Evaluación del impacto en la motivación en el aprendizaje de los estudiantes de programación de computadores mediante el uso de una herramienta de evaluación automática

dc.contributor.advisorRestrepo Calle, Felipe
dc.contributor.advisorRamírez Echeverry, Jhon Jairo
dc.contributor.authorLozano Rojas, Hernan Dario
dc.contributor.researchgroupPlas Programming languages And Systemsspa
dc.date.accessioned2023-01-13T19:46:59Z
dc.date.available2023-01-13T19:46:59Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, gráficas, tablasspa
dc.description.abstractLa enseñanza y aprendizaje en el contexto educativo ha requerido a través del tiempo de diferentes esfuerzos por parte de los estudiantes y de los docentes para que se pueda dar un proceso satisfactorio en el que se cumpla con el objetivo de garantizar un completo aprendizaje. En el aprendizaje de la programación de computadores los estudiantes se enfrentan a distintos retos, por lo que el rol del docente, en su constante búsqueda y actualización, opta por incluir estrategias innovadoras mediante el apoyo de tecnologías computacionales con el fin de facilitar la apropiación del conocimiento por parte del estudiante. Cada vez hay más estrategias educativas que integran herramientas tecnológicas de evaluación automática de tipo juez online en las metodologías de clase de programación puesto que permiten: motivar al estudiante, promover el interés en las temáticas a partir de la práctica y la competencia y mejorar el rendimiento académico. Estas integraciones en las metodologías de clase de programación han registrado a través de la literatura que sus efectos son positivos en lo que respecta a mejoramiento en rendimiento, habilidades, mejora en la lógica y la participación. Sin embargo, se evidencia una falta de estudios con el fin de determinar si la motivación, como factor de aprendizaje, se ve afectada por la intervención de herramientas de evaluación automática en las sesiones de clase. Es por esto que el presente artículo se centra en evaluar el impacto en la motivación por aprender de los estudiantes al usar una herramienta de evaluación automática de programas en la asignatura de programación de computadores. A partir de un diseño de investigación cuasiexperimental se comparó el nivel de motivación en el aprendizaje de los estudiantes del grupo experimental y de los estudiantes de un grupo control (estudiantes que cursaron la asignatura sin usar la herramienta de evaluación automática seleccionada) por medio de un pretest y postest con el instrumento MSLQ-Colombia. Adicionalmente, los estudiantes del grupo experimental respondieron una encuesta con preguntas de respuesta abierta que permitió recopilar las diferentes percepciones sobre la herramienta y la integración de este tipo de estrategias en la metodología de la clase. Los datos recolectados permitieron realizar un análisis estadístico respecto a la variación de la motivación en el aprendizaje de los grupos que participaron. Por un lado, los datos cuantitativos recopilados a través del MSLQ-Colombia no evidenciaron diferencias significativas en la motivación de los estudiantes del grupo experimental en el que se integró la herramienta de evaluación automática. Por otro lado, la información cualitativa permitió contrastar el impacto hallado en el análisis cuantitativo. Los datos de la encuesta de opinión de los estudiantes permitieron observar un aumento en los niveles de autoeficacia para el rendimiento de los estudiantes. Estos resultados permiten entender de mejor manera los efectos de la integración de herramientas de evaluación automática en la motivación por aprender de los estudiantes de programación de computadores. (Texto tomado de la fuente)spa
dc.description.abstractTeaching and learning in the educational context has required over time different efforts by students and teachers to ensure a satisfactory process in which the objective of guaranteeing a complete learning process is met. In learning computer programming, students face different challenges, so the role of teachers, in their constant effort to improve, chooses to include innovative strategies through the support of computer technologies in order to facilitate the appropriation of knowledge by the student. There are more and more educational strategies that integrate technological tools of automatic evaluation of online judge type in the programming class methodologies since they allow: motivate the student, promote interest in the topics from practice and competition and improve academic performance. These integrations in programming class methodologies have been reported in the literature to have positive effects in terms of improvement in performance, skills, improvement in logic and participation. However, there is a lack of studies to determine whether motivation, as a learning factor, is affected by the intervention of automatic assessment tools in class sessions. For this reason, the present article focuses on evaluating the impact on students' learning motivation when using an automatic program assessment tool in a computer programming course. Based on a quasi-experimental research design, the level of learning motivation of students in the experimental group and students in a control group (students who took the course without using the selected automatic evaluation tool) were compared by means of a pretest and posttest with the MSLQ-Colombia instrument. Additionally, the students of the experimental group answered a survey with open-ended questions that allowed collecting the different perceptions about the tool and the integration of this type of strategies in the course methodology. The data collected allowed us to perform a statistical analysis regarding the variation of learning motivation in the groups that participated. On the one hand, the quantitative data collected through the MSLQ-Colombia did not show significant differences in the motivation of the students in the experimental group in which the automatic evaluation tool was integrated. On the other hand, the qualitative information made it possible to contrast the impact found in the quantitative analysis. The data from the student opinion survey allowed us to observe an increase in the levels of students' expectation for her self-efficacy in academic performance. These results allow a better understanding of the effects of the integration of automatic assessment tools on the learning motivation of computer programming students.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación aplicada - Educación en ingenieríaspa
dc.format.extentxvi, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82923
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesACM & IEEE. (2009). Curriculum Guidelines for Graduate Degree Programs in Software Engineering (inf. téc.). ACM, IEEE.spa
dc.relation.referencesACM & IEEE. (2013). Computer Science Curricula 2013 Curriculum Guidelines for Undergraduate Degree Programs in Computer Science (inf. téc.). Association for Computing Machinery (ACM), IEEE Computer Society.spa
dc.relation.referencesACM & IEEE. (2017). Information Technology Curricula 2017 IT2017 Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology (inf. téc.).spa
dc.relation.referencesAla-Mutka, K. M. (2005). A Survey of Automated Assessment Approaches for Programming Assignments. Computer Science Education, 15(2), 83-102.spa
dc.relation.referencesÁlvarez, B., González, C. & García, N. (2008). La motivación y los métodos de evaluación como variables fundamentales para estimular el aprendizaje autónomo. Red U. Revista de Docencia Universitaria, 5(2), 1-12.spa
dc.relation.referencesAlves, N. D. C., Wangenheim, C. G. V., Hauck, J. C. R. & Borgatto, A. F. (2020). A large-scale evaluation of a rubric for the automatic assessment of algorithms and programming concepts. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 556-562.spa
dc.relation.referencesAristika, A., Darhim, Juandi, D. & Kusnandi. (2021). The Effectiveness of Hybrid Learning in Improving of Teacher-Student Relationship in Terms of Learning Motivation. Emerging Science Journal, 5(4).spa
dc.relation.referencesAzmi, N. A., Mohd-Yusof, K., Phang, F. A. & Syed Hassan, S. A. H. (2018). Motivating Engineering Students to Engage in Learning Computer Programming. Advances in Intelligent Systems and Computing, 143-157.spa
dc.relation.referencesBarra, E., López-Pernas, S., Alonso, Á., Sánchez-Rada, J. F., Gordillo, A. & Quemada, J. (2020). Automated Assessment in Programming Courses: A Case Study during the COVID-19 Era. Sustainability, 12(18).spa
dc.relation.referencesBarrios, T. & Marin, M. B. (2014). Aprendizaje mixto a través de laboratorios virtuales. Signos Universitarios.spa
dc.relation.referencesBarros Barrios, R. J., Rojas Montero, J. A. & Sánchez Ayala, L. M. (2008). Diseño de instrumentos didácticos para aprendizaje activo basado en teoría de colores. Revista Educación en Ingeniería, 3(5), 11-18.spa
dc.relation.referencesBecerra-Alonso, D., Lopez-Cobo, I., Gómez-Rey, P., Fernández-Navarro, F. & Barbera, E. (2020). Edu-Zinc: A tool for the creation and assessment of student learning activities in complex open, online and flexible learning environments. Distance Education, 41(1), 86-105.spa
dc.relation.referencesBeltrán, J. A. (1993). Procesos, estrategias y técnicas de aprendizaje. Síntesis.spa
dc.relation.referencesBennedsen, J. & Caspersen, M. E. (2019). Failure Rates in Introductory Programming: 12 Years Later. ACM Inroads, 10(2), 30-36.spa
dc.relation.referencesBenotti, L., Aloi, F., Bulgarelli, F. & Gomez, M. J. (2018). The effect of a web-based coding tool with automatic feedback on students’ performance and perceptions. SIGCSE 2018 - Proceedings of the 49th ACM Technical Symposium on Computer Science Education, 2018-Janua, 2-7.spa
dc.relation.referencesBosse, Y. & Gerosa, M. A. (2017). Difficulties of Programming Learning from the Point of View of Students and Instructors. IEEE Latin America Transactions, 15(11), 2191-2199.spa
dc.relation.referencesBrito, M. & Goncalves, C. (2019). Codeflex: A web-based platform for competitive programming. Iberian Conference on Information Systems and Technologies, CISTI, 2019-June.spa
dc.relation.referencesBryman, A. (2012). Social Research Methods (4a ed). Oxford University Press.spa
dc.relation.referencesBurgos-Castillo, E. & Sánchez-Abarca, P. (2012). .Adaptación y validación preliminar del cuestionario de motivación y estrategias de aprendizaje (MSLQ)”. Universidad del Bío-Bío. Chillán, Chile.spa
dc.relation.referencesByrne, P. & Lyons, G. (2001). The effect of student attributes on success in programming. Proceedings of the Conference on Integrating Technology into Computer Science Education, ITiCSE, 49-52.spa
dc.relation.referencesCardoso, M., de Castro, A. V., Rocha, Á., Silva, E. & Mendonça, J. (2020). Use of Automatic Code Assessment Tools in the Programming Teaching Process. En R. Queirós, F. Portela, M. Pinto y A. Simões (Eds.), First International Computer Programming Education Conference (ICPEC 2020) (4:1-4:10). Schloss Dagstuhl–Leibniz-Zentrum für Informatik.spa
dc.relation.referencesCardoso, M., Marques, R., De Castro, A. V. & Rocha, Á. (2020). Using Virtual Programming Lab to improve learning programming: The case of Algorithms and Programming. Expert Systems, 38(4).spa
dc.relation.referencesCheng, L.-C., Li, W. & Tseng, J. C. R. (2021). Effects of an automated programming assessment system on the learning performances of experienced and novice learners. Interactive Learning Environments, 0(0), 1-17.spa
dc.relation.referencesChi, H., Allen, C. & Jones, E. (2016). Integrating Computing to STEM Curriculum via CodeBoard, 512-529.spa
dc.relation.referencesChibizova, N. V. (2018). The Problems of Programming Teaching. 2018 4th International Conference on Information Technologies in Engineering Education, Inforino 2018 - Proceedingsspa
dc.relation.referencesChristian, M. & Trivedi, B. (2016). A comparison of existing tools for evaluation of programming exercises. ACM International Conference Proceeding Series, 04-05-Marc.spa
dc.relation.referencesClifton, J. (2010). A Simple Judging System for the ACM Programming Contest. Computer Science and Software Engineering, University of Wisconsin – Platteville.spa
dc.relation.referencesCodeboard. (2020). Recuperado desde: https://codeboard.io/.spa
dc.relation.referencesCombéfis, S. & de Moffarts, G. (2019). Automated Generation of Computer Graded Unit Testing-Based Programming Assessments for Education. 6th International Conference on Computer Science, Engineering and Information Technology (CSEIT-2019).spa
dc.relation.referencesCombéfis, S. & Saint-Marcq, V. (2012). Teaching Programming and Algorithm Design with Pythia, a Web-Based Learning Platform. 6, 31-43.spa
dc.relation.referencesContreras, E. (2004). Evaluación de los aprendizajes universitarios. Docencia universitaria. Orientaciones para la formación del profesorado, 129-152.spa
dc.relation.referencesContreras, R., Sierra, E. A., Hernández, H. D. R., Hernández, N. B. E. & Moyotl, V. J. H. (2020). Sistema de evaluación inteligente para medir habilidades de razonamiento matemático. Revista Iberoamericana de Evaluación Educativa, 13(1), 251-280.spa
dc.relation.referencesCoolican, H. (1997). Métodos de investigación y estadística en psicología (2a ed). Editorial Manual Moderno, S.A. de C.V.spa
dc.relation.referencesCorreia, H., Leal, J. P. & Paiva, J. C. (2017). Improving diagram assessment in Mooshak. International Conference on Technology Enhanced Assessment, 69-82.spa
dc.relation.referencesCroft, D. & England, M. (2019). Computing with CodeRunner at Coventry University Automated summative assessment of Python and C++ code. ACM International Conference Proceeding Series, 1-4.spa
dc.relation.referencesDalfaro, N., Cuenca Pletsch, L. & Maurel, M. (2008). La utilización del Blendend-Learning como aporte a la construcción de conocimientos significativos para los alumnos de Ingeniería en Sistemas. Primera Conferencia Latinoamericana sobre el Abandono en la Educación Superior.spa
dc.relation.referencesDaradoumis, T., Marqués Puig, J. M., Arguedas, M. & Calvet Liñan, L. (2022). Enhancing students’ beliefs regarding programming self-efficacy and intrinsic value of an online distributed Programming Environment. Journal of Computing in Higher Education.spa
dc.relation.referencesDarejeh, A. & Salim, S. S. (2016). Gamification Solutions to Enhance Software User Engagement—A Systematic Review. International Journal of Human-Computer Interaction, 32(8), 613-642.spa
dc.relation.referencesDe Oliveira Brandão, L., Bosse, Y. & Gerosa, M. A. (2016). Visual programming and automatic evaluation of exercises: An experience with a STEM course. Proceedings - Frontiers in Education Conference, FIE, 2016-Novespa
dc.relation.referencesDel Valle, S. (2004). La programación y las unidades didácticas en Secundaria Obligatoria. Curso CSICSIF Sector de enseñanza.spa
dc.relation.referencesDerval, G., Gégo, A. & Reinbold, P. (2014). INGINIOUS [software]. Recuperado desde: https://github.com/UCLINGI/INGInious.spa
dc.relation.referencesDomJudge-Online. (2022). Recuperado desde: https://www.domjudge.org/.spa
dc.relation.referencesEdwards, S. H. & Pérez-Quiñones, M. A. (2008). Web-CAT: Automatically grading programming assignments. Proceedings of the Conference on Integrating Technology into Computer Science Education, ITiCSE, 328.spa
dc.relation.referencesElliott, S. W. (2017). Computers and the Future of Skill Demand. OECD Publishing.spa
dc.relation.referencesEscamilla, J., Fuentes, K., Venegas, E., Fernández, K., Elizondo, J. & Román, R. (2016). EduTrends Gamificación. Observatorio de Innovación Educativa, 1-36.spa
dc.relation.referencesFernández, P., Vallejo, G., Livacic-Rojas, P. & Tuero, E. (2014). Validez Estructurada para una investigación cuasi-experimental de calidad. Se cumplen 50 años de la presentación en sociedad de los diseños cuasi-experimentales. An. psicol., 30(2).spa
dc.relation.referencesGalan, D., Heradio, R., Vargas, H., Abad, I. & Cerrada, J. A. (2019). Automated Assessment of Computer Programming Practices: The 8-Years UNED Experience. IEEE Access, 7, 130113-130119.spa
dc.relation.referencesGallardo, K. (2021). The Importance of Assessment Literacy: Formative and Summative Assessment Instruments and Techniques. En R. Babo, N. Dey y A. S. Ashour (Eds.), Workgroups eAssessment: Planning, Implementing and Analysing Frameworks (pp. 3-25). Springer Singapore.spa
dc.relation.referencesGallego-Romero, J. M., Alario-Hoyos, C., Estévez-Ayres, I. & Delgado Kloos, C. (2020). Analyzing learners’ engagement and behavior in MOOCs on programming with the Codeboard IDE. Educational Technology Research and Development.spa
dc.relation.referencesGarcia, R., Falkner, K. & Vivian, R. (2018). Systematic literature review: Self-Regulated Learning strategies using e-learning tools for Computer Science. Computers and Education, 123, 150-163.spa
dc.relation.referencesGarcía Méndez, M. & Rivera Aragón, S. (2012). Aplicación de la estadística a la psicología. Miguel Ángel Porrúa.spa
dc.relation.referencesGarcia-Duncan, T. & McKeachie, W. J. (2005). The Making of the Motivated Strategies for Learning Questionnaire. Educational Psychologist, 40(2), 117-128.spa
dc.relation.referencesGatica-Saavedra, M. & Rubí-González, P. (2020). The master class in the context of the competency-based educational model. Revista Electrónica Educare, 25(1), 1-12.spa
dc.relation.referencesGomes, A. & Mendes, A. (2015). A teacher’s view about introductory programming teaching and learning: Difficulties, strategies and motivations. Proceedings - Frontiers in Education Conference, FIE.spa
dc.relation.referencesGonzález Jaimes, E. I., López Chau, A., Trujillo Mora, V. & Rojas Hernández, R. (2018). Estrategia didáctica de enseñanza y aprendizaje para programadores de software / Teaching and learning didactic strategy for software programmers. RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 9(17), 688-712.spa
dc.relation.referencesGonzález-Carrillo, C. D., Restrepo-Calle, F., Ramírez-Echeverry, J. J. & González, F. A. (2021a). Automatic Grading Tool for Jupyter Notebooks in Artificial Intelligence Courses. Sustainability, 13(21).spa
dc.relation.referencesGonzález-Carrillo, C. D., Restrepo-Calle, F., Ramírez-Echeverry, J. J. & González, F. A. (2021b). Automatic Grading Tool for Jupyter Notebooks in Artificial Intelligence Courses. Sustainability, 13(21).spa
dc.relation.referencesGonzalez-Escribano, A., Lara-Mongil, V., Rodriguez-Gutiez, E. & Torres, Y. (2019). Toward improving collaborative behaviour during competitive programming assignments. 2019 IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC), 68-74.spa
dc.relation.referencesGordillo, A. (2019). Effect of an instructor-centered tool for automatic assessment of programming assignments on students’ perceptions and performance. Sustainability (Switzerland), 11(20).spa
dc.relation.referencesGrover, S. (2021). Toward A Framework for Formative Assessment of Conceptual Learning in K-12 Computer Science Classrooms. Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 31-37.spa
dc.relation.referencesGuerrero, M., Guamán, D. S. & Caiza, J. C. (2015). Revisión de Herramientas de Apoyo en el Proceso de Enseñanza-Aprendizaje de Programación. Revista Politécnica, 35(1), 84.spa
dc.relation.referencesGupta, S. & Gupta, A. (2018). E-Assessment Tools for Programming Languages: A Review. First International Conference on Information Technology and Knowledge Management, 65-70.spa
dc.relation.referencesHamidah, J., Said, I. & Ratnawati. (2019). Implementing Blended Learning Toward Students’ Self Efficacy in Writing Class: Students and Teachers’ Voice. Journal of English Education and Teaching (JEET).spa
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C. & Baptista Lucio, M. d. P. (2016). Metodología de la investigación (6a. ed). México D.F.: McGraw-Hill.spa
dc.relation.referencesIbrahim, M. M. & Nat, M. (2019). Blended learning motivation model for instructors in higher education institutions. International Journal of Educational Technology in Higher Education, 16(1), 12.spa
dc.relation.referencesIhantola, P., Ahoniemi, T., Karavirta, V. & Seppälä, O. (2010). Review of recent systems for automatic assessment of programming assignments. Proceedings of the 10th Koli Calling International Conference on Computing Education Research, Koli Calling’10, 86-93.spa
dc.relation.referencesIon, G., Sánchez Martí, A. & Agud Morell, I. (2019). Giving or receiving feedback: which is more beneficial to students’ learning? Assessment & Evaluation in Higher Education, 44(1), 124-138.spa
dc.relation.referencesJanczewski, R., Kosowski, A., Malafiejski, M. & Noinski, T. (2006). Application of SPOJ cooperative contest management in the university tuition system. Annals of the Gdansk University of Technology.spa
dc.relation.referencesJaničić, M. V. & Marić, F. (2020). Regression verification for automated evaluation of students programs. Computer Science and Information Systems, 17(1), 205-227spa
dc.relation.referencesJärvelä, S. & Niemivirta, M. (2001). Motivation in context: Challenges and possibilities in studying the role of motivation in new pedagogical culture. En S. Volet y S. Järvelä (Eds.), Motivation in Learning Contexts (pp. 105-127). Pergamon Press.spa
dc.relation.referencesJiménez-Toledo, J. A., Collazos, C. & Revelo-Sánchez, O. (2019). Consideraciones en los procesos de enseñanza-aprendizaje para un primer curso de programación de computadores: una revisión sistemática de la literatura. TecnoLógicas, 22, 83-117.spa
dc.relation.referencesJurado, F., Redondo, M. & Ortega, M. (2014). eLearning standards and automatic assessment in a distributed eclipse based environment for learning computer programming. Computer Applications in Engineering Education, 22(4), 774-787.spa
dc.relation.referencesKanika, Chakraverty, S. & Chakraborty, P. (2020). Tools and Techniques for Teaching Computer Programming: A Review. Journal of Educational Technology Systems, 49(2), 170-198.spa
dc.relation.referencesKeuning, H., Jeuring, J. & Heeren, B. (2016). Towards a Systematic Review of Automated Feedback Generation for Programming Exercises. Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, 41-46.spa
dc.relation.referencesKhramova, M. V., Nesterov, M. V. & Kurkin, S. A. (2019). Problems of Learning Programming in Introductory Course. International Conference ”Quality Management, Transport and Information Security, Information Technologies”(IT&QM&IS), 522-525.spa
dc.relation.referencesKosowski, A., Malafiejski1, M. & Noinski, T. (2008). Application of an Online Judge and Contester System in Academic Tuition. Annals of the Gdansk University of Technology.spa
dc.relation.referencesKrugel, J., Hubwieser, P., Goedicke, M., Striewe, M., Talbot, M., Olbricht, C., Schypula, M. & Zettler, S. (2020). Automated Measurement of Competencies and Generation of Feedback in Object- Oriented Programming Courses. IEEE Global Engineering Education Conference (EDUCON ’20), 1(1), 10.spa
dc.relation.referencesKrusche, S., von Frankenberg, N. & Afifi, S. (2017). Experiences of a Software Engineering Course based on Interactive Learning.spa
dc.relation.referencesLaw, K. M., Lee, V. C. & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer programming courses. Computers and Education, 55(1), 218-228.spa
dc.relation.referencesLeal, J. P. & Silva, F. (2003). Mooshak: a Web-based multi-site programming contest system. Software: Practice and Experience, 567-581.spa
dc.relation.referencesLishinski, A. & Yadav, A. (2019). Motivation, Attitudes, and Dispositions. En S. A. Fincher y A. V. Robins (Eds.), The Cambridge Handbook of Computing Education Research (pp. 801-826). Cambridge University Pressspa
dc.relation.referencesLobb, R. & Harlow, J. (2016). Coderunner: A tool for assessing computer programming skills. ACM Inroads, 7(1), 47-51.spa
dc.relation.referencesLoui, M. C. & Borrego, M. (2019). Engineering Education Research. En S. A. Fincher y A. V. Robins (Eds.), The Cambridge Handbook of Computing Education Research (pp. 292-322). Cambridge University Pressspa
dc.relation.referencesLovos, E. & González, A. H. (2014). Moodle y VPL como Soporte a las Actividades de Laboratorio de un Curso Introductorio de Programación. IX Congreso de Tecnología en Educación y Educación en Tecnología.spa
dc.relation.referencesManniam Rajagopal, M. B. (2018). Virtual Teaching Assistant to Support Students’ Efforts in Programming (Tesis de maestría). Virginia Polytechnic Institute; State University.spa
dc.relation.referencesMarchisio, M., Barana, A., Fioravera, M., Rabellino, S. & Conte, A. (2018). A Model of Formative Automatic Assessment and Interactive Feedback for STEM. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 01, 1016-1025.spa
dc.relation.referencesMonereo, C. (2014). Las estrategias de aprendizaje en la Educación formal: enseñar a pensar y sobre el pensar. Infancia y Aprendizaje, 13, 3-25.spa
dc.relation.referencesMoreira, M. A. (2017). Aprendizaje significativo como un referente para la organización de la enseñanza. Archivos de Ciencias de la Educación, 11(12).spa
dc.relation.referencesMuñoz, R., Barría, M., Nöel, R., Providel, E. & Quiroz, P. (2012). Determinando las dificultades en el aprendizaje de la primera asignatura de programación en estudiantes de ingeniería civil informática. Memorias del XVII Congreso Internacional de Informática Educativa, TISE.spa
dc.relation.referencesPagano, R. (2006). Estadística para Las Ciencias Del Comportamiento. Cengage Learning Latin America.spa
dc.relation.referencesParedes-Daza, J. D. & Sanabria-Becerra, W. M. (2015). Ambientes de aprendizaje o ambientes educativos. Una reflexión ineludible. Revista de Investigaciones UCM, 25(15), 144-158.spa
dc.relation.referencesPatil, A. (2010). Automatic Grading of Programming Assignments (Tesis de maestría). San Jose State University.spa
dc.relation.referencesPérez Pino, M., Enrique Clavero, J. O., Carbó Ayala, J. E. & González Falcón, M. (2017). La evaluación formativa en el proceso enseñanza aprendizaje. Edumecentro, 9(3), 263-283.spa
dc.relation.referencesPham, M. T. & Nguyen, T. B. (2019). The DOMJudge based Online Judge System with Plagiarism Detection. The University of Danang - University of Science and Technology.spa
dc.relation.referencesPintrich, P., Smith, D., Garcia, T. & McKeachie, W. (1991). A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ).spa
dc.relation.referencesPringuet, P., Friel, A. & Vande Wiele, P. (2021). CodeRunner: A Case Study of the Transition to Online Learning of a Java Programming Course. Proceedings of the AUBH E-Learning Conference 2021: Innovative Learning and Teaching - Lessons from COVID-19, 1-10.spa
dc.relation.referencesQoiriah, A., Yamasari, Y., Asmunin, Nurhidayat, A. I. & Harimurti, R. (2021). Exploring Automatic Assessment-Based Features for Clustering of Students’ Academic Performance. En A. Abraham, Y. Ohsawa, N. Gandhi, M. Jabbar, A. Haqiq, S. McLoone y B. Issac (Eds.), Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020) (pp. 125-134). Springer International Publishing.spa
dc.relation.referencesQueirós, R. & Leal, J. P. (2012). PETCHA: A programming exercises teaching assistant. Proceedings of the 17th ACM Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE, 192-197.spa
dc.relation.referencesQueirós, R. & Leal, J. P. (2018). Fostering Students-Driven Learning of Computer Programming with an Ensemble of E-Learning Tools. En Á. Rocha, H. Adeli, L. P. Reis y S. Costanzo (Eds.), Trends and Advances in Information Systems and Technologies (pp. 289-298). Springer International Publishing.spa
dc.relation.referencesRamírez-Dorantes, M. d. C., Echazarreta-Moreno, A., Bueno-Álvarez, J. A. & Canto-y-Rodríguez, J. E. (2013). Validación Psicométrica del Motivated Strategies for Learning Questionnaire en Universitarios Mexicanos. Electronic Journal of Research in Educational Psychology.spa
dc.relation.referencesRamírez-Echeverry, J. J. (2017). La competencia «aprender a aprender» en un contexto educativo de ingeniería (Tesis doctoral). Universitat Politècnica de Catalunya (UPC). Barcelona, España.spa
dc.relation.referencesRamírez-Echeverry, J. J., García-Carillo, A. & Olarte-Dussán, F. A. (2016). Adaptation and Validation of the Motivated Strategies for Learning Questionnaire-MSLQ-in Engineering Students in Colombia*. International Journal of Engineering Education, 32(4), 1-14.spa
dc.relation.referencesRamírez-Echeverry, J. J., Restrepo-Calle, F. & González, F. (2022). A case study in technology-enhanced learning in an introductory computer programming course. Global Journal of Engineering Education, 24(1), 65-71.spa
dc.relation.referencesRamírez-Echeverry, J. J., Rosales-Castro, L. F., Restrepo-Calle, F. & Gonzalez, F. A. (2018). Self-Regulated learning in a Computer Programming Course. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 13(2), 75-83.spa
dc.relation.referencesRestrepo-Calle, F., Ramírez Echeverry, J. J. & González, F. A. (2019). Continuous assessment in a computer programming course supported by a software tool. Computer Applications in Engineering Education, 27(1), 80-89.spa
dc.relation.referencesRestrepo-Calle, F., Ramírez-Echeverry, J. J. & Gonzalez, F. A. (2018). UNCODE: Interactive system for learning and automatic evaluation of computer programming skills. In Proceedings of the 10th annual International Conference on Education and New Learning Technologies EDULEARN 2018, 1, 6888-6898.spa
dc.relation.referencesRestrepo-Calle, F., Ramírez-Echeverry, J. J. & González, F. (2020). Using an interactive software tool for the formative and summative evaluation in a computer programming course: an experience report. Global Journal of Engineering Education.spa
dc.relation.referencesRevilla, M. A., Manzoor, S. & Liu, R. (2008). Competitive Learning in Informatics: The UVa Online Judge Experience. Olympiads in Informatics, Institute of Mathematics and Informatics.spa
dc.relation.referencesRodríguez, J., Rubio Royo, E. & Hernández, Z. (2011). USES OF VPL. INTED2011 Proceedings, 743-748.spa
dc.relation.referencesRodriguez-del-Pino, J. (2012). A Virtual Programming Lab for Moodle with automatic assessment and anti-plagiarism features.spa
dc.relation.referencesRubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C. & Ángel Velázquez-Iturbide, J. (2012). Lessons learned from using the automated assessment tool “Mooshak”. 2012 International Symposium on Computers in Education (SIIE), 1-6.spa
dc.relation.referencesRubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C. & Velázquez-Iturbide, Á. (2014). Student perception and usage of an automated programming assessment tool. Computers in Human Behavior, 31, 453-460.spa
dc.relation.referencesRuiz-de-Clavijo, B. N. (2009). Motivación, motivación en el aprendizaje, acción motivacional del profesor en el aula. Revista Digital Innovación y Experiencias Educativas.spa
dc.relation.referencesSangwin, C. (2019). Automatic assessment of students’ code using CodeRunner. University of Edinburgh, 1-20.spa
dc.relation.referencesSanmartín, V. A. G. & Pilco, W. V. Y. (2020). Aprender haciendo”: Aplicación de la metodología por ambientes de aprendizaje. Polo del Conocimiento: Revista científico-profesional, 5(7), 188-208.spa
dc.relation.referencesSeijo Galán, S., Freire Rodríguez, C. & Ferradás Canedo, M. d. M. (2020). Tipos de motivación en relación a la ansiedad ante los exámenes en el alumnado de educación primaria. PUBLICACIONES, 50(1), 265-274.spa
dc.relation.referencesShao, T., Kuang, Y., Huang, Y. & Quan, Y. (2019). PAAA: An implementation of programming assignments automatic assessing system. ACM International Conference Proceeding Series, 68-72.spa
dc.relation.referencesShivam, Goswami, N., Baths, V. & Bandyopadhyay, S. (2019). AES: Automated evaluation systems for computer programing course. ICSOFT 2019 - Proceedings of the 14th International Conference on Software Technologies, 508-513.spa
dc.relation.referencesSiegel, S. & Castellan, N. J. (1998). Estadística no paramétrica: Aplicada a las ciencias de la conducta (4a ed). Editorial Trillas.spa
dc.relation.referencesSkalka, J., Drlík, M. & Obonya, J. (2019). Automated Assessment in Learning and Teaching Programming Languages using Virtual Learning Environment, 689-697.spa
dc.relation.referencesSousa Silva, G. R. (2022). Impact of a pseudocode online judge on programming language learning. Universidade de Brasília.spa
dc.relation.referencesSouza, D. M., Felizardo, K. R. & Barbosa, E. F. (2016). A systematic literature review of assessment tools for programming assignments. Proceedings - 2016 IEEE 29th Conference on Software Engineering Education and Training, CSEEandT 2016, 147-156.spa
dc.relation.referencesSpacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K. & Padua-Perez, N. (2006). Experiences with Marmoset: Designing and Using an Advanced Submission and Testing System for Programming Courses. Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education (ITICSE ’06), pp. 13-17.spa
dc.relation.referencesSpacco, J., Strecker, J., Hovemeyer, D. & Pugh, W. (2005). Software Repository Mining with Marmoset: An Automated Programming Project Snapshot and Testing System. Proceedings of the Mining Software Repositories Workshop (MSR 2005).spa
dc.relation.referencesSpacco, J., Winters, T. & Payne, T. (2006). Inferring Use Cases from Unit Testing. AAAI Workshop on Educational Data Mining.spa
dc.relation.referencesSpacco, J. W. (2006). MARMOSET: A programming project assignment framework to improve the feedback cycle for students, faculty and researchers (Tesis doctoral). University of Maryland, College Park. Ann Arbor, United States.spa
dc.relation.referencesSPhere-Online-Judge. (2022). Recuperado desde: https://www.spoj.com/.spa
dc.relation.referencesSun, Q., Wu, J. & Liu, K. (2020). Toward Understanding Students’ Learning Performance in an Object-Oriented Programming Course: The Perspective of Program Quality. IEEE Access, 8, 37505-37517.spa
dc.relation.referencesSun, Q., Wu, J., Rong, W. & Liu, W. (2019). Formative assessment of programming language learning based on peer code review: Implementation and experience report. Tsinghua Science and Technology, 24(4), 423-434.spa
dc.relation.referencesSweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.spa
dc.relation.referencesTapia, J. A. (2001). Motivación y estrategias de aprendizaje: principios para su mejora en alumnos universitarios.spa
dc.relation.referencesTarek, M., Ashraf, A., Heidar, M. & Eliwa, E. (2022). Review of Programming Assignments Automated Assessment Systems. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 230-237.spa
dc.relation.referencesTavares, P. C., Henriques, P. R. & Gomes, E. F. (2017). A computer platform to increase motivation in programming students-PEP. CSEDU 2017 - Proceedings of the 9th International Conference on Computer Supported Education, 1, 284-291.spa
dc.relation.referencesThiébaut, D. (2015). Automatic Evaluation of Computer Programs Using Moodle’s Virtual Programming Lab (VPL) Plug-In. J. Comput. Sci. Coll., 30(6), 145-151.spa
dc.relation.referencesUllah, Z., Lajis, A., Jamjoom, M., Altalhi, A., Al-Ghamdi, A. & Saleem, F. (2018). The effect of automatic assessment on novice programming: Strengths and limitations of existing systems.spa
dc.relation.referencesVennila, R., Labelle, D. & Wiendenbeck, S. (2004). Self-efficacy and mental models in learning to program. ACM SGCSE Bulletin, 36(3).spa
dc.relation.referencesVerdú, E., Regueras, L. M., Verdú, M. J., Leal, J. P., De Castro, J. P. & Queirós, R. (2012). A distributed system for learning programming on-line. Computers and Education, 58(1), 1-10.spa
dc.relation.referencesVidela, R. L. (2010). Clases pasivas, clases activas y clases virtuales. ¿Transmitir o construir conocimientos? Revista Argentina de Radiología.spa
dc.relation.referencesWardani, A. D., Gunawan, I., Kusumaningrum, D. E., Benty, D. D. N., Sumarsono, R. B., Nurabadi, A. & Handayani, L. (2020). Student Learning Motivation: A Conceptual Paper. Proceedings of the 2nd Early Childhood and Primary Childhood Education (ECPE 2020), 275-278.spa
dc.relation.referencesWilcoxon, F. (1945). Individual Comparisons by Ranking Methods. International Biometric Society.spa
dc.relation.referencesWunsche, B. C., Huang, E., Shaw, L., Suselo, T., Leung, K. C., Dimalen, D., Van Der Mark, W., Luxton-Reilly, A. & Lobb, R. (2019). CodeRunnerGL - An interactive web-based tool for computer graphics teaching and assessment. ICEIC 2019 - International Conference on Electronics, Information, and Communication.spa
dc.relation.referencesYusof, N., Zin, N. A. M. & Adnan, N. S. (2012). Java Programming Assessment Tool for Assignment Module in Moodle E-learning System. Procedia - Social and Behavioral Sciences, 56, 767-773.spa
dc.relation.referencesZimmerman, B. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329-339.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalHerramientas de evaluaciónspa
dc.subject.proposalMotivación en el aprendizajespa
dc.subject.proposalProgramación de computadoresspa
dc.subject.proposalAssessment toolseng
dc.subject.proposalComputer programmingeng
dc.subject.proposalLearning motivationeng
dc.subject.unescoMétodo de aprendizajespa
dc.subject.unescoLearning methodseng
dc.subject.unescoPrograma informático didácticospa
dc.subject.unescoEducational softwareeng
dc.subject.unescoInformática educativaspa
dc.subject.unescoComputer uses in educationeng
dc.titleEvaluación del impacto en la motivación en el aprendizaje de los estudiantes de programación de computadores mediante el uso de una herramienta de evaluación automáticaspa
dc.title.translatedEvaluation of the impact on the learning motivation of computer programming students using an automatic assessment tooleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1077971702.2022.pdf
Tamaño:
2.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: