Herramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hass

dc.contributor.advisorRamírez Gil, Joaquín Guillermospa
dc.contributor.advisorTerán Chaves, Cesar Augustospa
dc.contributor.authorSánchez Vivas, Diego Fernandospa
dc.contributor.cvlacSánchez Vivas, Diego Fernando [0000092231]spa
dc.contributor.googlescholarSánchez Vivas, Diego Fernando [https://scholar.google.se/citations?user=7KTTn5UAAAAJ]spa
dc.contributor.orcidSánchez Vivas, Diego Fernando [0000000163130871]spa
dc.contributor.researchgateSánchez Vivas, Diego Fernando [https://www.researchgate.net/profile/Diego-Sanchez-Vivas]spa
dc.contributor.researchgroupBiogénesisspa
dc.contributor.scopusSánchez Vivas, Diego Fernando [58159513500]spa
dc.coverage.countryColombiaspa
dc.date.accessioned2024-10-03T17:41:03Z
dc.date.available2024-10-03T17:41:03Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, mapas, tablasspa
dc.description.abstractEl aguacate cv. Hass ha experimentado un crecimiento en la demanda a nivel mundial, lo que ha generado un aumento en los últimos años de las áreas cultivadas. Este frutal proveniente de Colombia cuenta con admisibilidad en 18 países del mundo, por lo que el área cosechada se ha incrementado en los últimos años. Sin embargo, fenómenos como la escasez de agua, la variabilidad y el cambio climático y la presencia y dispersión de plagas han planteado desafíos para el establecimiento de una agroindustria del aguacate sostenible en nuestro país. En este contexto, el objetivo principal de este trabajo de investigación fue implementar herramientas de análisis de datos espaciotemporales para la caracterización climática y espectral de las áreas productoras de aguacate cv. Hass. El estudio se dividió en dos etapas: en la primera, se realizó la caracterización y modelación climática bajo escenarios de variabilidad y cambio climático a nivel espacial en las regiones con aptitud para el cultivo de aguacate en Colombia. Por su parte, en la segunda etapa, utilizando imágenes multiespectrales obtenidas de sensores remotos y proximales, y bases de datos de clima de libre acceso se validaron índices de vegetación y variables de clima para determinar su capacidad para discriminar entre plantas visualmente afectadas por distintas fuentes de estrés (bióticos y abióticos) y plantas sanas, así como su potencial uso para predecir componentes de rendimiento del cultivo. De acuerdo con nuestros resultados, las zonas productoras de aguacate cv. Hass en Colombia se agrupan en cinco zonas climáticas homogéneas. Las herramientas de predicción climática, a partir de redes neuronales (ConvLSTM y Bi-LSTM), así como el modelo Sarima representaron adecuadamente los patrones de temperatura y precipitación para cada uno de los cinco clústeres establecidos. Además, el modelo Maxent implementado, permitió estimar el riesgo asociado al cambio climático, en términos de modificación de áreas idóneas para la producción en dos escenarios de cambio climático y tres períodos de tiempo. Así mismo, se presentan resultados sobre la validación de herramientas de teledetección para la identificación de afectaciones y la estimación de productividad en parcelas comerciales de aguacate cv. Hass, en uno de los principales municipios productores de Colombia (Texto tomado de la fuente).spa
dc.description.abstractThe Hass avocado cv. has experienced a worldwide growth in demand, which has generated an increase in cultivated areas in recent years. This fruit tree from Colombia has admissibility in 18 countries of the world, so the harvested area has increased in recent years. However, phenomena such as water scarcity, variability and climate change, and the presence and dispersion of pests have posed challenges to the establishment of a sustainable avocado agroindustry in our country. In this context, the main objective of this research work was to implement spatio-temporal data analysis tools for the climatic and spectral characterization of Hass avocado producing areas. The study was divided into two stages: in the first, the climatic characterization and modeling under scenarios of variability and climate change at the spatial level in the regions with aptitude for avocado cultivation in Colombia was carried out. For its part, in the second stage, using multispectral images obtained from remote and proximal sensors, and open access climate databases, vegetation indices and climate variables were validated to determine their capacity to discriminate between plants visually affected by different sources of stress (biotic and abiotic) and healthy plants, as well as their potential use to predict crop yield components. According to our results, the Hass avocado producing areas in Colombia are grouped into five homogeneous climatic zones. Climate prediction tools, based on neural networks (ConvLSTM and Bi-LSTM), as well as the Sarima model, adequately represented the temperature and precipitation patterns for each of the five established clusters. In addition, the implemented Maxent model allowed estimating the risk associated with climate change, in terms of modification of suitable areas for production in two climate change scenarios and three time periods. Likewise, results are presented on the validation of remote sensing tools for the identification of affectations and the estimation of productivity in commercial Hass avocado plots, in one of the main producing municipalities in Colombia.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Geomáticaspa
dc.description.researchareaLínea Agricultura 4.0 y Gestión Tecnológicaspa
dc.format.extent248 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86890
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbadi, A.M., Rowe, C.M., Andrade, M. (2020). Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. International Journal of Climatology. 40, 4408–4421. https://doi.org/10.1002/joc.6464spa
dc.relation.referencesAbatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, K.C. Hegewisch. (2018). Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015, Scientific Data https://www.nature.com/articles/sdata2017191spa
dc.relation.referencesAbbas, F., Afzaal, H., Farooque, A. A., & Tang, S. (2020). Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, 10(7). https://doi.org/10.3390/AGRONOMY10071046spa
dc.relation.referencesAbdulridha, J., Ehsani, R., Abd-Elrahman, A., & Ampatzidis, Y. (2019). A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Computers and Electronics in Agriculture, 156, 549–557. https://doi.org/10.1016/j.compag.2018.12.018spa
dc.relation.referencesAcosta-Rangel, A., Li, R., Mauk, P., Santiago, L., & Lovatt, C. J. (2021). Effects of temperature, soil moisture and light intensity on the temporal pattern of floral gene expression and flowering of avocado buds (Persea americana cv. Hass). Scientia Horticulturae, 280, 109940. https://doi.org/10.1016/j.scienta.2021.109940spa
dc.relation.referencesAgisoft. (2023). DJI Phantom 4 Multispectral data processing. https://agisoft.freshdesk.com/support/solutions/articles/31000159853-dji-phantom-4-multispectral-data-processingspa
dc.relation.referencesAhmed, K., Sachindra, D. A., Shahid, S., Iqbal, Z., Nawaz, N., & Khan, N. (2020). Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Research, 236 (December 2019), 104806. https://doi.org/10.1016/j.atmosres.2019.104806spa
dc.relation.referencesAhmed, M., Stöckle, C. O., Nelson, R., Higgins, S., Ahmad, S., & Raza, M. A. (2019). Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-44251-xspa
dc.relation.referencesAiello, S., Click, C., Roark, H., & Rehak, L. (2015). Machine Learning with Python and H2O: First Edition Machine Learning with Python and H2O. H2O. Ai, November. http://h2o.ai/resources/spa
dc.relation.referencesAlbetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023spa
dc.relation.referencesAldino, A. A., Darwis, D., Prastowo, A. T., & Sujana, C. (2021). Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency. Journal of Physics: Conference Series, 1751(1). https://doi.org/10.1088/1742-6596/1751/1/012038spa
dc.relation.referencesAlthoff, D., Dias, S. H. B., Filgueiras, R., & Rodrigues, L. N. (2020). ETo‐Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000–2018). Water Resources Research, 56(7). https://doi.org/10.1029/2020WR027562spa
dc.relation.referencesÁlvarez Bravo, A., Salazar García, S., Ruiz Corral, J. A., & Medina García, G. (2017). Escenarios de cómo el cambio climático modificará las zonas productoras de aguacate ‘hass’ en Michoacán. Revista Mexicana de Ciencias Agrícolas, 19, 4035–4048. https://doi.org/10.29312/remexca.v0i19.671spa
dc.relation.referencesAnacona Mopan, Y.E., Solis Pino, A.F., Rubiano-Ovalle, O., Paz, H. & I. Ramirez Mejia. (2023). Spatial Analysis of the Suitability of Hass Avocado Cultivation in the Cauca Department, Colombia, Using Multi-Criteria Decision Analysis and Geographic Information Systems. ISPRS Int. J. Geo-Inf. 2023, 12, 136. https://doi.org/10.3390/ijgi12040136spa
dc.relation.referencesAnaldex. (2022). Informe exportaciones de aguacate Hass septiembre 2022. 6 pp. https://www.analdex.org/2022/12/13/informe-exportaciones-de-aguacate-hass-septiembre-2022/spa
dc.relation.referencesAPHIS. (2021). Report Name: Avocado Annual. Country: México. 5 pp. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Avocado%20Annual_Mexico%20City_Mexico_12-01-2021.pdfspa
dc.relation.referencesApolo-Apolo, O. E., Pérez-Ruiz, M., Martínez-Guanter, J., & Valente, J. (2020). A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Frontiers in Plant Science, 11(July), 1–15. https://doi.org/10.3389/fpls.2020.01086spa
dc.relation.referencesArias - García, J.S., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of Hass avocado in Colombia. Challenges and opportunities: a review. Ciência Rural, Santa Maria, v.51:8, e20200903. http://doi.org/10.1590/0103-8478cr20200903spa
dc.relation.referencesArima, S., & Models, L. (2023). JOURNAL OF ENGINEERING SCIENCES Time Series Prediction of Temperature Using. 9(3), 574–584. https://doi.org/10.30855/gmbd.0705088spa
dc.relation.referencesArnell, N. W., Lowe, J. A., Bernie, D., Nicholls, R. J., Brown, S., Challinor, A. J., & Osborn, T. J. (2019). The global and regional impacts of climate change under representative concentration pathway forcings and shared socioeconomic pathway socioeconomic scenarios. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab35a6spa
dc.relation.referencesArpaia, M. L., & Heath, R. L. (2004). Avocado Tree Physiology - Understanding the basis of Productivity. Proceedings of the California Avocado Research Symposium, October 30, 2004, 65–88. https://www.californiaavocadogrowers.com/sites/default/files/Avocado-Tree-Physiology–Understanding-the-Basis-of-Productivity-2006.pdfspa
dc.relation.referencesAshraf, F. Bin, Kabir, M. R., Shafi, M. S. R., & Rifat, J. I. M. (2020). Finding Homogeneous Climate Zones in Bangladesh from Statistical Analysis of Climate Data Using Machine Learning Technique. ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings. https://doi.org/10.1109/ICCIT51783.2020.9392689spa
dc.relation.referencesAshraf, U., Peterson, A. T., Chaudhry, M. N., Ashraf, I., Saqib, Z., Rashid Ahmad, S., & Ali, H. (2017). Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere, 8(5). https://doi.org/10.1002/ecs2.1825spa
dc.relation.referencesAsseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rötter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., … Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832. https://doi.org/10.1038/nclimate1916spa
dc.relation.referencesAssmann, J. J., Kerby, J. T., Cunliffe, A. M., & Myers-Smith, I. H. (2019). Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7(1), 54–75. https://doi.org/10.1139/juvs-2018-0018spa
dc.relation.referencesBalaji, E., Brindha, D., Vinodh Kumar, E., & Vikrama, R. (2021). Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Applied Soft Computing, 108, 107463. https://doi.org/10.1016/j.asoc.2021.107463spa
dc.relation.referencesBalaji, N., Bhandary, S. B., Dsouza, R. F., & Karthik Pai, B. (2022). ANN Based Weather Analysis and Prediction. 2022 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2022 - Proceedings, 7–11. https://doi.org/10.1109/DISCOVER55800.2022.9974773spa
dc.relation.referencesBallesteros, R., Ortega, J. F., Hernandez, D., & Moreno, M. A. (2018). Onion biomass monitoring using UAV-based RGB imaging. Precision Agriculture, 19(5), 840–857. https://doi.org/10.1007/s11119-018-9560-yspa
dc.relation.referencesBannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298spa
dc.relation.referencesBarboza, T. O. C., Ferraz, M. A. J., Pilon, C., Vellidis, G., Valeriano, T. T. B., & dos Santos, A. F. (2024). Advanced Farming Strategies Using NASA POWER Data in Peanut-Producing Regions without Surface Meteorological Stations. AgriEngineering, 6(1), 438–454. https://doi.org/10.3390/agriengineering6010027spa
dc.relation.referencesBergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb), 281-305. https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdfspa
dc.relation.referencesBerio Fortini, L., Kaiser, L. R., Frazier, A. G., & Giambelluca, T. W. (2023). Examining current bias and future projection consistency of globally downscaled climate projections commonly used in climate impact studies. Climatic Change, 176(12), 1–21. https://doi.org/10.1007/s10584-023-03623-zspa
dc.relation.referencesBernal-Estrada, J. A., Tamayo-Vélez, A. D. J., & Díaz-Diez, C. A. (2020). Dynamics of leaf, flower and fruit abscission in avocado cv. Hass in Antioquia, Colombia. Revista Colombiana de Ciencias Hortícolas, 14(3), 324–333. https://doi.org/10.17584/rcch.2020v14i3.10850spa
dc.relation.referencesBilgili, A., Bilgili, A. V., Tenekeci, M. E., & Karadağ, K. (2023). Spectral characterization and classification of two different crown root rot and vascular wilt diseases (Fusarium oxysporum f.sp. radicis lycopersici and fusarium solani) in tomato plants using different machine learning algorithms. European Journal of Plant Pathology, 165(2), 271–286. https://doi.org/10.1007/s10658-022-02605-8spa
dc.relation.referencesBiotico, S. F., & Clima, E. L. (2000). Plan básico de ordenamiento territorial.spa
dc.relation.referencesBony, S., Srinivasan, J., & Ronald, S. (2007). Climate Models and Their Evaluation. Solar potential assessment over India View project PROGRAMM AMMA. Disponible en: https://www.researchgate.net/publication/233421523. (Último acceso: junio de 2023).spa
dc.relation.referencesBox, G. (2013). Box and Jenkins: Time Series Analysis, Forecasting and Control BT - A Very British Affair: Six Britons and the Development of Time Series Analysis During the 20th Century (T. C. Mills (ed.); pp. 161–215). Palgrave Macmillan UK. https://doi.org/10.1057/9781137291264_6spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12343 LNCS, 503–515. https://doi.org/10.1007/978-3-030-62008-0_35spa
dc.relation.referencesBurn, D. H., & Goel, N. K. (2000). La formation de groupes pour l’estimation régionale de la fréquence des crues. Hydrological Sciences Journal, 45(1), 97–112. https://doi.org/10.1080/02626660009492308spa
dc.relation.referencesBurns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791–811. https://doi.org/10.1007/s11119-021-09861-4spa
dc.relation.referencesCáceres-Zambrano, J., Ramírez-Gil, J. G., & Barrios, D. (2022). Validating Technologies and Evaluating the Technological Level in Avocado Production Systems: A Value Chain Approach. Agronomy, 12(12). https://doi.org/10.3390/agronomy12123130spa
dc.relation.referencesCalvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010spa
dc.relation.referencesCandiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026–4047. https://doi.org/10.3390/rs70404026spa
dc.relation.referencesCao, Y., Li, G. L., Luo, Y. K., Pan, Q., & Zhang, S. Y. (2020). Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Computers and Electronics in Agriculture, 171, 105331. https://doi.org/https://doi.org/10.1016/j.compag.2020.105331spa
dc.relation.referencesCarbajal-Morán, H., Márquez-Camarena, J. F., Galván-Maldonado, C. A., Zárate-Quiñones, R. H., Galván-Maldonado, A. C., & Muñoz-De la Torre, R. J. (2023). Evaluation of Normalized Difference Vegetation Index by Remote Sensing with Landsat Satellites in the Tayacaja Valley in the Central Andes of Peru. Ecological Engineering and Environmental Technology, 24(7), 208–215. https://doi.org/10.12912/27197050/169530spa
dc.relation.referencesCárceles Rodríguez, B., Durán Zuazo, V. H., Franco Tarifa, D., Cuadros Tavira, S., Sacristan, P. C., & García-Tejero, I. F. (2023). Irrigation Alternatives for Avocado (Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review. Agriculture (Switzerland), 13(5). https://doi.org/10.3390/agriculture13051049spa
dc.relation.referencesCarvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., & Rocha, A. (2016). Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Physics and Chemistry of the Earth, 94, 22–28. https://doi.org/10.1016/j.pce.2016.05.001spa
dc.relation.referencesCastillo-Guevara, M. A., Palomino-Quisne, F., Alvarez, A. B., & Coaquira-Castillo, R. J. (2020). Water stress analysis using aerial multispectral images of an avocado crop. Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020. https://doi.org/10.1109/EIRCON51178.2020.9254011spa
dc.relation.referencesCaswell, T. A., Droettboom, M., Hunter, J., Firing, E., Lee, A., Klymak, J., Stansby, D., Varoquaux, N., Nielsen, J. E., Root, B., May, R., Elson, P., Seppänen, J., Dale, D., Lee, D., Straw, A., Hobson, P., Gohlke, C., Yu, T. S., others. (2021). matplotlib: A comprehensive library for creating static, animated, and interactive visualizations in Python. Journal of Open Source Software, 6(60), 3021.spa
dc.relation.referencesCavalcanti, V. P., dos Santos, A. F., Rodrigues, F. A., Terra, W. C., Araújo, R. C., Ribeiro, C. R., Campos, V. P., Rigobelo, E. C., Medeiros, F. H. V., & Dória, J. (2023). Use of RGB images from unmanned aerial vehicle to estimate lettuce growth in root-knot nematode infested soil. Smart Agricultural Technology, 3, 100100. https://doi.org/10.1016/j.atech.2022.100100spa
dc.relation.referencesChang, X., Meng, G., Wang, Y., Hou, X. (2012). Seasonal autoregressive integrated moving average model for precipitation time series. Journal of Mathematics and Statistics, 8(4), 500–505. https://doi.org/10.3844/jmssp.2012.500.505spa
dc.relation.referencesChang, Y. L., Tan, T. H., Chen, T. H., Chuah, J. H., Chang, L., Wu, M. C., Tatini, N. B., Ma, S. C., & Alkhaleefah, M. (2022). Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081929spa
dc.relation.referencesCharre-Medellín, J. F., Mas, J.-F., & Chang-Martínez, L. A. (2021). Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop and Pasture Science, 72(4), 291–301. https://doi.org/10.1071/CP20458spa
dc.relation.referencesChawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953spa
dc.relation.referencesChen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785spa
dc.relation.referencesChollet, F., & others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/kerasspa
dc.relation.referencesChong-Hai, X., & Ying, X. (2012). The Projection of Temperature and Precipitation over China under RCP Scenarios using a CMIP5 Multi-Model Ensemble. Atmospheric and Oceanic Science Letters, 5(6), 527–533. https://doi.org/10.1080/16742834.2012.11447042spa
dc.relation.referencesChoury, A., Bruinsma, S., & Schaeffer, P. (2013). Neural networks to predict exosphere temperature corrections. Space Weather, 11(10), 592–602. https://doi.org/10.1002/2013SW000969spa
dc.relation.referencesChung, S. W., Rho, H., Lim, C. K., Jeon, M. K., Kim, S., Jang, Y. J., & An, H. J. (2022). Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15821-3spa
dc.relation.referencesCIPF. (2018). Global warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani et al., eds.) Geneva, Switzerland, IPCC. 630 págs. https://www.ipcc.ch/sr15/spa
dc.relation.referencesCIPF. (2021). Revisión científica del impacto del cambio climático en las plagas de las plantas. Un desafío mundial en la prevención y la mitigación de los riesgos de plagas en la agricultura, la silvicultura y los ecosistemas. Roma. FAO en nombre de la Secretaría de la CIPF. https://doi.org/10.4060/cb4769esspa
dc.relation.referencesClaverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun, S. V., & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219(August), 145–161. https://doi.org/10.1016/j.rse.2018.09.002spa
dc.relation.referencesColectivo, M., & American, L. (2023). The Avocados of Wrath. April. https://grain.org/e/6985. (Último acceso: junio de 2023).spa
dc.relation.referencesCopernicus Open Access Hub by ESA (2020). https:// scihub. copernicus.spa
dc.relation.referencesCortés, D., Silva, H., Baginsky, C., & Morales, L. (2017). Climatic zoning of chia (Salvia hispanica L.) in Chile using a species distribution model. Spanish Journal of Agricultural Research, 15(3). https://doi.org/10.5424/sjar/2017153-9935spa
dc.relation.referencesCrane, T. A., Roncoli, C., & Hoogenboom, G. (2011). Adaptation to climate change and climate variability: The importance of understanding agriculture as performance. NJAS: Wageningen Journal of Life Sciences, 57(3–4), 179–185. https://doi.org/10.1016/j.njas.2010.11.002spa
dc.relation.referencesCruz-Cárdenas, G., Villaseñor, J. L., López-Mata, L., Martínez-Meyer, E., & Ortiz, E. (2014). Selection of environmental predictors for species distribution modeling in Maxent. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 20(2), 187–201. https://doi.org/10.5154/r.rchscfa.2013.09.034spa
dc.relation.referencesda Silveira, F., Lermen, F. H., & Amaral, F. G. (2021). An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https://doi.org/10.1016/j.compag.2021.106405spa
dc.relation.referencesDaniels, L., Eeckhout, E., Wieme, J., Dejaegher, Y., Audenaert, K., & Maes, W. H. (2023). Identifying the Optimal Radiometric Calibration Method for UAV-Based Multispectral Imaging. Remote Sensing, 15(11), 1–22. https://doi.org/10.3390/rs15112909spa
dc.relation.referencesDash, J., & Curran, P. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing - INT J REMOTE SENS, 25. https://doi.org/10.1080/0143116042000274015spa
dc.relation.referencesDe Castro, A. I., Ehsani, R., Ploetz, R., Crane, J. H., & Abdulridha, J. (2015). Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sensing of Environment, 171, 33–44. https://doi.org/10.1016/j.rse.2015.09.011spa
dc.relation.referencesDe La Fuente, S. (2014). Series Temporales, Modelo Arima y Metodología de Box - Jenkins. En: https://www.estadistica.net/ECONOMETRIA/SERIES-TEMPORALES/modelo-arima.pdfspa
dc.relation.referencesDe, D., & Alpes, G. (2022). Clustering non paramétrique pour les extrêmes spatiaux. Nonparametric clustering for spatial extremes. https://www.theses.fr/2022GRALU008.pdfspa
dc.relation.referencesDeng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124–136. https://doi.org/10.1016/j.isprsjprs.2018.09.008spa
dc.relation.referencesDikbas, F., Firat, M., Koc, A. C., & Gungor, M. (2013). Defining Homogeneous Regions for Streamflow Processes in Turkey Using a K-Means Clustering Method. Arabian Journal for Science and Engineering, 38(6), 1313–1319. https://doi.org/10.1007/s13369-013-0542-0spa
dc.relation.referencesDilmurat, K., Sagan, V., Maimaitijiang, M., & Moose, S. (2022). from Multisensory UAV Data.spa
dc.relation.referencesDing, C., & He, X. (2004). K-means Clustering via Principal Component Analysis.spa
dc.relation.referencesDJI. (2023). DJI GS Pro en App Store. DJI GS Pro En App Store. https://apps.apple.com/es/app/dji-gs-pro/id1183717144spa
dc.relation.referencesDoan, Q. Van, Amagasa, T., Pham, T. H., Sato, T., Chen, F., & Kusaka, H. (2023). Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data. Geoscientific Model Development, 16(8), 2215–2233. https://doi.org/10.5194/gmd-16-2215-2023spa
dc.relation.referencesDong, T. Y., Dong, W. J., Guo, Y., Chou, J. M., Yang, S. L., Tian, D., & Yan, D. D. (2018). Future temperature changes over the critical Belt and Road region based on CMIP5 models. Advances in Climate Change Research, 9(1), 57–65. https://doi.org/10.1016/j.accre.2018.01.003spa
dc.relation.referencesDoughty, R., Xiao, X., Köhler, P., Frankenberg, C., Qin, Y., Wu, X., Ma, S., & Moore III, B. (2021). Global-Scale Consistency of Spaceborne Vegetation Indices, Chlorophyll Fluorescence, and Photosynthesis. Journal of Geophysical Research: Biogeosciences, 126(6), e2020JG006136. https://doi.org/https://doi.org/10.1029/2020JG006136spa
dc.relation.referencesDumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J. L., Muhammad, A., Hendarmawan, Dörfliger, N., & Plagnes, V. (2022). Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. Journal of Hydrology: Regional Studies, 40(August 2021). https://doi.org/10.1016/j.ejrh.2022.101037spa
dc.relation.referencesElith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.xspa
dc.relation.referencesElsayed, N., ElSayed, Z., & Maida, A. S. (2023). LiteLSTM Architecture Based on Weights Sharing for Recurrent Neural Networks. http://arxiv.org/abs/2301.04794spa
dc.relation.referencesErazo-Mesa, E., Echeverri-Sánchez, A., & Ramírez-Gil, J. G. (2022). Advances in Hass avocado irrigation scheduling under digital agriculture approach. Revista Colombiana de Ciencias Horticolas, 16(1). https://doi.org/10.17584/rcch.2022v16i1.13456spa
dc.relation.referencesErazo-Mesa, E., Ramírez-Gil, J. G., & Echeverri Sánchez, A. (2021). Avocado cv. Hass Needs Water Irrigation in Tropical Precipitation Regime: Evidence from Colombia. Water, 13(3), 358. https://doi.org/10.3390/w13030358spa
dc.relation.referencesErdil, A., & Arcaklioglu, E. (2013). The prediction of meteorological variables using artificial neural network. Neural Computing and Applications, 22(7–8), 1677–1683. https://doi.org/10.1007/s00521-012-1210-0spa
dc.relation.referencesESA. (2023). Sentinel-2: Descripción de la misión. Recuperado de: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msispa
dc.relation.referencesEscoto Castillo, A., Sánchez Peña, L., & Gachuz Delgado, S. (2017). Trayectorias Socioeconómicas Compartidas (SSP): nuevas maneras de comprender el cambio climático y social. Estudios Demográficos y Urbanos, 32(3), 669–693. https://doi.org/10.24201/edu.v32i3.1684spa
dc.relation.referencesEyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016spa
dc.relation.referencesFan, H., Si, Q., Dong, W., Lu, G., & Liu, X. (2023). Land Use Change and Landscape Ecological Risk Prediction in Urumqi under the Shared Socio-Economic Pathways and the Representative Concentration Pathways (SSP-RCP) Scenarios. Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914214spa
dc.relation.referencesFAO. (2023). Listos para el cambio: Adaptando la producción de aguacate al cambio climático. Informe Técnico.spa
dc.relation.referencesFAOSTAT. (2023). Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#home (ultimo acceso: 16 de abril de 2023).spa
dc.relation.referencesFeng, A., Zhou, J., Vories, E. D., Sudduth, K. A., & Zhang, M. (2020). Yield estimation in cotton using UAV-based multi-sensor imagery. Biosystems Engineering, 193, 101–114. https://doi.org/10.1016/j.biosystemseng.2020.02.014spa
dc.relation.referencesFeng, S., Hao, Z., Zhang, X., & Hao, F. (2021). Changes in climate-crop yield relationships affect risks of crop yield reduction. Agricultural and Forest Meteorology, 304–305. https://doi.org/10.1016/j.agrformet.2021.108401spa
dc.relation.referencesFeng, W., Qi, S., Heng, Y., Zhou, Y., Wu, Y., Liu, W., He, L., & Li, X. (2017). Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Frontiers in Plant Science, 8(July), 1–12. https://doi.org/10.3389/fpls.2017.01219spa
dc.relation.referencesFeng, X., Park, D. S., Walker, C., Peterson, A. T., Merow, C., & Papeş, M. (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution, 3(10), 1382–1395. https://doi.org/10.1038/s41559-019-0972-5spa
dc.relation.referencesFerro, M. V., Catania, P., Miccichè, D., Pisciotta, A., Vallone, M., & Orlando, S. (2023). Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosystems Engineering, 231, 36–56. https://doi.org/10.1016/j.biosystemseng.2023.06.001spa
dc.relation.referencesFick, S.E. and Hijmans, R.J. (2017) WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086spa
dc.relation.referencesFigueroa-Figueroa, D. K., Francisco Ramírez-Dávila, J., Antonio-Némiga, X., & González Huerta, A. (2020). Mapping of avocado in the south of the state of Mexico by digital image processing sentinel-2. Revista Mexicana Ciencias Agrícolas, 11(4), 865–879. https://www.scielo.org.mx/pdf/remexca/v11n4/2007-0934-remexca-11-04-865-en.pdfspa
dc.relation.referencesFilgueiras, R., Neto, F., Pereira, S. B., Lima, A. A., & Santos, J. A. (2022). Evaluating the accuracy of global climate datasets for agricultural studies. Environmental Research, 202, 111704. DOI: 10.1016/j.envres.2022.111704spa
dc.relation.referencesFilgueiras, R., Venancio, L. P., Aleman, C. C., & da Cunha, F. F. (2022). Comparison and calibration of terraclimate climatological variables over the Brazilian territory. Journal of South American Earth Sciences Volume 117. https://doi.org/10.1016/j.jsames.2022.103882spa
dc.relation.referencesFlynn KC., Frazier AE., Admas S. (2020). Performance of chlorophyllprediction indices for Eragrostis tef at Sentinel-2 MSI and Landsat-8 OLI spectral resolutions. Precis Agric:1–15. https://doi. org/ 10. 1007/ s11119- 020- 09708-4spa
dc.relation.referencesForman, R. T. T. & Godron, M. (1986): Landscape Ecology, John Wiley and Sons, Nueva York.spa
dc.relation.referencesFranco, M., Leos, J., Salas, J., Acosta, M., & García, A. (2018). Análisis de costos y competitividad en la producción de aguacate en Michoacán, México. Revista Mexicana de Ciencias Agrícolas, 9(2), 391–403. http://www.scielo.org.mx/pdf/remexca/v9n2/2007-0934-remexca-9-02-391.pdfspa
dc.relation.referencesFriedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451spa
dc.relation.referencesGaitan, S. B., & Ríos, M. D. (2020). Socio-economic and technological typology of avocado cv. Hass farms from Antioquia (Colombia). Ciência Rural, 50(7). https://doi.org/10.1590/0103-8478cr20190188spa
dc.relation.referencesGallardo-Salazar, J. L., & Pompa-García, M. (2020). Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sensing, 12(24), 1–22. https://doi.org/10.3390/rs12244144spa
dc.relation.referencesGao, Y., Marpu, P., & Morales Manila, L. M. (2014). Object based image analysis for the classification of the growth stages of Avocado crop, in Michoacán State, Mexico. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V, 9263, 92630P. https://doi.org/10.1117/12.2068966spa
dc.relation.referencesGarcía, J. S. A., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2021). Current overview of hass avocado in Colombia. Challenges and opportunities: A review. Ciencia Rural, 51(8). https://doi.org/10.1590/0103-8478cr20200903spa
dc.relation.referencesGarcía-Fernández, M., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2021). High-resolution drone-acquired RGB imagery to estimate spatial grape quality variability. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040655spa
dc.relation.referencesGazoni, E., & Clark, C. (2024). openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files.spa
dc.relation.referencesGers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451–2471. https://doi.org/10.1162/089976600300015015spa
dc.relation.referencesGitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves¶. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2spa
dc.relation.referencesGitelson, A. A., Vina, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 2–7.spa
dc.relation.referencesGómez-Camperos, J., Jaramillo, H., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. Ingeniería y Competitividad, 24(1). https://doi.org/10.25100/iyc.v24i1.10973spa
dc.relation.referencesGong, L., Li, X., Wu, S., & Jiang, L. (2022). Prediction of potential distribution of soybean in the frigid region in China with MaxEnt modeling. Ecological Informatics, 72(April), 101834. https://doi.org/10.1016/j.ecoinf.2022.101834spa
dc.relation.referencesGoyal, M.K., Shivam, G., Sarma, A.K. (2019). Spatial homogeneity of extreme precipitation indices using fuzzy clustering over northeast India. Natural Hazards. 98, 559–574. https://doi.org/10.1007/s11069-019-03715-zspa
dc.relation.referencesGrüter, R., Trachsel, T., Laube, P., & Jaisli, I. (2022). Expected global suitability of coffee, cashew and avocado due to climate change. PLOS ONE, 17(1), e0261976. https://doi.org/10.1371/journal.pone.0261976spa
dc.relation.referencesH. Q. Liu and A. Huete, “A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, 1995, pp. 457-465. http://dx.doi.org/10.1109/36.377946spa
dc.relation.referencesH2O.ai. (2020). H2O AutoML: Scalable Automatic Machine Learning. https://www.h2o.ai/products/h2o-automl/spa
dc.relation.referencesHaboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013spa
dc.relation.referencesHan, Y., Bai, S.H., Trueman, S.J., Khoshelham, K., Kämper, W. (2023). Predicting the ripening time of ‘Hass’ and ‘Shepard’ avocado fruit by hyperspectral imaging. Precis Agric. https://doi.org/10.1007/s11119-023-10022-yspa
dc.relation.referencesHanberry, B. B. (2023). Global Climate Classification and Comparison to Mid-Holocene and Last Glacial Maximum Climates, with Added Aridity Information and a Hypertropical Class. 552–569. https://doi.org/10.3390/earth4030029spa
dc.relation.referencesHaralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314spa
dc.relation.referencesHarris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2spa
dc.relation.referencesHastie, T., Tibshirani, R. & Friedman, J.H. (2009) The elementsof statistical learning: data mining, inference, and prediction,2nd edn. Springer-Verlag, New York.spa
dc.relation.referencesHatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2(2), 562–578.spa
dc.relation.referencesHausfather, Z., & Peters, G. P. (2020). Emissions – the ‘business as usual’ story is misleading. Nature, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3spa
dc.relation.referencesHebbar, K. B., Abhin, P. S., Jose, V. S., Neethu, P., Santhosh, A., Shil, S., & Vara Prasad, P. V. (2022). Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under Climate Change Scenarios Using the MaxEnt Model. Plants, 11(6). https://doi.org/10.3390/plants11060731spa
dc.relation.referencesHegyi, B., Stackhouse, P. W., Taylor, P., & Patadia, F. (2024). NASA POWER: Providing Present and Future Climate Services Based on NASA Data for the Energy, Agricultural, and Sustainable Buildings Communities. NASA Technical Reports Server.spa
dc.relation.referencesHernández, C. M., Faye, A., Ly, M. O., Stewart, Z. P., Vara Prasad, P. V., Bastos, L. M., Nieto, L., Carcedo, A. J. P., & Ciampitti, I. A. (2021). Soil and climate characterization to define environments for summer crops in Senegal. Sustainability (Switzerland), 13(21). https://doi.org/10.3390/su132111739spa
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz-Sabater, J. & Dee, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803spa
dc.relation.referencesHewage, P., Trovati, M., Pereira, E., & Behera, A. (2021). Deep learning-based effective fine-grained weather forecasting model. Pattern Analysis and Applications, 24(1), 343–366. https://doi.org/10.1007/s10044-020-00898-1spa
dc.relation.referencesHijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. http://dx.doi.org/10.1002/joc.1276spa
dc.relation.referencesHolden, N. M., & Brereton, A. J. (2004). Definition of agroclimatic regions in Ireland using hydro-thermal and crop yield data. Agricultural and Forest Meteorology, 122(3–4), 175–191. https://doi.org/10.1016/j.agrformet.2003.09.010spa
dc.relation.referencesHowden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. www.pnas.orgcgidoi10.1073pnas.0701890104spa
dc.relation.referencesHribar, J. & Vidrih, R. (2015). Impacts of climate change on fruit physiology and quality. In: Proceedings. 50th Croatian and 10th International Symposium on Agriculture. Opatija. Croatia. 42- 45.spa
dc.relation.referencesHughes, D. A., Kingston, D. G., & Todd, M. C. (2011). Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrology and Earth System Sciences, 15(3), 931–941. https://doi.org/10.5194/hess-15-931-2011spa
dc.relation.referencesHunt ML., Blackburn GA., Carrasco L., Redhead JW., Rowland CS. (2019). High-resolution wheat yield mapping using Sentinel-2. Remote Sens Environ 233:11410. https://doi. org/ 10. 1016/j. rse. 2019. 111410spa
dc.relation.referencesHunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agronomy Journal, 103(4), 1090–1099. https://doi.org/10.2134/agronj2010.0395spa
dc.relation.referencesHunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &amp; Engineering, 9(3), 90–95.spa
dc.relation.referencesICA. (2023). Instituto Colombiano Agropecuario – ICA. Consulta realizada al Programa de Registros Vegetales de Exportación. Dirección Técnica de Epidemiología y Vigilancia Fitosanitaria.spa
dc.relation.referencesICONTEC. (2018). Frutas frescas. Aguacate variedad Hass. Especificaciones. Instituto Colombiano de Normas Técnicas y Certificación, 571, 15.spa
dc.relation.referencesIDEAM - UNAL. (2018). Variabilidad Climática y el cambio climático en Colombia. Bogotá, D.C., 1–53. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023778/variabilidad.pdf. (último acceso: junio de 2023).spa
dc.relation.referencesIFAD. (2024). Republic of Colombia: Country strategic opportunities programme. September, 44–45. https://webapps.ifad.org/members/eb/141/docs/EB-2024-OR-3.pdfspa
dc.relation.referencesIGAC. (2017). Manual de procedimientos - Generación de Ortofotomosaico. Grupo interno de trabajo generación de datos y productos cartográficos. 11 pp.spa
dc.relation.referencesImran, A. B., Khan, K., Ali, N., Ahmad, N., Ali, A., & Shah, K. (2020). Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, 6(1), 97–108. https://doi.org/10.22034/gjesm.2020.01.08spa
dc.relation.referencesIniyan, S., Akhil Varma, V., & Teja Naidu, C. (2023). Crop yield prediction using machine learning techniques. Advances in Engineering Software, 175(September 2022), 103326. https://doi.org/10.1016/j.advengsoft.2022.103326spa
dc.relation.referencesInoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming–a review. In Soil Science and Plant Nutrition (Vol. 66, Issue 6, pp. 798–810). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2020.1738899spa
dc.relation.referencesIPCC. (2013). What is a GCM? https://www.ipcc-data.org/guidelines/pages/gcm_guide.htmlspa
dc.relation.referencesIyigun, C., Türkeş, M., Batmaz, I., Yozgatligil, C., Purutçuoǧlu, V., Koç, E. K., & Öztürk, M. Z. (2013). Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and Applied Climatology, 114(1–2), 95–106. https://doi.org/10.1007/s00704-012-0823-7spa
dc.relation.referencesJägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., … Rosenzweig, C. (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2(11), 873–885. https://doi.org/10.1038/s43016-021-00400-yspa
dc.relation.referencesJavaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164. https://doi.org/10.1016/j.ijin.2022.09.004spa
dc.relation.referencesJeong, H., Bhattarai, R., & Hwang, S. (2019). How climate scenarios alter future predictions of field-scale water and nitrogen dynamics and crop yields. Journal of Environmental Management, 252. https://doi.org/10.1016/j.jenvman.2019.109623spa
dc.relation.referencesJung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. In Current Opinion in Biotechnology (Vol. 70, pp. 15–22). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2020.09.003spa
dc.relation.referencesJurišić, M., Radočaj, D., Plaščak, I., Galić, S. D., & Petrović, D. (2022). the Evaluation of the Rgb and Multispectral Camera on the Unmanned Aerial Vehicle (Uav) for the Machine Learning Classification of Maize. Poljoprivreda, 28(2), 74–80. https://doi.org/10.18047/poljo.28.2.10spa
dc.relation.referencesK. Boitt, M., N. Mundia, harles, & Pellikka, P. (2014). Modelling the Impacts of Climate Change on Agro-Ecological Zones – a Case Study of Taita Hills, Kenya. Universal Journal of Geoscience, 2(6), 172–179. https://doi.org/10.13189/ujg.2014.020602spa
dc.relation.referencesKaplan, G., Fine, L., Lukyanov, V., Manivasagam, V. S., Malachy, N., Tanny, J., & Rozenstein, O. (2021). Estimating Processing Tomato Water Consumption, Leaf Area Index, and Height Using Sentinel-2 and VENµS Imagery. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061046spa
dc.relation.referencesKarger, D. N., Schmatz, D. R., Dettling, G., & Zimmermann, N. E. (2020). High resolution monthly precipitation and temperature timeseries for the period 2006–2100, Sci. Data, 7, 248. https://doi.org/10.1038/s41597-020-00587-yspa
dc.relation.referencesKasimati, A., Espejo-García, B., Darra, N., & Fountas, S. (2022). Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning. Sensors, 22(9). https://doi.org/10.3390/s22093249spa
dc.relation.referencesKganyago, M., Adjorlolo, C., Mhangara, P., & Tsoeleng, L. (2024). Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture. Computers and Electronics in Agriculture, 218, 108730. https://doi.org/10.1016/j.compag.2024.108730spa
dc.relation.referencesKhaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., Seman, I. A., & Onwude, D. I. (2018). Early detection of diseases in plant tissue using spectroscopy–applications and limitations. In Applied Spectroscopy Reviews (Vol. 53, Issue 1, pp. 36–64). Taylor and Francis Inc. https://doi.org/10.1080/05704928.2017.1352510spa
dc.relation.referencesKhalil, T., Asad, S. A., Khubaib, N., Baig, A., Atif, S., Umar, M., Kropp, J. P., Pradhan, P., & Baig, S. (2021). Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food, 6(2), 663–676. https://doi.org/10.3934/AGRFOOD.2021039spa
dc.relation.referencesKiil, L., Houmøller, M., & Hesselberg, T. (2023). General Circulation Models (GCMs). Https://www.Climate-Encyclopedia.Com/Opslag/Liste.spa
dc.relation.referencesKiilu, S. N. (2021). Time Series Analysis of Rainfall and Temperature in Rwanda using ARIMA Model Ha wnmmmn. June. https://library.nexteinstein.org/wp-content/uploads/2023/03/AIMSRW21_stephen_kiilu_essay.pdfspa
dc.relation.referencesKim, S., Hong, S., Joh, M., & Song, S.-K. (2017).Deeprain: convLstm network for precipitation.spa
dc.relation.referencesKior, A., Sukhov, V., & Sukhova, E. (2021). Application of reflectance indices for remote sensing of plants and revealing actions of stressors. Photonics, 8(12).spa
dc.relation.referencesKlakotskaya, N., Laurson, P., Libek, A. V., & Kikas, A. (2023). Assessment of the Aim Characteristics of Strawberry (Fragaria × Ananassa) Cultivars in Estonia by Using the K-Means Clustering Method. Horticulturae, 9(1). https://doi.org/10.3390/horticulturae9010104spa
dc.relation.referencesKong, Z., Cui, Y., Xia, Z., & Lv, H. (2019). Convolution and Long Short-Term Memory Hybrid Deep Neural Networks for Remaining Useful Life Prognostics. Applied Sciences, 9(19), 4156. https://doi.org/10.3390/app9194156spa
dc.relation.referencesKottaridi, K., Milionis, A., Demopoulos, V., Nikolaidis, V., Tsalgatidou, P. C., Tsafouros, A., Kotsiras, A., & Vithoulkas, A. (2024). Comparative analysis of machine learning classification algorithms for predicting olive anthracnose disease. Journal of Autonomous Intelligence, 7(5), 1466. https://doi.org/10.32629/jai.v7i5.1466spa
dc.relation.referencesKozjek, K., Dolinar, M., & Skok, G. (2017). Objective climate classification of Slovenia. International Journal of Climatology, 37(March), 848–860. https://doi.org/10.1002/joc.5042spa
dc.relation.referencesKożuch, A., Cywicka, D., & Adamowicz, K. (2023). A Comparison of Artificial Neural Network and Time Series Models for Timber Price Forecasting. Forests, 14(2). https://doi.org/10.3390/f14020177spa
dc.relation.referencesKrishna, M. V., Swaroopa, K., SwarnaLatha, G., & Yasaswani, V. (2023). Crop yield prediction in India based on mayfly optimization empowered attention-bi-directional long short-term memory (LSTM). Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-16807-7spa
dc.relation.referencesKuska, M. T., & Mahlein, A.-K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1spa
dc.relation.referencesKyratzis, A. C., Skarlatos, D. P., Menexes, G. C., Vamvakousis, V. F., & Katsiotis, A. (2017). Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed Mediterranean environment. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01114spa
dc.relation.referencesLahav, E., & Trochoulias, T. (1982). The Effect of Temperature on Growth and Dry Matter Production of Avocado Plants. In Aust. J. Agric. Res (Vol. 33).spa
dc.relation.referencesLai, Y., & Dzombak, D. A. (2020). Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term Regional Temperature and Precipitation. Weather and Forecasting, 35, 959–976. https://doi.org/10.1175/WAF-D-19spa
dc.relation.referencesLang, S., Blaschke, T., 2007. Landschaftsanalyse mit GIS. Ulmer, Stuttgart, 404 pp.spa
dc.relation.referencesLedell, E., & Poirier, S. (2020). H2O AutoML: Scalable automatic machine learning. 7th ICML Workshop on Automated Machine Learning, 1–16. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdfspa
dc.relation.referencesLee, T., Shin, J. Y., Kim, J. S., & Singh, V. P. (2020). Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540spa
dc.relation.referencesLee, T., Shin, J. Y., Kim, J. S., & Singh, V. P. (2020). Stochastic simulation on reproducing long-term memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540spa
dc.relation.referencesLeng, G., & Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01599-2spa
dc.relation.referencesLeng, G., Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Sci Rep. 7. https://doi.org/10.1038/s41598-017-01599-2spa
dc.relation.referencesLeón, R., Díaz, M., & Rodríguez, L. (2020). Management of an artificial vision system for the detection of damage caused by pests in avocado crop using a drone. Revista Ciencia y Tecnología, 16(4), 145–151. https://doi.org/10.17268/rev.cyt.2020.04.14spa
dc.relation.referencesLeón-Rueda, W. A., León, C., Caro, S. G.-, & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2spa
dc.relation.referencesLi, H. Q., Liu, X. H., Wang, J. H., Xing, L. G., & Fu, Y. Y. (2019). Maxent modelling for predicting climate change effects on the potential planting area of tuber mustard in China. Journal of Agricultural Science, 157(5), 375–381. https://doi.org/10.1017/S0021859619000686spa
dc.relation.referencesLi, M., Shamshiri, R. R., Weltzien, C., & Schirrmann, M. (2022). Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174426spa
dc.relation.referencesLiang, S., & Wang Jindi. (2020). Chapter 15 - Estimate of vegetation production of terrestrial ecosystem. In Liang Shunlin & Wang Jindi (Eds.), Advanced Remote Sensing (2nd ed., pp. 581–620).spa
dc.relation.referencesLipovac, A., Bezdan, A., Moravčević, D., Djurović, N., Ćosić, M., Benka, P., & Stričević, R. (2022). Correlation between Ground Measurements and UAV Sensed Vegetation Indices for Yield Prediction of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Water (Switzerland), 14(22). https://doi.org/10.3390/w14223786spa
dc.relation.referencesLiu, S., Peng, Y., Xia, Z., Hu, Y., Wang, G., Zhu, A. X., & Liu, Z. (2019). The Ga-BPNN-based evaluation of cultivated land quality in the PSR framework using Gaofen-1 satellite data. Sensors (Switzerland), 19(23), 1–14. https://doi.org/10.3390/s19235127spa
dc.relation.referencesLobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. https://doi.org/10.1104/pp.112.208298spa
dc.relation.referencesLobell, D.B., Thau, D., Seifert, C., Engle, E. & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sens Environ. 164, 324–333. https://doi.org/10.1016/j.rse.2015.04.021spa
dc.relation.referencesLopes, A.R., Marcolin, J., Johann, J.A., Vilas Boas & M.A., Schuelter, A.R. (2019). Identification of homogeneous rainfall zones during grain crops in Paraná, Brazil. Engenharia Agrícola. 39, 707–714. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n6p707-714/2019spa
dc.relation.referencesLópez, D. (2020). El aguacate continúa ocupando el primer lugar de las exportaciones hortofrutícolas colombianas. Frutas y hortalizas. Revistas de la Asociación Hortifrutícola de Colombia. Asohofrucol. Enero – Febrero 2021. Pp 20 -21. https://www.asohofrucol.com.co/img/pdfrevistas/48Balance%20del.pdfspa
dc.relation.referencesLussem, U., Bolten, A., Gnyp, M. L., Jasper, J., & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in Grassland. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3), 1215–1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018spa
dc.relation.referencesMa, C., Liu, M., Ding, F., Li, C., Cui, Y., Chen, W., Wang, Y. (2022). Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model. Sci Rep. 12. https://doi.org/10.1038/s41598-022-09535-9spa
dc.relation.referencesMa, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., Wagle, P., Chen, L., Flynn, K. C., & Jiang, W. (2019). Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 98, 68–79. https://doi.org/10.1016/j.ecolind.2018.10.049spa
dc.relation.referencesMadonsela, S., Cho, M. A., Naidoo, L., Main, R., & Majozi, N. (2023). Exploring the utility of Sentinel-2 for estimating maize chlorophyll content and leaf area index across different growth stages. Journal of Spatial Science, 68(2), 339–351. https://doi.org/10.1080/14498596.2021.2000898spa
dc.relation.referencesMADR. (2019). Comienza el ordenamiento de la producción de aguacate Hass. Disponible en: https://www.minagricultura.gov.co/noticias/Paginas/Comienza-el-ordenamiento-de-la-producci%C3%B3n-de-aguacate-hass.aspx. (Último acceso: abril de 2023).spa
dc.relation.referencesMahmud, S., Sumana, F. M., Mohsin, M., & Khan, Md. H. R. (2022). Redefining homogeneous climate regions in Bangladesh using multivariate clustering approaches. Natural Hazards, 111(2), 1863–1884. https://doi.org/10.1007/s11069-021-05120-xspa
dc.relation.referencesMahsin, M., Akhter, Y., & Begum, M. (2012a). Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Journal of Mathematical Modelling and Application, 1(5), 67–73.spa
dc.relation.referencesMalachy, N., Zadak, I., & Rozenstein, O. (2022). Comparing Methods to Extract Crop Height and Estimate Crop Coefficient from UAV Imagery Using Structure from Motion. In Remote Sensing (Vol. 14, Issue 4). MDPI. https://doi.org/10.3390/rs14040810spa
dc.relation.referencesMalhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. In Sustainability (Switzerland) (Vol. 13, Issue 3, pp. 1–21). MDPI. https://doi.org/10.3390/su13031318spa
dc.relation.referencesMall, R. K., Gupta, A., & Sonkar, G. (2017). Effect of Climate Change on Agricultural Crops. In Current Developments in Biotechnology and Bioengineering: Crop Modification, Nutrition, and Food Production (pp. 23–46). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63661-4.00002-5spa
dc.relation.referencesManideep, A. P. S., & Kharb, S. (2022). A Comparative Analysis of Machine Learning Prediction Techniques for Crop Yield Prediction in India. Turkish Journal of Computer and Mathematics Education, 13(02), 120–133.spa
dc.relation.referencesManochandar, S., Punniyamoorthy, M., & Jeyachitra, R. K. (2020). Development of new seed with modified validity measures for k-means clustering. Computers and Industrial Engineering, 141. https://doi.org/10.1016/j.cie.2020.106290spa
dc.relation.referencesMarino, S., Cocozza, C., Tognetti, R., Alvino, A. (2015). Use of proximal sensing and vegetation indexes to detect the inefficient spatial allocation of drip irrigation in a spot area of tomato field crop. Precision Agriculture (2015) 16:613–629. Springer Science+Business Media New York. http://dx.doi.org/10.1007/s11119-015-9396-7spa
dc.relation.referencesMartinez, A. & J. Serna. (2018). Validación de las estimaciones de precipitación con CHIRPS e IRE/ IDEAM. Nota Técnica del Ideam. IDEAM – METEO.002. 25 pp. http://bart.ideam.gov.co/wrfideam/new_modelo/DOCUMENTOS/2018/NT_IDEAM-002-2018.pdfspa
dc.relation.referencesMartínez-Acosta, L., Medrano-Barboza, J. P., López-Ramos, Á., López, J. F. R., & López-Lambraño, Á. A. (2020). SARIMA approach to generating synthetic monthly rainfall in the Sinú river watershed in Colombia. Atmosphere, 11(6), 1–16. https://doi.org/10.3390/atmos11060602spa
dc.relation.referencesMcKinney, W. (2011). pandas: a Foundational Python Library for Data Analysis and Statistics. Python for High Performance and Scientific Computing, December, 1–9.spa
dc.relation.referencesMejiá-Cabrera, H. I., Flores, J. N., Sigueñas, J., Tuesta-Monteza, V., & Forero, M. G. (2020). Identification of Lasiodiplodia Theobromae in avocado trees through image processing and machine learning. Proc. SPIE 11510, Applications of Digital Image Processing XLIII, 115102F. https://doi.org/10.1117/12.2567322spa
dc.relation.referencesMercado Polo, D., Pedraza Caballero, L., & Martínez Gómez, E. (2015). Comparación de Redes Neuronales aplicadas a la predicción de Series de Tiempo. Prospectiva, 13(2), 88. https://doi.org/10.15665/rp.v13i2.491spa
dc.relation.referencesMesa Sánchez, Ó. J., & Peñaranda Vélez, V. M. (2015). Complejidad de la estructura espacio-temporal de la precipitación. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 304. https://doi.org/10.18257/raccefyn.196spa
dc.relation.referencesMichel, J., Vinasco-salinas, J., Inglada, J., Hagolle, O., Michel, J., Vinasco-salinas, J., Inglada, J., & S, O. H. S. (2022). SEN2VEN µ S , a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms To cite this version : HAL Id : hal-03904203. 0–17.spa
dc.relation.referencesMilagro-Pérez, J. and. (2020). Copernicus: the European Earth Observation programme. 1–7.spa
dc.relation.referencesMiranda, C. (2021). Modelización de Series Temporales modelos clásicos y SARIMA. Universidad de Granada. https://masteres.ugr.es/estadistica-aplicada/sites/master/moea/public/inline-files/TFM_MIRANDA_CHINLLI_CARLOS.pdfspa
dc.relation.referencesMisra, G., Cawkwell, F., & Wingler, A. (2020). Status of phenological research using sentinel-2 data: A review. Remote Sensing, 12(17), 10–14. https://doi.org/10.3390/RS12172760spa
dc.relation.referencesMokria, M., Gebrekirstos, A., Said, H., Hadgu, K., Hagazi, N., Dubale, W., & Bräuning, A. (2022). Fruit weight and yield estimation models for five avocado cultivars in Ethiopia. Environmental Research Communications, 4(7). https://doi.org/10.1088/2515-7620/ac81a4spa
dc.relation.referencesMoriya, É. A. S., Imai, N. N., Tommaselli, A. M. G., Honkavaara, E., & Rosalen, D. L. (2023). Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study. Agronomy, 13(6).spa
dc.relation.referencesMuñoz Herrera, W., Bedoya, O. F., & Rincón, M. E. (2020). Aplicación de redes neuronales para la reconstrucción de series de tiempo de precipitación y temperatura utilizando información satelital. Revista EIA, 17(34). https://doi.org/10.24050/reia.v17i34.1292spa
dc.relation.referencesMwinuka, P. R., Mbilinyi, B. P., Mbungu, W. B., Mourice, S. K., Mahoo, H. F., & Schmitter, P. (2021). The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L). Agricultural Water Management, 245. https://doi.org/10.1016/j.agwat.2020.106584spa
dc.relation.referencesNaeem, M. B., & Jahan, S. (2023). Unveiling the Thirst: Revealing the Water Requirements of Gujrat’s Thriving Crops using CROPWAT 8.0. Journal of Plant and Environment, 5(2), 123–134. https://doi.org/10.33687/jpe.005.02.4983spa
dc.relation.referencesNarkhede, U. P., & Adhiya, K. P. (2014). Evaluation of Modified K-Means Clustering Algorithm in Crop Prediction. In International Journal of Advanced Computer Research.spa
dc.relation.referencesNarmilan, A., Gonzalez, F., Salgadoe, A. S. A., Kumarasiri, U. W. L. M., Weerasinghe, H. A. S., & Kulasekara, B. R. (2022). Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sensing, 14(5). https://doi.org/10.3390/rs14051140spa
dc.relation.referencesNarvekar, M., Fargose, P., & Mukhopadhyay, D. (2017). Weather forecasting using ANN with error backpropagation algorithm. Advances in Intelligent Systems and Computing, 468, 629–639. https://doi.org/10.1007/978-981-10-1675-2_62spa
dc.relation.referencesNASA Applied Sciences. (2021). NASA Agriculture 2020 Annual Summary. Applied Sciences Program.spa
dc.relation.referencesNavrozidis, I., Pantazi, X. E., Lagopodi, A., Bochtis, D., & Alexandridis, T. K. (2023). Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data. Remote Sensing, 15(24). https://doi.org/10.3390/rs15245683spa
dc.relation.referencesNedkov, R. (2017). Normalized differential greenness index for vegetation dynamics assessment. Comptes Rendus de L’Academie Bulgare Des Sciences, 70(8), 1143–1146.spa
dc.relation.referencesNketiah EA, Chenlong L, Yingchuan J, Aram SA. (2023). Recurrent neural network modeling of multivariate time series and its application in temperature forecasting. PLoS ONE 18(5): e0285713. https://doi.org/10.1371/journal.pone.0285713spa
dc.relation.referencesNOAA. (2022). National Centers for Environmental Information, Monthly Global Climate Report for Annual 2022, published online January 2023, retrieved on May 8, 2023 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213. Último acceso: diciembre de 2023.spa
dc.relation.referencesNusrat, A., Gabriel, H. F., Haider, S., Ahmad, S., Shahid, M., & Jamal, S. A. (2020). Application of machine learning techniques to delineate homogeneous climate zones in river basins of Pakistan for hydro-climatic change impact studies. Applied Sciences (Switzerland), 10(19), 1–26. https://doi.org/10.3390/app10196878spa
dc.relation.referencesO’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016spa
dc.relation.referencesOlaniyi, O. E. ., Adegbola, O. O. ., & Adefurin, O. M. (2020). Performance of Landsat 8 and Sentinel 2A in vegetation cover mapping of Ise Forest Reserve , Southwest Nigeria.spa
dc.relation.referencesPandas Documentation. (2024). pandas.DataFrame.to_excel. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_excel.htmlspa
dc.relation.referencesPanek, E., Gozdowski, D., Stępień, M., Samborski, S., Ruciński, D., & Buszke, B. (2020). Within-field relationships between satellite-derived vegetation indices, grain yield and spike number of winter wheat and triticale. Agronomy, 10(11), 1–18. https://doi.org/10.3390/agronomy10111842spa
dc.relation.referencesPansera, W., Gomes, B., Vilas – Boas, M., Queiroz., Mello & E.L, Sampaio. (2015). Regionalization of monthly precipitation values in the state of Paraná (Brazil) by using multivariate clustering algorithms. Irriga 20(3):473-489. http://dx.doi.org/10.15809/irriga.2015v20n3p473spa
dc.relation.referencesPecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., & Chirici, G. (2019). Species distribution modelling to support forest management. A literature review. Ecological Modelling, 411(May). https://doi.org/10.1016/j.ecolmodel.2019.108817spa
dc.relation.referencesPedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.spa
dc.relation.referencesPeña, L., Rentería, V., Velásquez, C., Ojeda, M. L., & Barrera, E. (2019). Absorbancia y reflectancia de hojas de Ficus contaminadas con nanopartículas de plata. In Revista Mexicana de Física (Vol. 65).spa
dc.relation.referencesPérez-Bueno, M. L., Pineda, M., Vida, C., Fernández-Ortuño, D., Torés, J. A., de Vicente, A., Cazorla, F. M., & Barón, M. (2019). Detection of white root rot in avocado trees by remote sensing. Plant Disease, 103(6), 1119–1125. https://doi.org/10.1094/PDIS-10-18-1778-REspa
dc.relation.referencesPettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/https://doi.org/10.1016/j.tree.2005.05.011spa
dc.relation.referencesPhillips, S. B., Aneja, V. P., Kang, D., & Arya, S. P. (2006). Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. International Journal of Global Environmental Issues, 6(2–3), 231–252. https://doi.org/10.1016/j.ecolmodel.2005.03.026spa
dc.relation.referencesPhillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2005.03.026spa
dc.relation.referencesPinto, J., Rueda-Chacón, H., & Arguello, H. (2019). Classification of Hass avocado (persea americana mill) in terms of its ripening via hyperspectral images. TecnoLógicas, 22(45), 109–128. https://doi.org/10.22430/22565337.1232spa
dc.relation.referencesQi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/https://doi.org/10.1016/0034-4257(94)90134-1spa
dc.relation.referencesRadočaj, D., Šiljeg, A., Plaščak, I., Marić, I., & Jurišić, M. (2023). A Micro-Scale Approach for Cropland Suitability Assessment of Permanent Crops Using Machine Learning and a Low-Cost UAV. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020362spa
dc.relation.referencesRahman, M. M., Robson, A., & Brinkhoff, J. (2022). Potential of Time-Series Sentinel 2 Data for Monitoring Avocado Crop Phenology. Remote Sensing, 14(23). https://doi.org/10.3390/rs14235942spa
dc.relation.referencesRahman, M., Robson, A., Salgadoe, S., Walsh, K., & Bristow, M. (2020). Exploring the Potential of High Resolution Satellite Imagery for Yield Prediction of Avocado and Mango Crops. 3, 154. https://doi.org/10.3390/proceedings2019036154spa
dc.relation.referencesRaju, K. S., & Kumar, D. N. (2020). Review of approaches for selection and ensembling of GCMS. Journal of Water and Climate Change, 11(3), 577–599. https://doi.org/10.2166/wcc.2020.128spa
dc.relation.referencesRamírez, J., Castañeda, D. & J. Morales J. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres, Viçosa, 64(1): 050-061.spa
dc.relation.referencesRamírez-Gil, J. G., & Morales-Osorio, J. G. (2018). Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae, 240, 273–280. https://doi.org/10.1016/j.scienta.2018.06.047spa
dc.relation.referencesRamírez-Gil, J. G., & Morales-Osorio, J. G. (2021). Diseases and disorders associated with different stages of crop development and factors that determine the incidence in Hass avocado crops. Revista Ceres, 68(1), 071–082. https://doi.org/10.1590/0034-737X202168010009spa
dc.relation.referencesRamírez-Gil, J. G., & Peterson, A. T. (2019). Current and potential distributions of the most important diseases affecting Hass avocado in Antioquia Colombia. Journal of Plant Protection Research, 59(2). https://doi.org/10.24425/jppr.2019.129288spa
dc.relation.referencesRamírez-Gil, J. G., Gilchrist Ramelli, E., & Morales Osorio, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101, 103–115. https://doi.org/10.1016/j.cropro.2017.07.023spa
dc.relation.referencesRamírez-Gil, J. G., Henao-Rojas, J. C., & Morales-Osorio, J. G. (2020). Mitigation of the adverse effects of the El Niño (El Niño, La Niña) southern oscillation (ENSO) phenomenon and the most important diseases in Avocado cv. hass crops. Plants, 9(6). https://doi.org/10.3390/plants9060790spa
dc.relation.referencesRamírez-Gil, J. G., Henao-Rojas, J. C., Diaz-Diez, C. A., Peña-Quiñones, A. J., León, N., Parra-Coronado, A., & Bernal-Estrada, J. A. (2023). Phenological variations of avocado cv. Hass and their relationship with thermal time under tropical conditions. Heliyon, 9(9), e19642. https://doi.org/10.1016/j.heliyon.2023.e19642spa
dc.relation.referencesRamirez-Gil, J. G., Lopera, A. A., & Garcia, C. (2023b). Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18658spa
dc.relation.referencesRamírez-Gil, J. G., López, J. H., & Henao-Rojas, J. C. (2019). Causes of Hass Avocado Fruit Rejection in Preharvest, Harvest, and Packinghouse: Economic Losses and Associated Variables. Agronomy, 10(1), 8. https://doi.org/10.3390/agronomy10010008spa
dc.relation.referencesRamírez-Gil, J. G., Morales, J. G., & Peterson, A. T. (2018). Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae, 237, 287–295. https://doi.org/10.1016/j.scienta.2018.04.021spa
dc.relation.referencesRamírez-Gil, J.G., Castañeda, D.A., Morales, J.G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Rev. Ceres 61 (1), 050 -061. https://www.scielo.br/j/rceres/a/8VYhGtYxRcr4GHqtTLWdmjP/spa
dc.relation.referencesRamírez-Gil, J.G., Cobos, M.E., Jiménez-García, D., Morales-Osorio, J.G., Peterson, A.T., (2019). Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop Pasture Sci. 70, 694–708. https://doi.org/10.1071/CP19094spa
dc.relation.referencesRamirez-Guerrero, T., Hernandez-Perez, M. I., Tabares, M. S., Marulanda-Tobon, A., Villanueva, E., & Peña, A. (2023). Agroclimatic and Phytosanitary Events and Emerging Technologies for Their Identification in Avocado Crops: A Systematic Literature Review. Agronomy, 13(8), 1976. https://doi.org/10.3390/agronomy13081976spa
dc.relation.referencesRasheed, S. U., Muhammad, W., Qaiser, I., & Irshad, M. J. (2021). A Multispectral Pest-Detection Algorithm for Precision Agriculture. Engineering Proceedings, 12(1). https://doi.org/10.3390/engproc2021012046spa
dc.relation.referencesReints, J. (2019). Water Management Practices in California ‘Hass’ Avocado: Technologies Adoption and Impact of Soil Water Relations on Leaf Nutrient Concentrations and Yield [UC Riverside]. https://doi.org/10.1111/oik.05768spa
dc.relation.referencesRen, H., Zhou, G., & Zhang, F. (2018). Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 209(79), 439–445. https://doi.org/10.1016/j.rse.2018.02.068spa
dc.relation.referencesReyes, J., Mesa, N. C., & Kondo, T. (2011). Biology of Oligonychus yothersi (McGregor) (Acari: Tetranychidae) on avocado Persea americana Mill. cv. Lorena (Lauraceae). In Caldasia (Vol. 33, Issue 1). http://www.icn.unal.edu.co/spa
dc.relation.referencesRiahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009spa
dc.relation.referencesRobson, A. J., Petty, J., Joyce, D. C., Marques, J. R., & Hofman, P. J. (2016). High resolution remote sensing, GIS and Google Earth for avocado fruit quality mapping and tree number auditing. Acta Horticulturae, 1130, 589–595. https://doi.org/10.17660/ActaHortic.2016.1130.88spa
dc.relation.referencesRobson, A., Rahman, M. M., & Muir, J. (2017). Using worldview satellite imagery to map yield in avocado (Persea americana): A case study in Bundaberg, Australia. Remote Sensing, 9(12), 1–18. https://doi.org/10.3390/rs9121223spa
dc.relation.referencesRobson, A., Rahman, M. M., Muir, J., Saint, A., Simpson, C., & Searle, C. (2017). Evaluating satellite remote sensing as a method for measuring yield variability in Avocado and Macadamia tree crops. Advances in Animal Biosciences, 8(2), 498–504. https://doi.org/10.1017/s2040470017000954spa
dc.relation.referencesRobson, A., Rahman, M., & Muir, J. (2017). Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia. Remote Sensing, 9(12), 1223. https://doi.org/10.3390/rs9121223spa
dc.relation.referencesRocha-Arroyo, J. L., Salazar-García, S., Bárcenas, A., González-Durán, I., & Cossio-Vargas, L. (2011). Fenología del aguacate “Hass” en Michoacán. Revista Mexicana de Ciencias Agrícolas. Revista Mexicana de Ciencias Agrícolas, 2(3), 303–316.spa
dc.relation.referencesRodríguez, P., Soto, I., Villamizar, J., & Rebolledo, A. (2023). Fatty Acids and Minerals as Markers Useful to Classify Hass Avocado Quality: Ripening Patterns, Internal Disorders, and Sensory Quality. Horticulturae, 9(4). https://doi.org/10.3390/horticulturae9040460spa
dc.relation.referencesRodríguez-Almonacid, D. V., Ramírez-Gil, J. G., Higuera, O. L., Hernández, F., & Díaz-Almanza, E. (2023). A Comprehensive Step-by-Step Guide to Using Data Science Tools in the Gestion of Epidemiological and Climatological Data in Rice Production Systems. Agronomy, 13(11), 2844. https://doi.org/10.3390/agronomy13112844spa
dc.relation.referencesRogers, C. A., Chen, J. M., Zheng, T., Croft, H., Gonsamo, A., Luo, X., & Staebler, R. M. (2020). The Response of Spectral Vegetation Indices and Solar-Induced Fluorescence to Changes in Illumination Intensity and Geometry in the Days Surrounding the 2017 North American Solar Eclipse. Journal of Geophysical Research: Biogeosciences, 125(10). https://doi.org/10.1029/2020JG005774spa
dc.relation.referencesRomero - Sánchez, M. (2012). Comportamiento fisiológico del aguacate (Persea americana mill.) Variedad Lorena en la zona de Mariquita, Tolima. Tesis de investigación presentada como requisito parcial para optar al título de Magister en Ciencias Agrarias, Área Fisiología de Cultivos. Universidad Nacional de Colombia. 135 pp. https://repositorio.unal.edu.co/handle/unal/9437spa
dc.relation.referencesRosentrater, L. D. (2010). Representing and using scenarios for responding to climate change. Wiley Interdisciplinary Reviews: Climate Change, 1(2), 253–259. https://doi.org/10.1002/wcc.32spa
dc.relation.referencesRoy, A., & Inamdar, A. B. (2019). Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon, 5(4), e01478. https://doi.org/10.1016/j.heliyon.2019.e01478spa
dc.relation.referencesRuiz, P., Monterroso, A., Conde, A., & Sánchez, G. (2022). Breve guía para la selección descarga y aplicación de escenarios de cambio climático para México de acuerdo con los últimos escenarios del IPCC-2022. UACh-UNAMBUAP-UAT-ISF-México, A.C. http://dx.doi.org/10.13140/RG.2.2.20064.15369spa
dc.relation.referencesSaha, P. P., Zeleke, K., & Hafeez, M. (2019). Impacts of land use and climate change on streamflow and water balance of two sub-catchments of the Murrumbidgee River in South Eastern Australia. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation (pp. 175–190). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00015-4spa
dc.relation.referencesSaito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10(3), 1–21. https://doi.org/10.1371/journal.pone.0118432spa
dc.relation.referencesSalazar-García, S., Isidro, ¶ ;, Luis González-Durán, J., Luis, ;, & Tapia-Vargas, M. (2011). Influencia del clima, humedad del suelo y época de floración sobre la biomasa y composición nutrimental de frutos de aguacate “hass” en Michoacán, México. In Revista Revista Chapingo Serie Horticultura 17(2): 183-194, 2011.spa
dc.relation.referencesSalazar-García, s.; Cossio-Vargas, l. E.; Lovatt, C. J.; González-Durán, I. J. L.; Pérez-Barraza, m. H. 2006. Crop load affects vegetative growth flushes and shoot age influences irreversible commitment to flowering of 'Hass' avocado. HortScience 41:1541-1546.spa
dc.relation.referencesSalazar-Reque, I., Arteaga, D., Mendoza, F., Elena Rojas, M., Soto, J., Huaman, S., & Kemper, G. (2023). Differentiating nutritional and water statuses in Hass avocado plantations through a temporal analysis of vegetation indices computed from aerial RGB images. Computers and Electronics in Agriculture, 213. https://doi.org/10.1016/j.compag.2023.108246spa
dc.relation.referencesSalehnia, N., Salehnia, N., Ansari, H., Kolsoumi, S., & Bannayan, M. (2019). Climate data clustering effects on arid and semi-arid rainfed wheat yield: a comparison of artificial intelligence and K-means approaches. International Journal of Biometeorology, 63(7), 861–872. https://doi.org/10.1007/s00484-019-01699-wspa
dc.relation.referencesSankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. In Computers and Electronics in Agriculture (Vol. 72, Issue 1, pp. 1–13). https://doi.org/10.1016/j.compag.2010.02.007spa
dc.relation.referencesSchepen, A., Everingham, Y., & Wang, Q. J. (2020). An improved workflow for calibration and downscaling of GCM climate forecasts for agricultural applications – A case study on prediction of sugarcane yield in Australia. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.107991spa
dc.relation.referencesScikit-learn. (2024). Train/test split and cross-validation. https://scikit-learn.org/stable/modules/cross_validation.htmlspa
dc.relation.referencesSelvaratnam, S. (2023). Applications of Robust Methods in Spatial Analysis. Journal of Probability and Statistics, 2023, 1–10. https://doi.org/10.1155/2023/1328265spa
dc.relation.referencesSerrano, A. & Brooks, A. (2019). Who is left behind in global food systems? Local farmers failed by Colombia’s avocado boom. Global Food History, 5(2), 172-190. https://doi.org/10.1177/2514848619838195spa
dc.relation.referencesShapira, O., Chernoivanov, S., Neuberger, I., Levy, S., & Rubinovich, L. (2021). Physiological Characterization of Young ‘Hass’ Avocado Plant Leaves Following Exposure to High Temperatures and Low Light Intensity. Plants, 10(8), 1562. https://doi.org/10.3390/plants10081562spa
dc.relation.referencesSharifi, A. (2020), Remotely sensed vegetation indices for crop nutrition mapping. J. Sci. Food Agric., 100: 5191-5196. https://doi.org/10.1002/jsfa.10568spa
dc.relation.referencesSheridan, S. C. (2002). The redevelopment of a weather-type classification scheme for North America. International Journal of Climatology, 22(1), 51–68. https://doi.org/10.1002/joc.709spa
dc.relation.referencesSherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404. https://doi.org/10.1016/j.physd.2019.132306spa
dc.relation.referencesSigurdsson, J., Armannsson, S. E., Ulfarsson, M. O., & Sveinsson, J. R. (2022). Fusing Sentinel-2 and Landsat 8 Satellite Images Using a Model-Based Method. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133224spa
dc.relation.referencesSiji George, C. G., & Sumathi, B. (2020). Grid search tuning of hyperparameters in random forest classifier for customer feedback sentiment prediction. International Journal of Advanced Computer Science and Applications, 11(9), 173–178. https://doi.org/10.14569/IJACSA.2020.0110920spa
dc.relation.referencesSilleos, N. G., Alexandridis, T. K., Gitas, I. Z., & Perakis, K. (2006). Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399spa
dc.relation.referencesSillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., Real, R., & Barbosa, A. M. (2021). Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456. https://doi.org/10.1016/j.ecolmodel.2021.109671spa
dc.relation.referencesSimoes, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L., & E. Cobos, M. (2020). General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 15(2), 67–68. https://doi.org/10.17161/bi.v15i2.13376spa
dc.relation.referencesSoltanikazemi, M., Minaei, S., Shafizadeh-Moghadam, H., & Mahdavian, A. (2022). Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Computers and Electronics in Agriculture, 200, 107130. https://doi.org/https://doi.org/10.1016/j.compag.2022.107130spa
dc.relation.referencesSommaruga, R., & Eldridge, H. M. (2021). Avocado Production: Water Footprint and Socio-economic Implications. EuroChoices, 20(2), 48–53. https://doi.org/10.1111/1746-692X.12289spa
dc.relation.referencesSparks A. (2018). “nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R.” The Journal of Open Source Software, 3(30), 1035. http://dx.doi.org/10.21105/joss.01035spa
dc.relation.referencesSterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/s10658-020-01961-7spa
dc.relation.referencesStöckle, C. O., Marsal, J., & Villar, J. M. (2011). Impact of climate change on irrigated tree fruit production. In Acta Horticulturae (Vol. 889, pp. 41–52). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.2011.889.2spa
dc.relation.referencesStroppiana, D., Migliazzi, M., Chiarabini, V., Crema, A., Musanti, M., Franchino, C., & Villa, P. (2015). Rice yeld estimation using multispectral data from UAV: A preliminary experiment in northen Italy. 46664–4667.spa
dc.relation.referencesSu, P., Zhang, A., Wang, J., & Xu, W. (2023). Plausible maize planting distribution under future global change scenarios. Field Crops Research, 302(July), 109079. https://doi.org/10.1016/j.fcr.2023.109079spa
dc.relation.referencesTan, P.N., Steinbach, M., Kumar & V. A. Karpatne. (2019). Introduction to Data Mining EBook: Global Edition. Pearson Education. ISBN=9780273775324, Disponible en: https://books.google.com.co/books?id=i8AoEAAAQBAJ. (Último acceso: junio de 2023)spa
dc.relation.referencesTao, H., Feng, H., Xu, L., Miao, M., Yang, G., Yang, X., & Fan, L. (2020). Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors (Switzerland), 20(4). https://doi.org/10.3390/s20041231spa
dc.relation.referencesTechnology Transfer Program. (2021). NASA Brings Space Technology to Agricultural Applications. NASA.spa
dc.relation.referencesTektaş, M. (2010). Weather Forecasting Using ANFIS and ARIMA MODELS. A Case Study for Istanbul. 1, 5–10. http://dx.doi.org/10.5755/j01.erem.51.1.58spa
dc.relation.referencesThomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., & Edmonds, J. A. (2011). RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1), 77–94. https://doi.org/10.1007/s10584-011-0151-4spa
dc.relation.referencesTimsina, J., & Humphreys, E. (2006). Applications of CERES-Rice and CERES-wheat in research, policy and climate change studies in Asia: A review. International Journal of Agricultural Research, 1(3), 202–225. https://doi.org/10.3923/ijar.2006.202.225spa
dc.relation.referencesTitle, P. O., & Bemmels, J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41(2), 291–307. https://doi.org/https://doi.org/10.1111/ecog.02880spa
dc.relation.referencesTongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266–282. https://doi.org/10.1016/j.jhydrol.2018.07.004spa
dc.relation.referencesTorres-Madronero, M. C., Rondón, T., Franco, R., Casamitjana, M., & Trochez González, J. (2023). Spectral Characterization of Avocado Persea Americana Mill. Cv. Hass Using Spectrometry and Imagery from the Visible to Near-Infrared Range. TecnoLógicas, 26(56), e2567. https://doi.org/10.22430/22565337.2567spa
dc.relation.referencesTu, Y. H., Phinn, S., Johansen, K., & Robson, A. (2018). Assessing radiometric correction approaches for multi-spectral UAS imagery for horticultural applications. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111684spa
dc.relation.referencesTucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0spa
dc.relation.referencesTzatzani, T. T., Morianou, G., Tül, S., & Kourgialas, N. N. (2023). Air Temperature as a Key Indicator of Avocado (Cvs. Fuerte, Zutano, Hass) Maturation Time in Mediterranean Climate Areas: The Case of Western Crete in Greece. Agriculture (Switzerland), 13(7). https://doi.org/10.3390/agriculture13071342spa
dc.relation.referencesUPRA. (2019). Zonificación de aptitud para el cultivo comercial de aguacate (Persea americana Mill.) variedad Hass en Colombia, escala 1:100.000. Disponible en: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Zonificaci-n-de-aptitud-para-el-cultivo-comercial-/tx7u-frn2/data. (Último acceso: abril de 2023).spa
dc.relation.referencesValencia-García Gema Alcaraz-Mármol Javier Del Cioppo-Morstadt Néstor Vera-Lucio Martha Bucaram-Leverone, R. (2018). Technologies and Innovation Communications in Computer and Information Science 883. In Citi. http://www.springer.com/series/7899spa
dc.relation.referencesVan Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8), 5929–5955. https://doi.org/10.1007/s10462-020-09838-1spa
dc.relation.referencesVan Loi. (2008). Use of GIS Modelling in Assessment of Forestry Land's Potential in Thua Thien Hue Province of Central Vietnam. Disponible en: https://d-nb.info/990716163/34 (Último acceso: diciembre de 2023).spa
dc.relation.referencesvan Vuuren, D. P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori, S., KC, S., Kriegler, E., & O’Neill, B. (2017). The Shared Socio-economic Pathways: Trajectories for human development and global environmental change. In Global Environmental Change (Vol. 42, pp. 148–152). Elsevier Ltd. https://doi.org/10.1016/j.gloenvcha.2016.10.009spa
dc.relation.referencesViera, W., Gaona, P., Samaniego, I., Sotomayor, A., Viteri, P., Noboa, M., Merino, J., Mejía, P., & Park, C. H. (2023). Mineral Content and Phytochemical Composition of Avocado var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants, 12(9). https://doi.org/10.3390/plants12091791spa
dc.relation.referencesVishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1007/s41348-020-00368-0spa
dc.relation.referencesWaltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., & Guralnick, R. P. (2014). Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS One, 9(7), e106552. DOI: 10.1371/journal.pone.0106552spa
dc.relation.referencesWaltari, E., Schroeder, R., McDonald, K., Anderson, R. P., & Carnaval, A. (2014). Bioclimatic variables derived from remote sensing: assessment and application for species distribution modelling. Methods in Ecology and Evolution. 5. 1033-1042. https://doi.org/10.1111/2041-210X.12264spa
dc.relation.referencesWan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., & He, Y. (2020). Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the South of China. Agricultural and Forest Meteorology, 291. https://doi.org/10.1016/j.agrformet.2020.108096spa
dc.relation.referencesWang, D., Liu, J., Shao, W., Mei, C., Su, X., & Wang, H. (2021). Comparison of CMIP5 and CMIP6 Multi-Model Ensemble for Precipitation Downscaling Results and Observational Data: The Case of Hanjiang River Basin. Atmosphere, 12(7), 867. https://doi.org/10.3390/atmos12070867spa
dc.relation.referencesWang, N., Guo, Y., Wei, X., Zhou, M., Wang, H., & Bai, Y. (2022). UAV-based remote sensing using visible and multispectral indices for the estimation of vegetation cover in an oasis of a desert. Ecological Indicators, 141. https://doi.org/10.1016/j.ecolind.2022.109155spa
dc.relation.referencesWang, X., Ouyang, Y. Y., Liu, J., Zhao, G. (2019). Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. British Journal of Nutrition, 121(5), 474-484. https://doi.org/10.1017/S0007114518003628spa
dc.relation.referencesWang, Y., Zhao, W., Tang, X., Liu, Y., Tang, H., Guo, J., Lin, Z., & Huang, F. (2023). Plasma rice yield prediction based on Bi-LSTM model. In X. Kong (Ed.), Second International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2023) (p. 68). SPIE. https://doi.org/10.1117/12.2674801spa
dc.relation.referencesWarren, T. (2005). Clustering of time series data - A survey. Pattern Recognition, 38(11), 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025spa
dc.relation.referencesWaskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021spa
dc.relation.referencesWaskom, M., Botvinnik, O., Gelbart, M., Ostblom, J., Lukauskas, S., Hobson, P., Halchenko, Y., Warmenhoven, J., Cole, J. B., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, T., Quintero, E., Bachant, P., Martin, M., Meyer, K., Augspurger, T., Yarkoni, T., … Subramanian, S. (2020). Waskom Seaborn: v0.10.1. Zenodo. https://doi.org/10.5281/zenodo.3767070spa
dc.relation.referencesWeil, A., Rubinovich, L., Tchernov, D., & Liran, O. (2022). Comparative Study between the Photosynthetic Parameters of Two Avocado (Persea americana) Cultivars Reveals Natural Variation in Light Reactions in Response to Frost Stress. Agronomy, 12(5). https://doi.org/10.3390/agronomy12051129spa
dc.relation.referencesWilkie, J. D., Conway, J., Griffin, J., & Toegel, H. (2019). Relationships between canopy size, light interception and productivity in conventional avocado planting systems. Journal of Horticultural Science and Biotechnology, 94(4), 481–487. https://doi.org/10.1080/14620316.2018.1544469spa
dc.relation.referencesWójtowicz M., Wójtowicz A., Piekarczyk J. (2016). Application of remote sensing methods in agriculture. Communications in Biometry and Crop Science 11, 31–50. http://agrobiol.sggw.waw.pl/~cbcs/articles/CBCS_11_1_3.pdfspa
dc.relation.referencesWolstenholme, B. N. (2013). Ecology: climate and soils. In The avocado: botany, production and uses (pp. 86–117). CABI. https://doi.org/10.1079/9781845937010.0086spa
dc.relation.referencesWolstenholme, B. y A. Whiley. (1995). Strategies for maximising avocado productivity: An overview. pp 61-70. En: Proceedings III World Avocado Congress. Israel. https://www.avocadosource.com/WAC3/wac3_p061.pdfspa
dc.relation.referencesWorldClim. (2020). Global climate and weather data. https://www.worldclim.org/data/cmip6/cmip6climate.htmlspa
dc.relation.referencesWu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., Yan, N., Chang, S., Zhao, Y., Dong, Q., Boken, V., Plotnikov, D., Guo, H., Wu, F., Zhao, H., Deronde, B., Tits, L., & Loupian, E. (2022). Challenges and opportunities in remote sensing-based crop monitoring: a review. December. https://academic.oup.com/nsr/article/10/4/nwac290/6939854spa
dc.relation.referencesWu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148(8–9), 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005spa
dc.relation.referencesWu, D., Johansen, K., Phinn, S., Robson, A., & Tu, Y.-H. (2020). Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crownsspa
dc.relation.referencesXiao, C., Ye, J., Esteves, R. M., and Rong, C. (2016). Using Spearman's correlation coefficients for exploratory data analysis on big dataset. Concurrency and Computation: Practice and Experience, Vol. 28, No. 14, pp. 3866-3878spa
dc.relation.referencesYadav, D., Gupta, A. K., & Badhai, S. (2020). Effects of Climate Change on Agriculture Effects of Climate Change on Agriculture View project Training and achivement. View project. https://www.researchgate.net/publication/344064949spa
dc.relation.referencesYahya, B. M., & Seker, D. Z. (2019). Designing Weather Forecasting Model Using Computational Intelligence Tools. Applied Artificial Intelligence, 33(2), 137–151. https://doi.org/10.1080/08839514.2018.1530858spa
dc.relation.referencesYan, K., Gao, S., Chi, H., Qi, J., Song, W., Tong, Y., Mu, X., & Yan, G. (2022). Evaluation of the Vegetation-Index-Based Dimidiate Pixel Model for Fractional Vegetation Cover Estimation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2020.3048493spa
dc.relation.referencesYohannes, H. (2015). A Review on Relationship between Climate Change and Agriculture. J Earth Sci Clim Change 07. https://doi.org/10.4172/2157-7617.1000335spa
dc.relation.referencesYue, Y., Zhang, P., & Shang, Y. (2019). The potential global distribution and dynamics of wheat under multiple climate change scenarios. Science of the Total Environment, 688(19), 1308–1318. https://doi.org/10.1016/j.scitotenv.2019.06.153spa
dc.relation.referencesZambon, I., Cecchini, M., Egidi, G., Saporito, M.G., Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 7, 36. https://doi.org/10.3390/pr7010036spa
dc.relation.referencesZeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., & Chen, M. (2022). Optical vegetation indices for monitoring terrestrial ecosystems globally 2 3. https://doi.org/10.1038/s43017-022-00298-5spa
dc.relation.referencesZhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943. https://doi.org/10.1016/j.compag.2019.104943spa
dc.relation.referencesZhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112spa
dc.relation.referencesZhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., & Li, Z. (2020). The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240(June 2019). https://doi.org/10.1016/j.rse.2020.111686spa
dc.relation.referencesZhou, X., Zheng, H. B., Xu, X. Q., He, J. Y., Ge, X. K., Yao, X., Cheng, T., Zhu, Y., Cao, W. X., & Tian, Y. C. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246–255. https://doi.org/10.1016/j.isprsjprs.2017.05.003spa
dc.relation.referencesZhu, L., Liu, X., Wang, Z., & Tian, L. (2023). High-precision sugarcane yield prediction by integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI indexes. European Journal of Agronomy, 149, 126889. https://doi.org/https://doi.org/10.1016/j.eja.2023.126889spa
dc.relation.referencesZuazo, V. H. D., Lipan, L., Rodríguez, B. C., Sendra, E., Tarifa, D. F., Nemś, A., Ruiz, B. G., Carbonell-Barrachina, Á. A., & García-Tejero, I. F. (2021). Impact of deficit irrigation on fruit yield and lipid profile of terraced avocado orchards. Agronomy for Sustainable Development, 41(5), 1–16. https://doi.org/10.1007/s13593-021-00731-xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silviculturaspa
dc.subject.lembAGUACATE-CONSERVACIONspa
dc.subject.lembAvocado - preservationeng
dc.subject.lembCLIMATOLOGIA AGRICOLAspa
dc.subject.lembCrops and climateeng
dc.subject.lembMETEOROLOGIA AGRICOLAspa
dc.subject.lembMeteorology, agriculturaleng
dc.subject.lembRECOPILACION DE DATOSspa
dc.subject.lembData collectingeng
dc.subject.lembCAMBIOS CLIMATICOSspa
dc.subject.lembClimatic changeseng
dc.subject.lembVARIABILIDAD DE PRECIPITACIONspa
dc.subject.lembPrecipitation variabilityeng
dc.subject.lembZONAS CLIMATICASspa
dc.subject.lembClimatic zoneseng
dc.subject.proposalVariabilidad y cambio climáticospa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalRedes neuronales profundasspa
dc.subject.proposalÍndices de vegetaciónspa
dc.subject.proposalTeledetecciónspa
dc.subject.proposalClimate variability and changeeng
dc.subject.proposalTime serieseng
dc.subject.proposalDeep neural networkseng
dc.subject.proposalVegetation indiceseng
dc.subject.proposalRemote sensingeng
dc.titleHerramientas de análisis espacio-temporal de datos climáticos y espectrales como base para la caracterización y modelación climática y estimación indirecta de parámetros productivos en aguacate cv. Hassspa
dc.title.translatedSpace-time analysis tools for climatic and spectral data as a basis for the characterization and climatic modeling and indirect estimation of productive parameters in Hass avocadoeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79951349_2024.pdf
Tamaño:
13.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: