Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
| dc.contributor.advisor | Muñoz Suárez, Alejandra Margarita | spa |
| dc.contributor.advisor | Parra López, Carlos Alberto | spa |
| dc.contributor.author | Ishikawa, Flávia Midori | spa |
| dc.contributor.projectleader | Salguero López, Gustavo Andrés | spa |
| dc.contributor.researchgroup | Unidad de Terapias Avanzadas Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud | spa |
| dc.date.accessioned | 2024-07-24T18:42:27Z | |
| dc.date.available | 2024-07-24T18:42:27Z | |
| dc.date.issued | 2024-06-26 | |
| dc.description | ilustraciones, diagramas | spa |
| dc.description.abstract | La IL-15 ha sido considerada por el National Cancer Institute como una de las inmunoterapias más promisoras para el tratamiento del cáncer, una molécula central en la activación de la inmunidad antiviral y antitumoral sin un aparente efecto dual, siendo excelente alternativa a la IL-2. La IL-15 interactúa con su receptor α formando un complejo IL-15/IL-15Rα en la membrana de células dendríticas, monocitos y macrófagos. Este complejo interactúa con los receptores IL-2Rβ/γ de las células T y NK en transpresentación, promoviendo la señalización necesaria para una potente activación y proliferación de estos tipos celulares. Sin embargo, los mecanismos y efectos de la activación celular de la IL-15/IL-15Rα no han sido completamente elucidados en el contexto humano in vivo, y se carecen de estudios en modelos preclínicos con mayor poder traslacional que puedan contribuir al entendimiento del rol de esta citoquina en el contexto clínico del cáncer. En este trabajo se investigó el potencial efecto in vivo de dos formas de complejo IL-15/IL-5Rα, uno anclado a la membrana y el otro en una forma soluble (IL-15mb vs IL-15s), en el crecimiento tumor de una línea de melanoma maligno humano. Para esto se utilizaron dos modelos murinos humanizados a partir de la cepa NRG, con la transferencia de leucocitos de sangre periférica (HuPBL) y con el trasplante de células progenitoras hematopoyéticas (HuHSC). En este estudio se demostró que la IL-15, en complejo con su receptor α, tiene un potente efecto antitumoral sobre las células inmunes, principalmente las células T y NK. El efecto antitumoral fue evidenciado a través de la reducción del crecimiento tumoral y mayor infiltración de dichas células en el tumor y en la sangre periférica. Este trabajo contribuye a la comprensión del efecto de la IL-15 en el microambiente tumoral, permitiendo identificar vías clave de esta molécula en la estimulación de la inmunidad antitumoral, lo que abre la puerta al desarrollo de posibles terapias novedosas para pacientes con cáncer. (Texto tomado de la fuente). | spa |
| dc.description.abstract | IL-15 has been considered by the National Cancer Institute as one of the most promising immunotherapies for cancer treatment, serving as a central molecule in the activation of antiviral and antitumor immunity without apparent dual effects, making it an excellent alternative to IL-2. IL-15 is frequently bound to its receptor α, forming an IL-15/IL-15Rα complex on the membrane of dendritic cells, monocytes, and macrophages. This complex interacts with IL-2Rβ/γ receptors on T and NK cells in transpresentation, promoting the necessary signaling for potent activation and proliferation of these cells. The mechanisms of action have not been fully elucidated, and there is a lack of preclinical studies with higher translational power to contribute to understanding the role of this cytokine in the clinical context of cancer. This study investigated the potential in vivo effect of two IL-15/IL-5Rα agonists, one anchored to the membrane and the other in a soluble form (IL-15mb vs. IL-15s), on the tumor growth of a human malignant melanoma cell line. Two humanized murine models were utilized, derived from the NRG strain, with the transfer of peripheral blood leukocytes (HuPBL) and the transplantation of hematopoietic stem cells (HuHSC). Here, we demonstrated that IL-15, in complex with its α receptor, has a potent antitumor effect on immune cells, primarily T and NK cells. The antitumor effect was evidenced by the reduction in tumor growth and increased infiltration of these cells in the tumor and peripheral blood. This work contributes to the understanding of the IL-15 effect in the tumor microenvironment, identifying key pathways of this potent molecule in stimulation, leading to potential novel therapies for cancer patients. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Biología | spa |
| dc.format.extent | xiii, 146 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86610 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
| dc.relation.indexed | Bireme | spa |
| dc.relation.references | Akdis, M., Burgler, S., Crameri, R., Eiwegger, T., Fujita, H., Gomez, E., Klunker, S., Meyer, N., O’Mahony, L., Palomares, O., Rhyner, C., Quaked, N., Schaffartzik, A., Van De Veen, W., Zeller, S., Zimmermann, M., & Akdis, C. A. (2011). Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology, 127(3), 701-721.e70. https://doi.org/10.1016/j.jaci.2010.11.050 | spa |
| dc.relation.references | Allen, T. M., Brehm, M. A., Bridges, S., Ferguson, S., Kumar, P., Mirochnitchenko, O., Palucka, K., Pelanda, R., Sanders-Beer, B., Shultz, L. D., Su, L., & PrabhuDas, M. (2019). Humanized immune system mouse models: progress, challenges and opportunities. Nature Immunology, 20(7), 770–774. https://doi.org/10.1038/s41590-019-0416-z | spa |
| dc.relation.references | Awad, R. M., Lecocq, Q., Zeven, K., Ertveldt, T., De Beck, L., Ceuppens, H., Broos, K., De Vlaeminck, Y., Goyvaerts, C., Verdonck, M., Raes, G., Van Parys, A., Cauwels, A., Keyaerts, M., Devoogdt, N., & Breckpot, K. (2021). Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods & Clinical Development, 22, 172–182. https://doi.org/10.1016/j.omtm.2021.05.017 | spa |
| dc.relation.references | Bergamaschi, C., Bear, J., Rosati, M., Beach, R. K., Alicea, C., Sowder, R., Chertova, E., Rosenberg, S. A., Felber, B. K., & Pavlakis, G. N. (2012). Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood, 120(1), e1–e8. https://doi.org/10.1182/blood-2011-10-384362 | spa |
| dc.relation.references | Bessard, A., Solé, V., Bouchaud, G., Quéméner, A., & Jacques, Y. (2009). High antitumor activity of RLI, an interleukin-15 (IL-15)–IL-15 receptor α fusion protein, in metastatic melanoma and colorectal cancer. Molecular Cancer Therapeutics, 8(9), 2736–2745. https://doi.org/10.1158/1535-7163.MCT-09-0275 | spa |
| dc.relation.references | Borish, L. C., & Steinke, J. W. (2003). 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2), S460–S475. https://doi.org/10.1067/mai.2003.108 | spa |
| dc.relation.references | Boudko, S. P., Sasaki, T., Engel, J., Lerch, T. F., Nix, J., Chapman, M. S., & Bächinger, H. P. (2009). Crystal Structure of Human Collagen XVIII Trimerization Domain: A Novel Collagen Trimerization Fold. Journal of Molecular Biology, 392(3), 787–802. https://doi.org/10.1016/j.jmb.2009.07.057 | spa |
| dc.relation.references | Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. The Journal of Infectious Diseases, 208 Suppl(Suppl 2), 125–130. https://doi.org/10.1093/infdis/jit319 | spa |
| dc.relation.references | Breschi, A., Gingeras, T. R., & Guigó, R. (2017). Comparative transcriptomics in human and mouse. Nature Reviews Genetics, 18(7), 425–440. https://doi.org/10.1038/nrg.2017.19 | spa |
| dc.relation.references | Cai, M., Huang, X., Huang, X., Ju, D., Zhu, Y. Z., & Ye, L. (2023). Research progress of interleukin-15 in cancer immunotherapy. Frontiers in Pharmacology, 14(May). https://doi.org/10.3389/fphar.2023.1184703 | spa |
| dc.relation.references | Carrega, P., Bonaccorsi, I., Di Carlo, E., Morandi, B., Paul, P., Rizzello, V., Cipollone, G., Navarra, G., Mingari, M. C., Moretta, L., & Ferlazzo, G. (2014). CD56brightPerforinlow Noncytotoxic Human NK Cells Are Abundant in Both Healthy and Neoplastic Solid Tissues and Recirculate to Secondary Lymphoid Organs via Afferent Lymph. The Journal of Immunology, 192(8), 3805–3815. https://doi.org/10.4049/jimmunol.1301889 | spa |
| dc.relation.references | Cha, J. H., Chan, L. C., Song, M. S., & Hung, M. C. (2020). New approaches on cancer immunotherapy. Cold Spring Harbor Perspectives in Medicine, 10(8), 1–16. https://doi.org/10.1101/cshperspect.a036863 | spa |
| dc.relation.references | Chang, Y. F., McMahon, J. E., Hennon, D. L., LaPorte, R. E., Coben, J. H., Y.-F., C., J.E., M., D.L., H., R.E., L., & J.H., C. (1997). Dog bite incidence in the city of pittsburgh: A capture-recapture approach. American Journal of Public Health, 87(10), 1703–1705. https://doi.org/10.2105/AJPH.87.10.1703 | spa |
| dc.relation.references | Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012 | spa |
| dc.relation.references | Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039 | spa |
| dc.relation.references | Choi, S. S., Chhabra, V. S., Nguyen, Q. H., Ank, B. J., Stiehm, E. R., & Roberts, R. L. (2004). Interleukin-15 Enhances Cytotoxicity, Receptor Expression, and Expansion of Neonatal Natural Killer Cells in Long-Term Culture. Clinical and Vaccine Immunology, 11(5), 879–888. https://doi.org/10.1128/CDLI.11.5.879-888.2004 | spa |
| dc.relation.references | Conlon, K. C., Lugli, E., Welles, H. C., Rosenberg, S. A., Fojo, A. T., Morris, J. C., Fleisher, T. A., Dubois, S. P., Perera, L. P., Stewart, D. M., Goldman, C. K., Bryant, B. R., Decker, J. M., Chen, J., Worthy, T. A., Figg, W. D., Peer, C. J., Sneller, M. C., Lane, H. C., … Waldmann, T. A. (2015). Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. Journal of Clinical Oncology, 33(1), 74–82. https://doi.org/10.1200/JCO.2014.57.3329 | spa |
| dc.relation.references | Conlon, K. C., Potter, E. L., Pittaluga, S., Lee, C. R., Miljkovic, M. D., Fleisher, T. A., Dubois, S., Bryant, B. R., Petrus, M., Perera, L. P., Hsu, J., Figg, W. D., Peer, C. J., Shih, J. H., Yovandich, J. L., Creekmore, S. P., Roederer, M., & Waldmann, T. A. (2019). IL15 by Continuous Intravenous Infusion to Adult Patients with Solid Tumors in a Phase I Trial Induced Dramatic NK-Cell Subset Expansion. Clinical Cancer Research, 25(16), 4945–4954. https://doi.org/10.1158/1078-0432.CCR-18-3468 | spa |
| dc.relation.references | Cornish, G. H., Sinclair, L. V., & Cantrell, D. A. (2006). Differential regulation of T-cell growth by IL-2 and IL-15. Blood, 108(2), 600–608. https://doi.org/10.1182/blood-2005-12-4827 | spa |
| dc.relation.references | Croce, M., Orengo, A. M., Azzarone, B., & Ferrini, S. (2012). Immunotherapeutic applications of IL-15. Immunotherapy, 4(9), 957–969. https://doi.org/10.2217/imt.12.92 | spa |
| dc.relation.references | Cuesta-Mateos, C., Terrón, F., & Herling, M. (2021). CCR7 in Blood Cancers – Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Frontiers in Oncology, 11(October), 1–25. https://doi.org/10.3389/fonc.2021.736758 | spa |
| dc.relation.references | De Guillebon, E., Dardenne, A., Saldmann, A., Séguier, S., Tran, T., Paolini, L., Lebbe, C., & Tartour, E. (2020). Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. International Journal of Cancer, 147(6), 1509–1518. https://doi.org/10.1002/ijc.32889 | spa |
| dc.relation.references | Di Rosa, F., & Gebhardt, T. (2016). Bone marrow T cells and the integrated functions of recirculating and tissue-resident memory T cells. Frontiers in Immunology, 7(FEB), 1–13. https://doi.org/10.3389/fimmu.2016.00051 | spa |
| dc.relation.references | Dubois, S., Mariner, J., Waldmann, T. A., & Tagaya, Y. (2002). IL-15Rα Recycles and Presents IL-15 In trans to Neighboring Cells. Immunity, 17(5), 537–547. https://doi.org/10.1016/S1074-7613(02)00429-6 | spa |
| dc.relation.references | Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22(4), 329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803 | spa |
| dc.relation.references | Elhage, A., Sligar, C., Cuthbertson, P., Watson, D., & Sluyter, R. (2022). Insights into mechanisms of graft-versus-host disease through humanised mouse models. Bioscience Reports, 42(9), 1–23. https://doi.org/10.1042/BSR20211986 | spa |
| dc.relation.references | Fehniger, T. A. (2019). Mystery Solved: IL-15. The Journal of Immunology, 202(11), 3125–3126. https://doi.org/10.4049/jimmunol.1900419 | spa |
| dc.relation.references | Ferlazzo, G., Thomas, D., Lin, S., Goodman, K., Morandi, B., Muller, W. A., Moretta, A., & Münz, C. (2004). The Abundant NK Cells in Human Secondary Lymphoid Tissues Require Activation to Express Killer Cell Ig-Like Receptors and Become Cytolytic. The Journal of Immunology, 172(3), 1455–1462. https://doi.org/10.4049/jimmunol.172.3.1455 | spa |
| dc.relation.references | Fiore, P. F., Di Matteo, S., Tumino, N., Mariotti, F. R., Pietra, G., Ottonello, S., Negrini, S., Bottazzi, B., Moretta, L., Mortier, E., & Azzarone, B. (2020). Interleukin-15 and cancer: some solved and many unsolved questions. Journal for ImmunoTherapy of Cancer, 8(2), e001428. https://doi.org/10.1136/jitc-2020-001428 | spa |
| dc.relation.references | Gajewski, T. F., Corrales, L., Williams, J., Horton, B., Sivan, A., & Spranger, S. (2017). Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. In P. Kalinski (Ed.), Physiology & behavior (Vol. 1036, Issue 2, pp. 19–31). Springer International Publishing. https://doi.org/10.1007/978-3-319-67577-0_2 | spa |
| dc.relation.references | Ghorani, E., Swanton, C., & Quezada, S. A. (2023). Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity, 56(10), 2270–2295. https://doi.org/10.1016/j.immuni.2023.09.004 | spa |
| dc.relation.references | Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., Johnson, L., Alderson, M. R., Watson, J. D., Anderson, D. M., & Giri, J. G. (1994). Cloning of a T Cell Growth Factor that Interacts with the β Chain of the Interleukin-2 Receptor. Science, 264(5161), 965–968. https://doi.org/10.1126/science.8178155 | spa |
| dc.relation.references | Guo, Y., Luan, L., Patil, N. K., & Sherwood, E. R. (2017). Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine & Growth Factor Reviews, 38(1), 10–21. https://doi.org/10.1016/j.cytogfr.2017.08.002 | spa |
| dc.relation.references | Hayakawa, Y., Huntington, N. D., Nutt, S. L., & Smyth, M. J. (2006). Functional subsets of mouse natural killer cells. Immunological Reviews, 214(1), 47–55. https://doi.org/10.1111/j.1600-065X.2006.00454.x | spa |
| dc.relation.references | Herndler-Brandstetter, D., Shan, L., Yao, Y., Stecher, C., Plajer, V., Lietzenmayer, M., Strowig, T., de Zoete, M. R., Palm, N. W., Chen, J., Blish, C. A., Frleta, D., Gurer, C., Macdonald, L. E., Murphy, A. J., Yancopoulos, G. D., Montgomery, R. R., & Flavell, R. A. (2017). Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proceedings of the National Academy of Sciences, 114(45), E9626–E9634. https://doi.org/10.1073/pnas.1705301114 | spa |
| dc.relation.references | Hung, S., Kasperkowitz, A., Kurz, F., Dreher, L., Diessner, J., Ibrahim, E. S., Schwarz, S., Ohlsen, K., & Hertlein, T. (2023). Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1127709 | spa |
| dc.relation.references | Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L. D., & Harada, M. (2005). Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood, 106(5), 1565–1573. https://doi.org/10.1182/blood-2005-02-0516 | spa |
| dc.relation.references | Kapila V, Wehrle CJ, Tuma F. Physiology, Spleen. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537307/ | spa |
| dc.relation.references | Kenney, L. L., Shultz, L. D., Greiner, D. L., & Brehm, M. A. (2016). Humanized Mouse Models for Transplant Immunology. American Journal of Transplantation, 16(2), 389–397. https://doi.org/10.1111/ajt.13520 | spa |
| dc.relation.references | Kim, S. K., & Cho, S. W. (2022). The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Frontiers in Pharmacology, 13(May), 1–16. https://doi.org/10.3389/fphar.2022.868695 | spa |
| dc.relation.references | Labani-Motlagh, A., Ashja-Mahdavi, M., & Loskog, A. (2020). The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Frontiers in Immunology, 11(May), 1–22. https://doi.org/10.3389/fimmu.2020.00940 | spa |
| dc.relation.references | Leclercq, G., Debacker, V., de Smedt, M., & Plum, J. (1996). Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. The Journal of Experimental Medicine, 184(2), 325–336. https://doi.org/10.1084/jem.184.2.325 | spa |
| dc.relation.references | ‘Mac’ Cheever, M. A. (2008). Twelve immunotherapy drugs that could cure cancers. Immunological Reviews, 222(1), 357–368. https://doi.org/10.1111/j.1600-065X.2008.00604.x | spa |
| dc.relation.references | Manjunath, N., Shankar, P., Wan, J., Weninger, W., Crowley, M. A., Hieshima, K., Springer, T. A., Fan, X., Shen, H., Lieberman, J., & von Andrian, U. H. (2001). Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. The Journal of clinical investigation, 108(6), 871–878. https://doi.org/10.1172/JCI13296 | spa |
| dc.relation.references | Mantovani, A., Romero, P., Palucka, A. K., & Marincola, F. M. (2008). Tumour immunity: effector response to tumour and role of the microenvironment. The Lancet, 371(9614), 771–783. https://doi.org/10.1016/S0140-6736(08)60241-X | spa |
| dc.relation.references | Mao, Y., van Hoef, V., Zhang, X., Wennerberg, E., Lorent, J., Witt, K., Masvidal, L., Liang, S., Murray, S., Larsson, O., Kiessling, R., & Lundqvist, A. (2016). IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood, 128(11), 1475–1489. https://doi.org/10.1182/blood-2016-02-698027 | spa |
| dc.relation.references | Mellman, I., Chen, D. S., Powles, T., & Turley, S. J. (2023). The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity, 56(10), 2188–2205. https://doi.org/10.1016/j.immuni.2023.09.011 | spa |
| dc.relation.references | Morris, R., Kershaw, N. J., & Babon, J. J. (2018). The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Science, 27(12), 1984–2009. https://doi.org/10.1002/pro.3519 | spa |
| dc.relation.references | Mortier, E., Quéméner, A., Vusio, P., Lorenzen, I., Boublik, Y., Grötzinger, J., Plet, A., & Jacques, Y. (2006). Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action through IL-15Rβ/γ: Hyperagonist IL-15·IL-15Rα fusion proteins. Journal of Biological Chemistry, 281(3), 1612–1619. https://doi.org/10.1074/jbc.M508624200 | spa |
| dc.relation.references | Muroyama, Y., & Wherry, E. J. (2021). Memory t-cell heterogeneity and terminology. Cold Spring Harbor Perspectives in Medicine, 13(10), 1–20. https://doi.org/10.1101/cshperspect.a037929 | spa |
| dc.relation.references | Nolz, J. C., & Richer, M. J. (2020). Control of memory CD8+ T cell longevity and effector functions by IL-15. Molecular Immunology, 117(3), 180–188. https://doi.org/10.1016/j.molimm.2019.11.011 | spa |
| dc.relation.references | O’connell, A. K., & Douam, F. (2020). Humanized mice for live-attenuated vaccine research: From unmet potential to new promises. Vaccines, 8(1). https://doi.org/10.3390/vaccines8010036 | spa |
| dc.relation.references | Olson, B., Li, Y., Lin, Y., Liu, E. T., & Patnaik, A. (2018). Mouse Models for Cancer Immunotherapy Research. Cancer Discovery, 8(11), 1358–1365. https://doi.org/10.1158/2159-8290.CD-18-0044 | spa |
| dc.relation.references | Patidar, M., Yadav, N., & Dalai, S. K. (2016). Interleukin 15: A key cytokine for immunotherapy. Cytokine & Growth Factor Reviews, 31, 49–59. https://doi.org/10.1016/j.cytogfr.2016.06.001 | spa |
| dc.relation.references | Poli, A., Michel, T., Thérésine, M., Andrès, E., Hentges, F., & Zimmer, J. (2009). CD56 bright natural killer (NK) cells: an important NK cell subset. Immunology, 126(4), 458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.x | spa |
| dc.relation.references | Ran, G. he, Lin, Y. qing, Tian, L., Zhang, T., Yan, D. mei, Yu, J. hua, & Deng, Y. cai. (2022). Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01058-z | spa |
| dc.relation.references | Rheinländer, A., Schraven, B., & Bommhardt, U. (2018). CD45 in human physiology and clinical medicine. Immunology Letters, 196(November 2017), 22–32. https://doi.org/10.1016/j.imlet.2018.01.009 | spa |
| dc.relation.references | Rhode, P. R., Egan, J. O., Xu, W., Hong, H., Webb, G. M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., Kong, L., Edwards, A. C., Han, K., Shi, S., Alter, S., Sacha, J. B., Jeng, E. K., Cai, W., & Wong, H. C. (2016). Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunology Research, 4(1), 49–60. https://doi.org/10.1158/2326-6066.CIR-15-0093-T | spa |
| dc.relation.references | Romagnani, C., Juelke, K., Falco, M., Morandi, B., D’Agostino, A., Costa, R., Ratto, G., Forte, G., Carrega, P., Lui, G., Conte, R., Strowig, T., Moretta, A., Münz, C., Thiel, A., Moretta, L., & Ferlazzo, G. (2007). CD56brightCD16− Killer Ig-Like Receptor− NK Cells Display Longer Telomeres and Acquire Features of CD56dim NK Cells upon Activation. The Journal of Immunology, 178(8), 4947–4955. https://doi.org/10.4049/jimmunol.178.8.4947 | spa |
| dc.relation.references | Romee, R., Cooley, S., Berrien-Elliott, M. M., Westervelt, P., Verneris, M. R., Wagner, J. E., Weisdorf, D. J., Blazar, B. R., Ustun, C., DeFor, T. E., Vivek, S., Peck, L., DiPersio, J. F., Cashen, A. F., Kyllo, R., Musiek, A., Schaffer, A., Anadkat, M. J., Rosman, I., … Miller, J. S. (2018). First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood, 131(23), 2515–2527. https://doi.org/10.1182/blood-2017-12-823757 | spa |
| dc.relation.references | Romero, P., Zippelius, A., Kurth, I., Pittet, M. J., Touvrey, C., Iancu, E. M., Corthesy, P., Devevre, E., Speiser, D. E., & Rufer, N. (2007). Four Functionally Distinct Populations of Human Effector-Memory CD8+ T Lymphocytes. The Journal of Immunology, 178(7), 4112–4119. https://doi.org/10.4049/jimmunol.178.7.4112 | spa |
| dc.relation.references | Rosenberg, S. A. (2014). IL-2: The First Effective Immunotherapy for Human Cancer. The Journal of Immunology, 192(12), 5451–5458. https://doi.org/10.4049/jimmunol.1490019 | spa |
| dc.relation.references | Salguero, G., Sundarasetty, B. S., Borchers, S., Wedekind, D., Eiz-Vesper, B., Velaga, S., Jirmo, A. C., Behrens, G., Warnecke, G., Knöfel, A.-K., Blasczyk, R., Mischak-Weissinger, E., Ganser, A., & Stripecke, R. (2011). Preconditioning Therapy with Lentiviral Vector-Programmed Dendritic Cells Accelerates the Homeostatic Expansion of Antigen-Reactive Human T Cells in NOD.Rag1 −/− .IL-2rγc −/− mice. Human Gene Therapy, 22(10), 1209–1224. https://doi.org/10.1089/hum.2010.215 | spa |
| dc.relation.references | Sckisel, G. D., Bouchlaka, M. N., Monjazeb, A. M., Crittenden, M., Curti, B. D., Wilkins, D. E. C., Alderson, K. A., Sungur, C. M., Ames, E., Mirsoian, A., Reddy, A., Alexander, W., Soulika, A., Blazar, B. R., Longo, D. L., Wiltrout, R. H., & Murphy, W. J. (2015). Out-of-Sequence Signal 3 Paralyzes Primary CD4+ T-Cell-Dependent Immunity. Immunity, 43(2), 240–250. https://doi.org/10.1016/j.immuni.2015.06.023 | spa |
| dc.relation.references | Seder, R. A., & Ahmed, R. (2003). Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nature Immunology, 4(9), 835–842. https://doi.org/10.1038/ni969 | spa |
| dc.relation.references | Stoklasek, T. A., Schluns, K. S., & Lefrançois, L. (2006). Combined IL-15/IL-15Rα Immunotherapy Maximizes IL-15 Activity In Vivo. The Journal of Immunology, 177(9), 6072–6080. https://doi.org/10.4049/jimmunol.177.9.6072 | spa |
| dc.relation.references | Teng, M. W. L., Galon, J., Fridman, W.-H., & Smyth, M. J. (2015). From mice to humans: developments in cancer immunoediting. Journal of Clinical Investigation, 125(9), 3338–3346. https://doi.org/10.1172/JCI80004 | spa |
| dc.relation.references | Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., & Manz, M. G. (2004). Development of a Human Adaptive Immune System in Cord Blood Cell-Transplanted Mice. Science, 304(5667), 104–107. https://doi.org/10.1126/science.1093933 | spa |
| dc.relation.references | Tumino, N., Nava Lauson, C. B., Tiberti, S., Besi, F., Martini, S., Fiore, P. F., Scodamaglia, F., Mingari, M. C., Moretta, L., Manzo, T., & Vacca, P. (2023). The tumor microenvironment drives NK cell metabolic dysfunction leading to impaired antitumor activity. International Journal of Cancer, 152(8), 1698–1706. https://doi.org/10.1002/ijc.34389 | spa |
| dc.relation.references | Velcheti, V., & Schalper, K. (2016). Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book, 36, 298–308. https://doi.org/10.1200/EDBK_156572 | spa |
| dc.relation.references | Wagner, J. A., Rosario, M., Romee, R., Berrien-Elliott, M. M., Schneider, S. E., Leong, J. W., Sullivan, R. P., Jewell, B. A., Becker-Hapak, M., Schappe, T., Abdel-Latif, S., Ireland, A. R., Jaishankar, D., King, J. A., Vij, R., Clement, D., Goodridge, J., Malmberg, K., Wong, H. C., & Fehniger, T. A. (2017). CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. Journal of Clinical Investigation, 127(11), 4042–4058. https://doi.org/10.1172/JCI90387 | spa |
| dc.relation.references | Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 20(11), 651–668. https://doi.org/10.1038/s41577-020-0306-5 | spa |
| dc.relation.references | Waldmann, T. A., Dubois, S., Miljkovic, M. D., & Conlon, K. C. (2020). IL-15 in the Combination Immunotherapy of Cancer. Frontiers in Immunology, 11(May). https://doi.org/10.3389/fimmu.2020.00868 | spa |
| dc.relation.references | Xu, X., Gu, H., Li, H., Gao, S., Shi, X., Shen, J., Li, B., Wang, H., Zheng, K., Shao, Z., Cheng, P., Cha, Z., Peng, S., Nie, Y., Li, Z., Guo, S., Qian, B., & Jin, G. (2022). Large‐cohort humanized NPI mice reconstituted with CD34 + hematopoietic stem cells are feasible for evaluating preclinical cancer immunotherapy. The FASEB Journal, 36(4). https://doi.org/10.1096/fj.202101548RR | spa |
| dc.relation.references | Yang, Y. (2015). Cancer immunotherapy: harnessing the immune system to battle cancer. Journal of Clinical Investigation, 125(9), 3335–3337. https://doi.org/10.1172/JCI83871 | spa |
| dc.relation.references | Yang, Y., & Lundqvist, A. (2020). Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy. Cancers, 12(12), 3586. https://doi.org/10.3390/cancers12123586 | spa |
| dc.relation.references | Yang, Y., Neo, S. Y., Chen, Z., Cui, W., Chen, Y., Guo, M., Wang, Y., Xu, H., Kurzay, A., Alici, E., Holmgren, L., Haglund, F., Wang, K., & Lundqvist, A. (2020). Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. Journal of Clinical Investigation, 130(10), 5508–5522. https://doi.org/10.1172/JCI137585 | spa |
| dc.relation.references | Zheng, X., Wu, Y., Bi, J., Huang, Y., Cheng, Y., Li, Y., Wu, Y., Cao, G., & Tian, Z. (2022). The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cellular and Molecular Immunology, 19(2), 192–209. https://doi.org/10.1038/s41423-021-00786-6 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
| dc.subject.decs | Interleucina-15/uso terapéutico | spa |
| dc.subject.decs | Interleukin-15/therapeutic use | eng |
| dc.subject.decs | Neoplasias/ tratamiento farmacológico | spa |
| dc.subject.decs | Neoplasms/drug therapy | eng |
| dc.subject.decs | Microambiente Tumoral | spa |
| dc.subject.decs | Tumor Microenvironment | eng |
| dc.subject.proposal | Inmunoterapia | spa |
| dc.subject.proposal | Interleuquina-15 | spa |
| dc.subject.proposal | Citotoxicidad | spa |
| dc.subject.proposal | Modelos in vivo humanizados | spa |
| dc.subject.proposal | Cáncer | spa |
| dc.subject.proposal | Immunotherapy | eng |
| dc.subject.proposal | Interleukin-15 | eng |
| dc.subject.proposal | Cytotoxicity | eng |
| dc.subject.proposal | Humanized in vivo models | eng |
| dc.subject.proposal | Cancer | eng |
| dc.title | Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral | spa |
| dc.title.translated | Evaluation of the capacity of soluble or membrane-bound interleukin-15 to induce cytotoxic immune responses in a murine tumor model | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
| oaire.fundername | Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud - IDCBIS | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 965422.2024.pdf
- Tamaño:
- 5.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

