Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética

dc.contributor.advisorGiraldo Gutiérrez, Lilianaspa
dc.contributor.advisorMoreno Piraján, Juan Carlosspa
dc.contributor.authorHernández Monje, Diana Cristinaspa
dc.contributor.researchgroupGrupo de Calorimetríaspa
dc.date.accessioned2023-01-18T01:28:40Z
dc.date.available2023-01-18T01:28:40Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractSe evaluó la adsorción desde fase gas y fase líquida de benceno, tolueno, ciclohexano y hexano sobre cinco muestras de carbón activado modificadas térmica y químicamente, caracterizando los sólidos por medio de diferentes técnicas. Para la fase gas se evaluaron las isotermas de adsorción de los hidrocarburos sobre los sólidos porosos, mientras que para la fase líquida se emplearon como adsorbatos soluciones de los compuestos orgánicos; posteriormente las isotermas se ajustaron a los modelos de Langmuir y Freundlich. También se determinaron las cinéticas de adsorción y se ajustaron a los modelos de pseudo primer y pseudo segundo orden, así como al modelo de difusión intraparticular. Para evaluar la energía involucrada en la interacción entre los adsorbatos y los sólidos, se calcularon los parámetros del modelo Dubinin-Radushkevich y Dubinin-Radushkevich-Kaganer para determinar la energía característica de adsorción de los solventes desde fase gas y fase líquida y el volumen de microporo (fase gas); además, se realizó la inmersión de los sólidos en benceno, tolueno, ciclohexano y hexano y en mezclas binarias de los mismos para obtener la entalpía de inmersión para los solventes puros y las mezclas; para estas últimas se calculó la entalpía diferencial a fin de evaluar la contribución del soluto y del componente sólido-solvente al proceso de interacción. Se encontró que la adsorción e interacción sólido-adsorbato se favorece si el sólido tiene mayor área superficial, volumen de microporo, carácter básico e hidrofóbico y menor contenido de grupos ácidos y si los adsorbatos son de naturaleza aromática y presentan arreglo planar para apilarse en la estructura porosa. (Texto tomado de la fuente).spa
dc.description.abstractThe adsorption from gas phase and liquid phase of benzene, toluene, cyclohexane and hexane on five thermally and chemically modified activated carbon samples was evaluated, characterizing the solids by means of different techniques. For the gas phase, the adsorption isotherms of hydrocarbons on porous solids were evaluated, while solutions of organic compounds were used as adsorbates for the liquid phase; subsequently, the isotherms were adjusted to the Langmuir and Freundlich models. Adsorption kinetics were also determined and fitted to pseudo first and pseudo second order models, as well as to the intraparticle diffusion model. For evaluating the energy involved in the interaction between the adsorbates and the solids, the parameters of the Dubinin-Radushkevich and Dubinin-Radushkevich-Kaganer models were calculated to determine the characteristic adsorption energy of the solvents from the gas and liquid phases and the volume of micropore (gas phase); In addition, the solids were immersed in benzene, toluene, cyclohexane and hexane and in binary mixtures thereof to obtain the enthalpy of immersion for the pure solvents and the mixtures; for the latter, the differential enthalpy was calculated in order to evaluate the contribution of the solute and the solid-solvent component to the interaction process. It was found that the solid-adsorbate adsorption and interaction is favored if the solid has a higher surface area, micropore volume, basic and hydrophobic character and lower content of acid groups and if the adsorbates are aromatic in nature and have a planar arrangement to stack on the porous structure.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaTermodinámicaspa
dc.format.extentxxiv, 171 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83000
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesL. Bandura, D. Kołodyńska, W. Franus, Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash, Process Saf. Environ. Prot. (2017). https://doi.org/10.1016/j.psep.2017.03.036spa
dc.relation.referencesG. Gałezowska, M. Chraniuk, L. Wolska, In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review, TrAC - Trends Anal. Chem. 77 (2016) 14–22. https://doi.org/10.1016/j.trac.2015.10.012spa
dc.relation.referencesM.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ. 140 (2016) 117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031spa
dc.relation.referencesR. Tong, L. Zhang, X. Yang, J. Liu, P. Zhou, J. Li, Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing, J. Clean. Prod. 208 (2019) 1096–1108. https://doi.org/10.1016/j.jclepro.2018.10.195.spa
dc.relation.referencesX. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review, Sep. Purif. Technol. 235 (2020) 116213. https://doi.org/10.1016/j.seppur.2019.116213.spa
dc.relation.referencesY. Qi, L. Shen, J. Zhang, J. Yao, R. Lu, T. Miyakoshi, Species and release characteristics of VOCs in furniture coating process, Environ. Pollut. 245 (2019) 810–819. https://doi.org/10.1016/j.envpol.2018.11.057.spa
dc.relation.referencesE.H. Lee, D. Paek, Y.L. Kho, K. Choi, H.J. Chae, Color vision impairments among shipyard workers exposed to mixed organic solvents, especially xylene, Neurotoxicol. Teratol. 37 (2013) 39–43. https://doi.org/10.1016/j.ntt.2013.02.005.spa
dc.relation.referencesA.M. Betancur-Sánchez, E.M. Vásquez-Trespalacios, C. Sardi-Correa, Impaired colour vision in workers exposed to organic solvents: A systematic review, Arch. La Soc. Española Oftalmol. (English Ed. 92 (2017) 12–18. https://doi.org/10.1016/j.oftale.2016.09.003.spa
dc.relation.referencesE.M.D.C.B. Lacerda, M.G. Lima, A.R. Rodrigues, C.E.C. Teixeira, L.J.B. De Lima, D.F. Ventura, L.C.D.L. Silveira, Psychophysical evaluation of achromatic and chromatic vision of workers chronically exposed to organic solvents, J. Environ. Public Health. 2012 (2012) 1–7. https://doi.org/10.1155/2012/784390.spa
dc.relation.referencesT.L. Costa, M.T.S. Barboni, A.L. de A. Moura, D.M.O. Bonci, M. Gualtieri, L.C. de Lima Silveira, D.F. Ventura, Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields, PLoS One. 7 (2012) 1–9. https://doi.org/10.1371/journal.pone.0042961.spa
dc.relation.referencesA.M. Landtblom, A. Kristoffersson, I. Boström, Organic solvent exposure as a risk factor for multiple sclerosis: An updated review, Rev. Neurol. (Paris). 175 (2019) 625–630. https://doi.org/10.1016/j.neurol.2019.07.014.spa
dc.relation.referencesC. Barul, M. Carton, L. Radoï, G. Menvielle, C. Pilorget, A.S. Woronoff, I. Stücker, D. Luce, Occupational exposure to petroleum-based and oxygenated solvents and oral and oropharyngeal cancer risk in men: A population-based case-control study in France, Cancer Epidemiol. 59 (2019) 22–28. https://doi.org/10.1016/j.canep.2019.01.005.spa
dc.relation.referencesS. Batterman, F.C. Su, S. Li, B. Mukherjee, C. Jia, HEI Health Review Committee, Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data., Res. Rep. Health. Eff. Inst. (2014) 3–63. http://www.ncbi.nlm.nih.gov/pubmed/25145040 (accessed October 6, 2017).spa
dc.relation.referencesA. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145.spa
dc.relation.referencesM.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater. 321 (2017) 484–499. https://doi.org/10.1016/j.jhazmat.2016.09.040.spa
dc.relation.referencesH. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A.spa
dc.relation.referencesX. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013.spa
dc.relation.referencesL. Zhou, Q. Yu, Y. Cui, F. Xie, W. Li, Y. Li, M. Chen, Adsorption properties of activated carbon from reed with a high adsorption capacity, Ecol. Eng. 102 (2017) 443–450. https://doi.org/10.1016/j.ecoleng.2017.02.036.spa
dc.relation.referencesY. Yang, X., Yi, H., Tang, X., Zhao, S., Yang, Z., Ma, Behaviors and kinetics of toluene adsorption‐desorption on activated carbons with varying pore structure, J. Environ. Sci. 67 (2018) 104–114. https://doi.org/10.1016/j.jes.2017.06.032.spa
dc.relation.referencesE. Gallego, F.J. Roca, J.F. Perales, X. Guardino, Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement, Build. Environ. 67 (2013) 14–25. https://doi.org/10.1016/j.buildenv.2013.05.003.spa
dc.relation.referencesL. Li, S. Liu, J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater. 192 (2011) 683–690. https://doi.org/10.1016/j.jhazmat.2011.05.069.spa
dc.relation.referencesA. Sekar, G.K. Varghese, M.K. Ravi Varma, Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment, Heliyon. 5 (2019) 2918. https://doi.org/10.1016/j.heliyon.2019.e02918.spa
dc.relation.referencesM. Song, X. Liu, Y. Zhang, M. Shao, K. Lu, Q. Tan, M. Feng, Y. Qu, Sources and abatement mechanisms of VOCs in southern China, Atmos. Environ. 201 (2019) 28–40. https://doi.org/10.1016/j.atmosenv.2018.12.019.spa
dc.relation.referencesW.-T. Tsai, Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea, Environments. 3 (2016) 23–30. https://doi.org/10.3390/environments3030023.spa
dc.relation.referencesJ. Fan, X. Gou, Y. Sun, X. Ran, W. Teng, X. Wang, Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs), Nat. Gas Ind. B. 4 (2017) 382–389. https://doi.org/10.1016/j.ngib.2017.10.003.spa
dc.relation.referencesM.M. Dubinin, Microporous structures of carbonaceous adsorbents, Carbon N. Y. 20 (1982) 195–200. https://doi.org/10.1016/0008-6223(82)90020-3.spa
dc.relation.referencesD. Hugi-Cleary, S. Wermeille, F. Stoeckli, The Characterization of Non-Porous Surfaces by a Combination of the BET and the Dubinin-Radushkevich-Kaganer (DRK) Theories, Chimia (Aarau). 57 (2003) 611–615. https://doi.org/10.2533/000942903777678740.spa
dc.relation.referencesR. Denoyel, F. Rouquerol, J. Rouquerol, Porous texture and surface characterization from liquid – solid interactions: immersion calorimetry and adsorption from solution, in: J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing (Eds.), Adsorpt. by Powders Porous Solids Princ. Methodol. Appl., ACADEMIC PRESS, INC., Kidlington, 2014: pp. 273–300.spa
dc.relation.referencesX. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. 338 (2017) 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013.spa
dc.relation.referencesL. Zhu, D. Shen, K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater. 389 (2020) 122102. https://doi.org/10.1016/j.jhazmat.2020.122102.spa
dc.relation.referencesA. Erto, S. Chianese, A. Lancia, D. Musmarra, On the mechanism of benzene and toluene adsorption in single-compound and binary systems: Energetic interactions and competitive effects, Desalin. Water Treat. 86 (2017) 259–265. https://doi.org/10.5004/dwt.2017.20712.spa
dc.relation.referencesJ.M. Martín Martínez, Porosidad de Carbones II. Teoría de Polanyi - Dubinin, in: Martín-Martínez JM (Ed.), Adsorción Física Gases y Vap. Por Carbones, Universidad de Alicante Publicaciones, Alicante, 1990: pp. 5–80.spa
dc.relation.referencesF. Stoeckli, A. Slasli, D. Hugi-Cleary, A. Guillot, The characterization of microporosity in carbons with molecular sieve effects, Microporous Mesoporous Mater. 51 (2002) 197–202. https://doi.org/10.1016/S1387-1811(01)00482-6.spa
dc.relation.referencesB. Rubahamya, K.S. Kumar Reddy, A. Prabhu, A. Al Shoaibi, C. Srinivasakannan, Porous carbon screening for benzene sorption, Environ. Prog. Sustain. Energy. 38 (2019) 93–99. https://doi.org/10.1002/ep.12925.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocAdsorciónspa
dc.subject.agrovocadsorptioneng
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.proposalCarbón activadospa
dc.subject.proposalAdsorciónspa
dc.subject.proposalCompuestos orgánicos volátilesspa
dc.subject.proposalCalorimetríaspa
dc.subject.proposalEntalpía de inmersiónspa
dc.subject.proposalGas phase adsorptioneng
dc.subject.proposalLiquid phase adsorptioneng
dc.subject.proposalActivated carboneng
dc.subject.proposalImmersion enthalpyeng
dc.subject.proposalOrganic solventseng
dc.subject.unescoTecnología de los combustiblesspa
dc.subject.unescoFuel technologyeng
dc.subject.unescoTecnología químicaspa
dc.subject.unescoChemical technologyeng
dc.titleAdsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energéticaspa
dc.title.translatedAdsorption of organic solvents from gas phase and organic liquid phase on modified activated carbons. Energy characterizationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070948464.2022.pdf
Tamaño:
7.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: