Gingeras, T. R., & Guigó, R. (2017). Comparative transcriptomics in human and mouse. Nature Reviews Genetics, 18(7), 425–440. https://doi.org/10.1038/nrg.2017.19spa
dc.relation.referencesCai, M., Huang, X., Huang, X., Ju, D., Zhu, Y. Z., & Ye, L. (2023). Research progress of interleukin-15 in cancer immunotherapy. Frontiers in Pharmacology, 14(May). https://doi.org/10.3389/fphar.2023.1184703spa
dc.relation.referencesCarrega, P., Bonaccorsi, I., Di Carlo, E., Morandi, B., Paul, P., Rizzello, V., Cipollone, G., Navarra, G., Mingari, M. C., Moretta, L., & Ferlazzo, G. (2014). CD56brightPerforinlow Noncytotoxic Human NK Cells Are Abundant in Both Healthy and Neoplastic Solid Tissues and Recirculate to Secondary Lymphoid Organs via Afferent Lymph. The Journal of Immunology, 192(8), 3805–3815. https://doi.org/10.4049/jimmunol.1301889spa
dc.relation.referencesCha, J. H., Chan, L. C., Song, M. S., & Hung, M. C. (2020). New approaches on cancer immunotherapy. Cold Spring Harbor Perspectives in Medicine, 10(8), 1–16. https://doi.org/10.1101/cshperspect.a036863spa
dc.relation.referencesChang, Y. F., McMahon, J. E., Hennon, D. L., LaPorte, R. E., Coben, J. H., Y.-F., C., J.E., M., D.L., H., R.E., L., & J.H., C. (1997). Dog bite incidence in the city of pittsburgh: A capture-recapture approach. American Journal of Public Health, 87(10), 1703–1705. https://doi.org/10.2105/AJPH.87.10.1703spa
dc.relation.referencesChen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012spa
dc.relation.referencesChen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039spa
dc.relation.referencesChoi, S. S., Chhabra, V. S., Nguyen, Q. H., Ank, B. J., Stiehm, E. R., & Roberts, R. L. (2004). Interleukin-15 Enhances Cytotoxicity, Receptor Expression, and Expansion of Neonatal Natural Killer Cells in Long-Term Culture. Clinical and Vaccine Immunology, 11(5), 879–888. https://doi.org/10.1128/CDLI.11.5.879-888.2004spa
dc.relation.referencesConlon, K. C., Lugli, E., Welles, H. C., Rosenberg, S. A., Fojo, A. T., Morris, J. C., Fleisher, T. A., Dubois, S. P., Perera, L. P., Stewart, D. M., Goldman, C. K., Bryant, B. R., Decker, J. M., Chen, J., Worthy, T. A., Figg, W. D., Peer, C. J., Sneller, M. C., Lane, H. C., … Waldmann, T. A. (2015). Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. Journal of Clinical Oncology, 33(1), 74–82. https://doi.org/10.1200/JCO.2014.57.3329spa
dc.relation.referencesConlon, K. C., Potter, E. L., Pittaluga, S., Lee, C. R., Miljkovic, M. D., Fleisher, T. A., Dubois, S., Bryant, B. R., Petrus, M., Perera, L. P., Hsu, J., Figg, W. D., Peer, C. J., Shih, J. H., Yovandich, J. L., Creekmore, S. P., Roederer, M., & Waldmann, T. A. (2019). IL15 by Continuous Intravenous Infusion to Adult Patients with Solid Tumors in a Phase I Trial Induced Dramatic NK-Cell Subset Expansion. Clinical Cancer Research, 25(16), 4945–4954. https://doi.org/10.1158/1078-0432.CCR-18-3468spa
dc.relation.referencesCornish, G. H., Sinclair, L. V., & Cantrell, D. A. (2006). Differential regulation of T-cell growth by IL-2 and IL-15. Blood, 108(2), 600–608. https://doi.org/10.1182/blood-2005-12-4827spa
dc.relation.referencesCroce, M., Orengo, A. M., Azzarone, B., & Ferrini, S. (2012). Immunotherapeutic applications of IL-15. Immunotherapy, 4(9), 957–969. https://doi.org/10.2217/imt.12.92spa
dc.relation.referencesCuesta-Mateos, C., Terrón, F., & Herling, M. (2021). CCR7 in Blood Cancers – Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Frontiers in Oncology, 11(October), 1–25. https://doi.org/10.3389/fonc.2021.736758spa
dc.relation.referencesDe Guillebon, E., Dardenne, A., Saldmann, A., Séguier, S., Tran, T., Paolini, L., Lebbe, C., & Tartour, E. (2020). Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. International Journal of Cancer, 147(6), 1509–1518. https://doi.org/10.1002/ijc.32889spa
dc.relation.referencesDi Rosa, F., & Gebhardt, T. (2016). Bone marrow T cells and the integrated functions of recirculating and tissue-resident memory T cells. Frontiers in Immunology, 7(FEB), 1–13. https://doi.org/10.3389/fimmu.2016.00051spa
dc.relation.referencesDubois, S., Mariner, J., Waldmann, T. A., & Tagaya, Y. (2002). IL-15Rα Recycles and Presents IL-15 In trans to Neighboring Cells. Immunity, 17(5), 537–547. https://doi.org/10.1016/S1074-7613(02)00429-6spa
dc.relation.referencesDunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22(4), 329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803spa
dc.relation.referencesElhage, A., Sligar, C., Cuthbertson, P., Watson, D., & Sluyter, R. (2022). Insights into mechanisms of graft-versus-host disease through humanised mouse models. Bioscience Reports, 42(9), 1–23. https://doi.org/10.1042/BSR20211986spa
dc.relation.referencesFehniger, T. A. (2019). Mystery Solved: IL-15. The Journal of Immunology, 202(11), 3125–3126. https://doi.org/10.4049/jimmunol.1900419spa
dc.relation.referencesFerlazzo, G., Thomas, D., Lin, S., Goodman, K., Morandi, B., Muller, W. A., Moretta, A., & Münz, C. (2004). The Abundant NK Cells in Human Secondary Lymphoid Tissues Require Activation to Express Killer Cell Ig-Like Receptors and Become Cytolytic. The Journal of Immunology, 172(3), 1455–1462. https://doi.org/10.4049/jimmunol.172.3.1455spa
dc.relation.referencesFiore, P. F., Di Matteo, S., Tumino, N., Mariotti, F. R., Pietra, G., Ottonello, S., Negrini, S., Bottazzi, B., Moretta, L., Mortier, E., & Azzarone, B. (2020). Interleukin-15 and cancer: some solved and many unsolved questions. Journal for ImmunoTherapy of Cancer, 8(2), e001428. https://doi.org/10.1136/jitc-2020-001428spa
dc.relation.referencesGajewski, T. F., Corrales, L., Williams, J., Horton, B., Sivan, A., & Spranger, S. (2017). Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. In P. Kalinski (Ed.), Physiology & behavior (Vol. 1036, Issue 2, pp. 19–31). Springer International Publishing. https://doi.org/10.1007/978-3-319-67577-0_2spa
dc.relation.referencesGhorani, E., Swanton, C., & Quezada, S. A. (2023). Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity, 56(10), 2270–2295. https://doi.org/10.1016/j.immuni.2023.09.004spa
dc.relation.referencesGrabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., Johnson, L., Alderson, M. R., Watson, J. D., Anderson, D. M., & Giri, J. G. (1994). Cloning of a T Cell Growth Factor that Interacts with the β Chain of the Interleukin-2 Receptor. Science, 264(5161), 965–968. https://doi.org/10.1126/science.8178155spa
dc.relation.referencesGuo, Y., Luan, L., Patil, N. K., & Sherwood, E. R. (2017). Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine & Growth Factor Reviews, 38(1), 10–21. https://doi.org/10.1016/j.cytogfr.2017.08.002spa
dc.relation.referencesHayakawa, Y., Huntington, N. D., Nutt, S. L., & Smyth, M. J. (2006). Functional subsets of mouse natural killer cells. Immunological Reviews, 214(1), 47–55. https://doi.org/10.1111/j.1600-065X.2006.00454.xspa
dc.relation.referencesHerndler-Brandstetter, D., Shan, L., Yao, Y., Stecher, C., Plajer, V., Lietzenmayer, M., Strowig, T., de Zoete, M. R., Palm, N. W., Chen, J., Blish, C. A., Frleta, D., Gurer, C., Macdonald, L. E., Murphy, A. J., Yancopoulos, G. D., Montgomery, R. R., & Flavell, R. A. (2017). Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proceedings of the National Academy of Sciences, 114(45), E9626–E9634. https://doi.org/10.1073/pnas.1705301114spa
dc.relation.referencesHung, S., Kasperkowitz, A., Kurz, F., Dreher, L., Diessner, J., Ibrahim, E. S., Schwarz, S., Ohlsen, K., & Hertlein, T. (2023). Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1127709spa
dc.relation.referencesIshikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L. D., & Harada, M. (2005). Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood, 106(5), 1565–1573. https://doi.org/10.1182/blood-2005-02-0516spa
dc.relation.referencesKapila V, Wehrle CJ, Tuma F. Physiology, Spleen. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537307/spa
dc.relation.referencesKenney, L. L., Shultz, L. D., Greiner, D. L., & Brehm, M. A. (2016). Humanized Mouse Models for Transplant Immunology. American Journal of Transplantation, 16(2), 389–397. https://doi.org/10.1111/ajt.13520spa
dc.relation.referencesKim, S. K., & Cho, S. W. (2022). The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Frontiers in Pharmacology, 13(May), 1–16. https://doi.org/10.3389/fphar.2022.868695spa
dc.relation.referencesLabani-Motlagh, A., Ashja-Mahdavi, M., & Loskog, A. (2020). The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Frontiers in Immunology, 11(May), 1–22. https://doi.org/10.3389/fimmu.2020.00940spa
dc.relation.referencesLeclercq, G., Debacker, V., de Smedt, M., & Plum, J. (1996). Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. The Journal of Experimental Medicine, 184(2), 325–336. https://doi.org/10.1084/jem.184.2.325spa
dc.relation.references‘Mac’ Cheever, M. A. (2008). Twelve immunotherapy drugs that could cure cancers. Immunological Reviews, 222(1), 357–368. https://doi.org/10.1111/j.1600-065X.2008.00604.xspa
dc.relation.referencesManjunath, N., Shankar, P., Wan, J., Weninger, W., Crowley, M. A., Hieshima, K., Springer, T. A., Fan, X., Shen, H., Lieberman, J., & von Andrian, U. H. (2001). Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. The Journal of clinical investigation, 108(6), 871–878. https://doi.org/10.1172/JCI13296spa
dc.relation.referencesMantovani, A., Romero, P., Palucka, A. K., & Marincola, F. M. (2008). Tumour immunity: effector response to tumour and role of the microenvironment. The Lancet, 371(9614), 771–783. https://doi.org/10.1016/S0140-6736(08)60241-Xspa
dc.relation.referencesMao, Y., van Hoef, V., Zhang, X., Wennerberg, E., Lorent, J., Witt, K., Masvidal, L., Liang, S., Murray, S., Larsson, O., Kiessling, R., & Lundqvist, A. (2016). IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood, 128(11), 1475–1489. https://doi.org/10.1182/blood-2016-02-698027spa
dc.relation.referencesMellman, I., Chen, D. S., Powles, T., & Turley, S. J. (2023). The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity, 56(10), 2188–2205. https://doi.org/10.1016/j.immuni.2023.09.011spa
dc.relation.referencesMorris, R., Kershaw, N. J., & Babon, J. J. (2018). The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Science, 27(12), 1984–2009. https://doi.org/10.1002/pro.3519spa
dc.relation.referencesMortier, E., Quéméner, A., Vusio, P., Lorenzen, I., Boublik, Y., Grötzinger, J., Plet, A., & Jacques, Y. (2006). Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action through IL-15Rβ/γ: Hyperagonist IL-15·IL-15Rα fusion proteins. Journal of Biological Chemistry, 281(3), 1612–1619. https://doi.org/10.1074/jbc.M508624200spa
dc.relation.referencesMuroyama, Y., & Wherry, E. J. (2021). Memory t-cell heterogeneity and terminology. Cold Spring Harbor Perspectives in Medicine, 13(10), 1–20. https://doi.org/10.1101/cshperspect.a037929spa
dc.relation.referencesNolz, J. C., & Richer, M. J. (2020). Control of memory CD8+ T cell longevity and effector functions by IL-15. Molecular Immunology, 117(3), 180–188. https://doi.org/10.1016/j.molimm.2019.11.011spa
dc.relation.referencesO’connell, A. K., & Douam, F. (2020). Humanized mice for live-attenuated vaccine research: From unmet potential to new promises. Vaccines, 8(1). https://doi.org/10.3390/vaccines8010036spa
dc.relation.referencesOlson, B., Li, Y., Lin, Y., Liu, E. T., & Patnaik, A. (2018). Mouse Models for Cancer Immunotherapy Research. Cancer Discovery, 8(11), 1358–1365. https://doi.org/10.1158/2159-8290.CD-18-0044spa
dc.relation.referencesPatidar, M., Yadav, N., & Dalai, S. K. (2016). Interleukin 15: A key cytokine for immunotherapy. Cytokine & Growth Factor Reviews, 31, 49–59. https://doi.org/10.1016/j.cytogfr.2016.06.001spa
dc.relation.referencesPoli, A., Michel, T., Thérésine, M., Andrès, E., Hentges, F., & Zimmer, J. (2009). CD56 bright natural killer (NK) cells: an important NK cell subset. Immunology, 126(4), 458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.xspa
dc.relation.referencesRan, G. he, Lin, Y. qing, Tian, L., Zhang, T., Yan, D. mei, Yu, J. hua, & Deng, Y. cai. (2022). Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01058-zspa
dc.relation.referencesRheinländer, A., Schraven, B., & Bommhardt, U. (2018). CD45 in human physiology and clinical medicine. Immunology Letters, 196(November 2017), 22–32. https://doi.org/10.1016/j.imlet.2018.01.009spa
dc.relation.referencesRhode, P. R., Egan, J. O., Xu, W., Hong, H., Webb, G. M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., Kong, L., Edwards, A. C., Han, K., Shi, S., Alter, S., Sacha, J. B., Jeng, E. K., Cai, W., & Wong, H. C. (2016). Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunology Research, 4(1), 49–60. https://doi.org/10.1158/2326-6066.CIR-15-0093-Tspa
dc.relation.referencesRomagnani, C., Juelke, K., Falco, M., Morandi, B., D’Agostino, A., Costa, R., Ratto, G., Forte, G., Carrega, P., Lui, G., Conte, R., Strowig, T., Moretta, A., Münz, C., Thiel, A., Moretta, L., & Ferlazzo, G. (2007). CD56brightCD16− Killer Ig-Like Receptor− NK Cells Display Longer Telomeres and Acquire Features of CD56dim NK Cells upon Activation. The Journal of Immunology, 178(8), 4947–4955. https://doi.org/10.4049/jimmunol.178.8.4947spa
dc.relation.referencesRomee, R., Cooley, S., Berrien-Elliott, M. M., Westervelt, P., Verneris, M. R., Wagner, J. E., Weisdorf, D. J., Blazar, B. R., Ustun, C., DeFor, T. E., Vivek, S., Peck, L., DiPersio, J. F., Cashen, A. F., Kyllo, R., Musiek, A., Schaffer, A., Anadkat, M. J., Rosman, I., … Miller, J. S. (2018). First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood, 131(23), 2515–2527. https://doi.org/10.1182/blood-2017-12-823757spa
dc.relation.referencesRomero, P., Zippelius, A., Kurth, I., Pittet, M. J., Touvrey, C., Iancu, E. M., Corthesy, P., Devevre, E., Speiser, D. E., & Rufer, N. (2007). Four Functionally Distinct Populations of Human Effector-Memory CD8+ T Lymphocytes. The Journal of Immunology, 178(7), 4112–4119. https://doi.org/10.4049/jimmunol.178.7.4112spa
dc.relation.referencesRosenberg, S. A. (2014). IL-2: The First Effective Immunotherapy for Human Cancer. The Journal of Immunology, 192(12), 5451–5458. https://doi.org/10.4049/jimmunol.1490019spa
dc.relation.referencesSalguero, G., Sundarasetty, B. S., Borchers, S., Wedekind, D., Eiz-Vesper, B., Velaga, S., Jirmo, A. C., Behrens, G., Warnecke, G., Knöfel, A.-K., Blasczyk, R., Mischak-Weissinger, E., Ganser, A., & Stripecke, R. (2011). Preconditioning Therapy with Lentiviral Vector-Programmed Dendritic Cells Accelerates the Homeostatic Expansion of Antigen-Reactive Human T Cells in NOD.Rag1 −/− .IL-2rγc −/− mice. Human Gene Therapy, 22(10), 1209–1224. https://doi.org/10.1089/hum.2010.215spa
dc.relation.referencesSckisel, G. D., Bouchlaka, M. N., Monjazeb, A. M., Crittenden, M., Curti, B. D., Wilkins, D. E. C., Alderson, K. A., Sungur, C. M., Ames, E., Mirsoian, A., Reddy, A., Alexander, W., Soulika, A., Blazar, B. R., Longo, D. L., Wiltrout, R. H., & Murphy, W. J. (2015). Out-of-Sequence Signal 3 Paralyzes Primary CD4+ T-Cell-Dependent Immunity. Immunity, 43(2), 240–250. https://doi.org/10.1016/j.immuni.2015.06.023spa
dc.relation.referencesSeder, R. A., & Ahmed, R. (2003). Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nature Immunology, 4(9), 835–842. https://doi.org/10.1038/ni969spa
dc.relation.referencesStoklasek, T. A., Schluns, K. S., & Lefrançois, L. (2006). Combined IL-15/IL-15Rα Immunotherapy Maximizes IL-15 Activity In Vivo. The Journal of Immunology, 177(9), 6072–6080. https://doi.org/10.4049/jimmunol.177.9.6072spa
dc.relation.referencesTeng, M. W. L., Galon, J., Fridman, W.-H., & Smyth, M. J. (2015). From mice to humans: developments in cancer immunoediting. Journal of Clinical Investigation, 125(9), 3338–3346. https://doi.org/10.1172/JCI80004spa
dc.relation.referencesTraggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., & Manz, M. G. (2004). Development of a Human Adaptive Immune System in Cord Blood Cell-Transplanted Mice. Science, 304(5667), 104–107. https://doi.org/10.1126/science.1093933spa
dc.relation.referencesTumino, N., Nava Lauson, C. B., Tiberti, S., Besi, F., Martini, S., Fiore, P. F., Scodamaglia, F., Mingari, M. C., Moretta, L., Manzo, T., & Vacca, P. (2023). The tumor microenvironment drives NK cell metabolic dysfunction leading to impaired antitumor activity. International Journal of Cancer, 152(8), 1698–1706. https://doi.org/10.1002/ijc.34389spa
dc.relation.referencesVelcheti, V., & Schalper, K. (2016). Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book, 36, 298–308. https://doi.org/10.1200/EDBK_156572spa
dc.relation.referencesWagner, J. A., Rosario, M., Romee, R., Berrien-Elliott, M. M., Schneider, S. E., Leong, J. W., Sullivan, R. P., Jewell, B. A., Becker-Hapak, M., Schappe, T., Abdel-Latif, S., Ireland, A. R., Jaishankar, D., King, J. A., Vij, R., Clement, D., Goodridge, J., Malmberg, K., Wong, H. C., & Fehniger, T. A. (2017). CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. Journal of Clinical Investigation, 127(11), 4042–4058. https://doi.org/10.1172/JCI90387spa
dc.relation.referencesWaldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 20(11), 651–668. https://doi.org/10.1038/s41577-020-0306-5spa
dc.relation.referencesWaldmann, T. A., Dubois, S., Miljkovic, M. D., & Conlon, K. C. (2020). IL-15 in the Combination Immunotherapy of Cancer. Frontiers in Immunology, 11(May). https://doi.org/10.3389/fimmu.2020.00868spa
dc.relation.referencesXu, X., Gu, H., Li, H., Gao, S., Shi, X., Shen, J., Li, B., Wang, H., Zheng, K., Shao, Z., Cheng, P., Cha, Z., Peng, S., Nie, Y., Li, Z., Guo, S., Qian, B., & Jin, G. (2022). Large‐cohort humanized NPI mice reconstituted with CD34 + hematopoietic stem cells are feasible for evaluating preclinical cancer immunotherapy. The FASEB Journal, 36(4). https://doi.org/10.1096/fj.202101548RRspa
dc.relation.referencesYang, Y. (2015). Cancer immunotherapy: harnessing the immune system to battle cancer. Journal of Clinical Investigation, 125(9), 3335–3337. https://doi.org/10.1172/JCI83871spa
dc.relation.referencesYang, Y., & Lundqvist, A. (2020). Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy. Cancers, 12(12), 3586. https://doi.org/10.3390/cancers12123586spa
dc.relation.referencesYang, Y., Neo, S. Y., Chen, Z., Cui, W., Chen, Y., Guo, M., Wang, Y., Xu, H., Kurzay, A., Alici, E., Holmgren, L., Haglund, F., Wang, K., & Lundqvist, A. (2020). Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. Journal of Clinical Investigation, 130(10), 5508–5522. https://doi.org/10.1172/JCI137585spa
dc.relation.referencesZheng, X., Wu, Y., Bi, J., Huang, Y., Cheng, Y., Li, Y., Wu, Y., Cao, G., & Tian, Z. (2022). The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cellular and Molecular Immunology, 19(2), 192–209. https://doi.org/10.1038/s41423-021-00786-6spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsInterleucina-15/uso terapéuticospa
dc.subject.decsInterleukin-15/therapeutic useeng
dc.subject.decsNeoplasias/ tratamiento farmacológicospa
dc.subject.decsNeoplasms/drug therapyeng
dc.subject.decsMicroambiente Tumoralspa
dc.subject.decsTumor Microenvironmenteng
dc.subject.proposalInmunoterapiaspa
dc.subject.proposalInterleuquina-15spa
dc.subject.proposalCitotoxicidadspa
dc.subject.proposalModelos in vivo humanizadosspa
dc.subject.proposalCáncerspa
dc.subject.proposalImmunotherapyeng
dc.subject.proposalInterleukin-15eng
dc.subject.proposalCytotoxicityeng
dc.subject.proposalHumanized in vivo modelseng
dc.subject.proposalCancereng
dc.titleEvaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoralspa
dc.title.translatedEvaluation of the capacity of soluble or membrane-bound interleukin-15 to induce cytotoxic immune responses in a murine tumor modeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameInstituto Distrital de Ciencia, Biotecnología e Innovación en Salud - IDCBISspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
965422.2024.pdf
Tamaño:
5.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: