Producción de polioles a partir de aceite de palma alto oleico

dc.contributor.advisorOrjuela Londoño, Álvarospa
dc.contributor.advisorGarcía Núñez, Jesús Albertospa
dc.contributor.authorBohorquez Malaver, Wilson Felipespa
dc.contributor.orcid0000-0001-6735-2412spa
dc.contributor.researchgroupDiseño de procesos químicos y bioquímicosspa
dc.date.accessioned2023-01-17T21:24:10Z
dc.date.available2023-01-17T21:24:10Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractThe growing concerns regarding the impact of plastics on the environment and the trends towards the consumption of bioplastics and biopolymers have driven the use of vegetable polyols as biobased monomers, particularly those produced from vegetable oils with a high degree of unsaturations. In this direction, and from a preliminary study of the national and international market for biopolymers and natural polyols, the necessary stages for the production of oleochemical polyols from high oleic palm oil (HOPO) were explored. First, the oil was characterized and its epoxidation was studied, determining the best reaction conditions using a simplex optimization algorithm. This made it possible to obtain an epoxide with an oxirane index of 3.49 gOxirane Oxygen/gOil and a high selectivity (>80%). Subsequently, the hydroxylation reaction of epoxidized HOPO with ethylene glycol was studied, determining a suitable kinetic model for subsequent feasibility studies and industrial scale up. To track reaction progress, the hydroxyl and oxirane values were measured, for which a near-infrared (NIR) measurement technique was developed. This technique is safer and more environmentally friendly than traditional titration methods, in addition to demonstrating good precision and reliability. Based on the reaction experiments it was observed that the kinetic model is first order with respect to the oxirane oxygen content in the epoxidized HOPO, and second order with respect to ethylene glycol. In general terms, as a result of the hydroxylation, polyols with a hydroxyl index of up to 245 mg KOH/g and a functionality of ~5 mol OH/mol polyol could be obtained. Finally, to demonstrate its potential use, flexible polyurethane foams were successfully manufactured with the HOPO-based polyol.eng
dc.description.abstractLas crecientes preocupaciones y tendencias en el consumo de bioplásticos y polímeros impulsaron el desarrollo de polioles a partir de aceite de palma alto en oleico. En esta tesis de maestría se estudiaron los pasos necesarios para producir polioles, así como el mercado nacional e internacional de biopolímeros y polioles naturales. En primer lugar, se caracterizó el aceite y se estudió la epoxidación, donde se determinaron los mejores parámetros de reacción con un algoritmo de optimización simplex, obteniendo un producto con 3,49 g de oxígeno oxirano/g de aceite y una alta selectividad (<80%). Posteriormente se estudió la reacción de hidroxilación determinando su modelo cinético. se demostró que el modelo cinético es de primer orden con respecto al contenido de oxígeno del oxirano en el HOPO Epoxidado, y de segundo orden con respecto al etilenglicol. Se produjo un poliol con un índice de hidroxilo de 230 mg KOH/g. Finalmente, con el poliol producido, se fabricaron con éxito espumas de poliuretano flexibles. Para llevar a cabo la medición del índice de hidroxilo y oxirano se desarrolló una técnica de medición mediante NIR utilizando una regresión PLS, la técnica es amigable con el medio ambiente, precisa y confiable. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaBiorrefinerías-Biocombustiblesspa
dc.format.extentxvii, 99 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82996
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAarkstore Market Research. (2019). Globla Aliphatic Polyester Polyol Market. https://www.24chemicalresearch.com/download-sample/79382/global-aliphatic-polyester-polyol-2021-107spa
dc.relation.referencesAl-Mulla, E. A. J., Yunus, W. Md. Z. W., Ibrahim, N. A. B., & Rahman, M. Z. Ab. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45(7), 1942–1946. https://doi.org/10.1007/s10853-009-4185-1spa
dc.relation.referencesAl-Suod, H., Ligor, M., Rațiu, I.-A., Rafińska, K., Górecki, R., & Buszewski, B. (2017). A window on cyclitols: Characterization and analytics of inositols. Phytochemistry Letters, 20, 507–519. https://doi.org/10.1016/j.phytol.2016.12.009spa
dc.relation.referencesAng, K. P., Lee, C. S., Cheng, S. F., & Chuah, C. H. (2014). Synthesis of palm oil-based polyester polyol for polyurethane adhesive production. Journal of Applied Polymer Science, 131(6), n/a-n/a. https://doi.org/10.1002/app.39967spa
dc.relation.referencesASTM. (2016). Standard Test Methods for Polyurethane Raw Materials: Determination of Viscosity of Polyols. ASTM D4878-15 https://doi.org/10.1520/D4878-15spa
dc.relation.referencesASTM. (2017). Polyurethane Raw Materials: Determining Hydroxyl Numer of Polyols by Near Infrared (NIR) Spectroscopy. http://doi.org/10.1520/D6342-22spa
dc.relation.referencesASTM. (2018). Standard Test Methods for Polyurethane Raw Materials: Determination of Gardner and APHA Color of Polyols. ASTM D4890-18. https://doi.org/10.1520/D4890-18spa
dc.relation.referencesASTM. (2019). Standard Test Method for Epoxy Content of Epoxy Resins. American Society for Testing and Materials. ASTM D1652-11(2019) https://doi.org/10.1520/D1652-11R19spa
dc.relation.referencesASTM. (2021). Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols. ASTM D4274-21 https://doi.org/10.1520/D4274-21spa
dc.relation.referencesBayer Material Science AG. (2012). Ullmann’s Encyclopedia of Industrial Chemistry (pp. 546–600). Wiley VCH Verlag GmbH &Co. https://doi.org/10.1002/14356007spa
dc.relation.referencesBeroe. (2020). Polyester and Polyether Polyols Category Intelligence. https://www.beroeinc.com/category-intelligence/polyester-and-polyether-polyols-market/spa
dc.relation.referencesBloomerg. (2019). Polyol Market Size Worth USD 45.17 Billion by 2025. : https://www.bloomberg.com/press-releases/2019-05-07/polyol-market-size-worth-usd-45-17-billion-by-2025-cagr-8-5-grand-view-research-inc.spa
dc.relation.referencesBurton, K. W. C., & Nickless, G. (1987). Optimisation via simplex. Chemometrics and Intelligent Laboratory Systems, 1(2), 135–149. https://doi.org/10.1016/0169-7439(87)80117-Xspa
dc.relation.referencesde Lucas Freile, A. (2018). Síntesis y formulación de nuevas espumas de poliuretano flexibles con propiedades mejoraadas [Tesis doctoral]. Universitat d’Alacant.spa
dc.relation.referencesDerawi, D., & Salimon, J. (2010). Optimization on Epoxidation of Palm Olein by Using Performic Acid. E-Journal of Chemistry, 7(4), 1440–1448. https://doi.org/10.1155/2010/384948spa
dc.relation.referencesDesroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 52(1), 38–79. https://doi.org/10.1080/15583724.2011.640443spa
dc.relation.referencesDinda, S., Patwardhan, A. v., Goud, V. v., & Pradhan, N. C. (2008a). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3737–3744. https://doi.org/10.1016/j.biortech.2007.07.015spa
dc.relation.referencesDinda, S., Patwardhan, A. v., Goud, V. v., & Pradhan, N. C. (2008b). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3737–3744. https://doi.org/10.1016/j.biortech.2007.07.015spa
dc.relation.referencesDumont, M.-J., Kharraz, E., & Qi, H. (2013). Production of polyols and mono-ols from 10 North-American vegetable oils by ozonolysis and hydrogenation: A characterization study. Industrial Crops and Products, 49, 830–836. https://doi.org/10.1016/j.indcrop.2013.07.016spa
dc.relation.referencesFedePalma. (2021). Evolucion historica anual del fruto procesado, el aceite de palma y el palmiste extraídos. http://sispaweb.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccionspa
dc.relation.referencesGhosh, S., & Sudha, M. L. (2012). A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition, 63(3), 372–379. https://doi.org/10.3109/09637486.2011.627846spa
dc.relation.referencesGil, J., Herrera, M., Duitama, J., Sarria, G., Restrepo, S., & Romero, H. M. (2020). Genomic Variability of Phytophthora palmivora Isolates from Different Oil Palm Cultivation Regions in Colombia. Phytopathology®, 110(9), 1553–1564. https://doi.org/10.1094/PHYTO-06-19-0209-Rspa
dc.relation.referencesGrand view research. (2018). Polyols Market Size, Share & Trends Analysis Report by product, by application and segment forecasts, 2018 – 2025. Chapter 4. https://www.grandviewresearch.com/industry-analysis/polyols-marketspa
dc.relation.referencesGrand View Research. (2021). Natural Oil Polyols Market Size, Share & Trends Analysis. https://www.grandviewresearch.com/industry-analysis/natural-oil-polyols-nop-marketspa
dc.relation.referencesGuo, A., Demydov, D., Zhang, W., & Petrovic, Z. S. (2002). Polyols and Polyurethanes from Hydroformylation of Soybean Oil. Journal of Polymers and the Environment, 10(1/2), 49–52. https://doi.org/10.1023/A:1021022123733spa
dc.relation.referencesGuo, A., & Petrovic, Z. (2005). Vegetable Oils-Based Polyols. In S. Z. Erhan (Ed.), Industrial uses of vegetable oils (1st ed., pp. 110–130). AOCS Press.spa
dc.relation.referencesIAL Consultants. (2019). Global Market for Aromatic Polyester Polyols 2019.spa
dc.relation.referencesIHS Markit. (2018a). Chemical Econimic Handbook: Polyether Polyols for Urethanes. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbook.html.spa
dc.relation.referencesIHS Markit. (2018b). Chemical Economics Handbook: Polyether Polyols for Urethanes. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbookspa
dc.relation.referencesIHS Markit. (2018c, December). Polyether Polyols for Urethanes. Https://Ihsmarkit.Com/Products/Polyether-Polyols-Urethanes-Chemical-Economics-Handbook.Html. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbook.htmlspa
dc.relation.referencesIonescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes. Rapra Technology Limited.spa
dc.relation.referencesIHS Markit. (2019). Chemical Economic Handbook: Polyester Polyols. https://ihsmarkit.com/products/polyester-plyols-chemical-economics-handbook.htmlspa
dc.relation.referencesIonescu, M., Radojčić, D., Wan, X., Petrović, Z. S., & Upshaw, T. A. (2015). Functionalized vegetable oils as precursors for polymers by thiol-ene reaction. European Polymer Journal, 67, 439–448. https://doi.org/10.1016/j.eurpolymj.2014.12.037spa
dc.relation.referencesJaengmee, T., Pongmuksuwan, P., & Kitisatorn, W. (2021). Development of bio-based epoxy resin from palm oil. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.10.059spa
dc.relation.referencesJalil, M. J. (2019). Optimization of Palm Oleic Acid Epoxidation via in Situ Generated Performic Acid Using Taguchi Orthogonal Array Design and the Study of Reaction Kinetics. Smart Science, 7(4), 252–259. https://doi.org/10.1080/23080477.2019.1663392spa
dc.relation.referencesJanković, M. R., Govedarica, O. M., & Sinadinović-Fišer, S. v. (2020). The epoxidation of linseed oil with in situ formed peracetic acid: A model with included influence of the oil fatty acid composition. Industrial Crops and Products, 143. https://doi.org/10.1016/j.indcrop.2019.111881spa
dc.relation.referencesKurańska, M., Beneš, H., Prociak, A., Trhlíková, O., Walterová, Z., & Stochlińska, W. (2019). Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. Journal of Cleaner Production, 236. https://doi.org/10.1016/j.jclepro.2019.117615spa
dc.relation.referencesLeveneur, S., Zheng, J., Taouk, B., Burel, F., Wärnå, J., & Salmi, T. (2014). Interaction of thermal and kinetic parameters for a liquid-liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1449–1458. https://doi.org/10.1016/j.jtice.2014.01.015spa
dc.relation.referencesLi, Y., Luo, X., & Hu, S. (2015a). Bio-based Polyols and Polyurethanes. Springer International Publishing. https://doi.org/10.1007/978-3-319-21539-6spa
dc.relation.referencesLi, Y., Luo, X., & Hu, S. (2015b). Polyols and Polyurethanes from Vegetable Oils and Their Derivatives (pp. 15–43). https://doi.org/10.1007/978-3-319-21539-6_2spa
dc.relation.referencesLim, S. (2018a). Drivers for high Oleics. Oils and Fats International, September, 18–20.spa
dc.relation.referencesLim, S. (2018b). Drivers for high oleics. Oils and Fats International, 18–20.spa
dc.relation.referencesLumcharoen, D., & Saravari, O. (2014). Preparation and Characterization of Flexible Polyurethane Foams from Palm Oil-Based Polyol. Advanced Materials Research, 911, 352–356. https://doi.org/10.4028/www.scientific.net/AMR.911.352spa
dc.relation.referencesMaisonneuve, L., Chollet, G., Grau, E., & Cramail, H. (2016). Vegetable oils: a source of polyols for polyurethane materials. OCL, 23(5), D508. https://doi.org/10.1051/ocl/2016031spa
dc.relation.referencesMohd Nor, N., Derawi, D., & Salimon, J. (2018a). The Optimization of RBD Palm Oil Epoxidation Process using D-Optimal Design. Sains Malaysiana, 47(07), 1359–1367. https://doi.org/10.17576/jsm-2018-4707-02spa
dc.relation.referencesMohd Nor, N., Derawi, D., & Salimon, J. (2018b). The Optimization of RBD Palm Oil Epoxidation Process using D-Optimal Design. Sains Malaysiana, 47(07), 1359–1367. https://doi.org/10.17576/jsm-2018-4707-02spa
dc.relation.referencesMondragon, A., & Pinilla, C. (2015). Aceite de palma alto oleico: propiedades físico-químicas y beneficios para la salud humana. Palmas, 36, 57–66.spa
dc.relation.referencesMondragón, A., & Pinilla, C. (2015). High oleic palm oil: Physicochemical properties and benefits for human health (Spanish). Palmas, 36(4), 57–66.spa
dc.relation.referencesMoore, Z. (2019, June 19). US polyether polyol prices move higher on stronger propylene. 1independent Commodity Intellignece Services (ICIS). https://www.icis.com/explore/resources/news/2019/06/12/10377708/us-polyether-polyol-prices-move-higher-on-stronger-propylenespa
dc.relation.referencesNohra, B., Candy, L., Blanco, J.-F., Guerin, C., Raoul, Y., & Mouloungui, Z. (2013). From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes. Macromolecules, 46(10), 3771–3792. https://doi.org/10.1021/ma400197cspa
dc.relation.referencesOECD-FAO. (2018). Agricultural Outlook 2018-2027. http://www.fao.org/3/i9166en/I9166EN.pdfspa
dc.relation.referencesOertel, G., & Abele, L. (1994). Polyurethane handbook: chemistry, raw materials, processing, application, properties. Hanser Publishers.spa
dc.relation.referencesOlivero, J. A. (2019). The high oleic option. Olis Nad Fats International, January, 27–29.spa
dc.relation.referencesOmonov, T. S., & Curtis, J. M. (2016). Plant-oil based epoxy intermediates for polymers. In S. A. Madbouly, C. Zhang, & M. R. Kessler (Eds.), Bio-Based Plant Oil Polymers and Composites (pp. 99–125). Elsevier.spa
dc.relation.referencesPasticsEurope. (2018). An analysis of European plastics production, demand and waste data. Https://Plasticseurope.Org/Wp-Content/Uploads/2021/10/2018-Plastics-the-Facts.Pdf.spa
dc.relation.referencesPetrović, Z. S., Cvetković, I., Hong, D., Wan, X., Zhang, W., Abraham, T. W., & Malsam, J. (2010). Vegetable oil‐based triols from hydroformylated fatty acids and polyurethane elastomers. European Journal of Lipid Science and Technology, 112(1), 97–102. https://doi.org/10.1002/ejlt.200900087spa
dc.relation.referencesPetrović, Z. S., Guo, A., Javni, I., Cvetković, I., & Hong, D. P. (2008). Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2), 275–281. https://doi.org/10.1002/pi.2340spa
dc.relation.referencesPfister, D. P., Xia, Y., & Larock, R. C. (2011). Recent Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem, 4(6), 703–717. https://doi.org/10.1002/cssc.201000378spa
dc.relation.referencesPrescient & Strategic Intelligence. (2021). Global Natural Oil Polyols Market Size, Share, Development, Growth and Demand Forecast to 2030. https://www.psmarketresearch.com/market-analysis/natural-oil-polyols-marketspa
dc.relation.referencesProciak, A., Malewska, E., Kurańska, M., Bąk, S., & Budny, P. (2018). Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Industrial Crops and Products, 115, 69–77. https://doi.org/10.1016/j.indcrop.2018.02.008spa
dc.relation.referencesResearch and Markets. (2019). Polyols Market by Type (Polyether Polyols and Polyester Polyols), Application (Flexible Polyurethane Foam, Rigid Polyurethane Foam, CASE), and Region (APAC, Europe, North America, South America and Middle East & Africa) - Global Forecast to 2024. https://www.researchandmarkets.com/reports/4774730/polyols-market-by-type-polyether-polyols-andspa
dc.relation.referencesRomero, H. M., Daza, E., Ayala-Díaz, I., & Ruiz-Romero, R. (2021). High-Oleic Palm Oil (HOPO) Production from Parthenocarpic Fruits in Oil Palm Interspecific Hybrids Using Naphthalene Acetic Acid. Agronomy, 11(2), 290. https://doi.org/10.3390/agronomy11020290spa
dc.relation.referencesRüsch gen. Klaas, M., & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Industrial Crops and Products, 9(2), 125–132. https://doi.org/10.1016/S0926-6690(98)00023-5spa
dc.relation.referencesRyberg, M. W., Laurent, A., & Hauschild, M. (2018). Mapping of global plastics value chain and plastics losses to the environment.spa
dc.relation.referencesShahido, F. (2005). Bailey’s Industrial Oil and Fat Products Edible Oil and Fat products (6th ed., Vol. 5). Wiley.spa
dc.relation.referencesSicex. (2019). Imports by tariff subheadings.spa
dc.relation.referencesSkoczinski, P., Carus, M., de Guzman, D., Käb, H., Chinthapalli, R., Ravenstijn, J., Baltus, W., & Raschka, A. (2021). Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. Http://Bio-Based.Eu/Downloads/Bio-Based-Building-Blocks-and-Polymers-Global-Capacities-Production-and-Trends-2020-2025/ .spa
dc.relation.referencesSpendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation. Technometrics, 4(4), 441–461. https://doi.org/10.1080/00401706.1962.10490033spa
dc.relation.referencesStadler, B. M., Wulf, C., Werner, T., Tin, S., & de Vries, J. G. (2019). Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catalysis, 9(9), 8012–8067. https://doi.org/10.1021/acscatal.9b01665spa
dc.relation.referencesTan, S. G., & Chow, W. S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polymer-Plastics Technology and Engineering, 49(15), 1581–1590. https://doi.org/10.1080/03602559.2010.512338spa
dc.relation.referencesTransparency Market Research. (2017). Polyehter Polyols Market. https://www.transparencymarketresearch.com/polyether-polyols-market.htmlspa
dc.relation.referencesVanbésien, T., Monflier, E., & Hapiot, F. (2016). Hydroformylation of vegetable oils: More than 50 years of technical innovation, successful research, and development. European Journal of Lipid Science and Technology, 118(1), 26–35. https://doi.org/10.1002/ejlt.201500196spa
dc.relation.referencesVianello, C., Piccolo, D., Lorenzetti, A., Salzano, E., & Maschio, G. (2018). Study of Soybean Oil Epoxidation: Effects of Sulfuric Acid and the Mixing Program. Industrial and Engineering Chemistry Research, 57(34), 11517–11525. https://doi.org/10.1021/acs.iecr.8b01109spa
dc.relation.referencesYarbro, L. A., & Deming, S. N. (1974). Selection and preprocessing of factors for simplex optimization. Analytica Chimica Acta, 73(2), 391–398. https://doi.org/10.1016/S0003-2670(01)85476-3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocAceites de palmasspa
dc.subject.agrovocpalm oilseng
dc.subject.agrovocTecnología químicaspa
dc.subject.agrovocChemical technologyeng
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesspa
dc.subject.proposalEpoxidationeng
dc.subject.proposalHydroxylationeng
dc.subject.proposalhigh oleic palm oileng
dc.subject.proposalpolyurethane foamseng
dc.subject.proposalNIReng
dc.subject.proposalEpoxidaciónspa
dc.subject.proposalHidroxilaciónspa
dc.subject.proposalAceite de palma alto oleicospa
dc.subject.unescoAceite vegetalspa
dc.subject.unescoVegetable oilseng
dc.titleProducción de polioles a partir de aceite de palma alto oleicospa
dc.title.translatedProduction of polyols from high oleic palm oileng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCeniPalmaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestria Wilson Felipe Bohorquez Malaver.pdf
Tamaño:
3.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: