Procesos de silicificación de las unidades del Turoniano – Campaniano en la Cuenca Cretácica Colombiana

dc.contributor.advisorSarmiento Pérez, Gustavo Adolfo
dc.contributor.advisorBonilla Osorio, German Eduardo
dc.contributor.authorHerrera Quijano, Sergio
dc.contributor.researchgroupLATTICEspa
dc.coverage.countryColombia
dc.date.accessioned2021-06-16T15:48:56Z
dc.date.available2021-06-16T15:48:56Z
dc.date.issued2020
dc.descriptionilustraciones, fotografías, mapasspa
dc.description.abstractLa silicificación, en el registro litológico del Cretácico superior colombiano se encuentra presente en ciertas unidades litoestratigráficas de las cuencas sedimentarias del valle del río Magdalena y la cordillera oriental, tales como, las formaciones Lidita Superior, Lidita Inferior, Plaeners, Frontera y la Luna. De estas, se tomaron muestras en los niveles con silicificación y posteriormente se analizaron con técnicas petrográficas (microscopia óptica, cátodoluminiscencia y microscopia electrónica de barrido) y litogeoquímicas (difracción de rayos X, fluorescencia de rayos X y espectrometría de energía dispersiva) que permitieron caracterizar sus propiedades geoquímicas y texturales. Para clasificar más asertivamente las muestras recolectadas, se planteó un cuadro que relaciona sus características texturales con su porcentaje de sílice que, a la vez, se vincula directamente con el grado de silicificación. A partir de esta clasificación, las observaciones y los datos adquiridos, se determinó que los cherts enmarcados dentro del contexto sedimentario calcáreo somero del Cretácico colombiano, se originaron inmediatamente posterior al depósito del sedimento, bajo un mecanismo diagenético temprano que incluye la interacción de la materia orgánica con las bacterias aeróbicas y anaeróbicas, las cuales, modifican las condiciones termodinámicas de equilibrio en los primeros metros del sedimento facilitando la precipitación de polimorfos de sílice. En ese orden de ideas, se plantea que la fuente más probable de la sílice precipitada en estas rocas es proveniente del medio marino, en donde los polímeros e iones de silicio disueltos, aprovechan la permeabilidad sedimentaria y logran llegar a las zonas microbiales con condiciones geoquímicas idóneas para la nucleación de sílice, y de esta manera, cementar y remplazar los componentes originales del sedimento.spa
dc.description.abstractSilicification, in the lithological record of the Colombian Upper Cretaceous, is present in certain lithostratigraphic units of the sedimentary basins of the Magdalena river valley and the eastern mountain range, such as the Lidita Superior, Lidita Inferior, Plaeners, Frontera and La Luna formations. From these, samples were taken at the levels with silicification and subsequently analyzed with petrographic techniques (optical microscopy, cathodoluminescence and scanning electron microscopy) and lithogeochemicals (X-ray diffraction, X-ray fluorescence and energy dispersive spectrometry) that allowed to characterize its geochemical and textural properties. To classify the collected samples more assertively, a table was proposed that relates their textural characteristics with their silica percentage, which, in turn, is directly linked to the degree of silicification. From this classification, the observations and the data acquired, it was determined that the cherts framed within the shallow calcareous sedimentary context of the Colombian Cretaceous, originated immediately after the deposit of the sediment, under an early diagenetic mechanism that includes the interaction of organic matter with aerobic and anaerobic bacteria, which modify the thermodynamic conditions of equilibrium in the first few meters of the sediment, facilitating the precipitation of silica polymorphs. In this vein, it is suggested that the most likely source of precipitated silica in these rocks is from the marine environment, where dissolved silicon polymers and ions take advantage of the sedimentary permeability and reach microbial areas with ideal geochemical conditions for the nucleation of silica, and in this way, cement and replace the original components of the sediment.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geologíaspa
dc.description.researchareaDiagénesisspa
dc.format.extent1 recurso en linea (193 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79638
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesArthur, M. A., Schlanger, S. O., y Jenkyns, H. C. (1987). The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organicmatter production and preservation. Geological Society Special Publication,26, 401–420. https://doi.org/10.1144/GSL.SP.1987.026.01.25spa
dc.relation.referencesAspden, J. A. (1984). Geología de la Cordillera Occidental y la Costa Pacífica del Departamento del Valle del Cauca, Planchas 261 - 278 - 279 - 280 - 299.spa
dc.relation.referencesBalthasar, U., y Cusack, M. (2015). Aragonite-calcite seas-Quantifying the gray area. Geology, 43(2), 99–102. https://doi.org/10.1130/G36293.1spa
dc.relation.referencesBarrero, D., Pardo, A., Vargas, C. A., y Martínez, J. F. (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. En Agencia Nacional de Hidrocarburos (ANH) y B&M Exploration Ltda (Eds.), Agencia Nacional de Hidrocarburos - A.N.H.- (Issues 978-958-98237-0–5). https://doi.org/ISBN: 978-958-98237-0-5spa
dc.relation.referencesBathurst, R. G. C. (1966). Boring algae, micrite envelopes and lithification of molluscan biosparites. Geological Journal, 5(1), 15–32. https://doi.org/10.1002/gj.3350050104spa
dc.relation.referencesBayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J. J., y Reyes-Harker,A. (2008). An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bulletin of the Geological Society of America, 120(9–10), 1171–1197. https://doi.org/10.1130/B26187.1spa
dc.relation.referencesBoggs, S. (2006). Principles of Sedimentology and stratigraphy (P. Lynch, S. Hale, y G. Dulles (eds.); 4th ed.). Pearson Prentice Hall. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesBonilla, G. E., Sarmiento Pérez, G. A., y Gaviria Melo, S. (2011). Proveniencia y transformación diagenética de minerales arcillosos del Maastrichtiano - Paleoceno al norte de Bogotá , Cordillera Oriental de Colombia. Geología Colombiana., 36(1), 179–195.spa
dc.relation.referencesBramlette, M. N. (1946). The Monterrey Formation of California and Origin of its Siliceus Rocks. En Professional Paper 212.spa
dc.relation.referencesBranquet, Y., Cheilletz, A., Cobbold, P. R., Baby, P., Laumonier, B., y Giuliani, G. (2002). Andean deformation and rift inversion, eastern edge of Cordillera Oriental (Guateque-Medina area), Colombia. Journal of South American Earth Sciences, 15(4), 391–407. https://doi.org/10.1016/S0895-9811(02)00063-9spa
dc.relation.referencesBriggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., y Bartels, C. (1996). Controls on the pyritization of exceptionally preserved fossils: An analysis of the Lower Devonian Hunsrück Slate of Germany. American Journal of Science, 296(6), 633–663. https://doi.org/10.2475/ajs.296.6.633spa
dc.relation.referencesBürgl, H. (1961a). Geología de los alrededores de Ortega, Tolima. Boletín de Geología, 8, 21–38. https://doi.org/10.18273spa
dc.relation.referencesBürgl, H. (1961b). Historia Geologica De Colombia. Revista de La Academia Colombiana de Ciencias, XI(43), 137–191.spa
dc.relation.referencesBürgl, H., y Dumit Tobon, Y. (1954). El Cretaceo Superior en la Region de Giradot. Boletín Geológico, II(1), 23–48.spa
dc.relation.referencesBustillo, M. A. (2001). Cherts with Moganite in Continental Mg-Clay Deposits: An Example of “False” Magadi-Type Cherts, Madrid Basin, Spain. Journal of Sedimentary Research, 71(3), 436–443. https://doi.org/10.1306/2DC40953-0E47-11D7-8643000102C1865Dspa
dc.relation.referencesBustillo, M. A., Elorza, J., y Díez-Canseco, D. (2017). Silicificaciones selectivas en Thalassinoides y otras estructuras biogénicas asociadas a calizas de plataforma marina y hardground (Albiense inferior, Sonabia, Cantabria). Estudios Geologicos, 73(1),1–19. https://doi.org/10.3989/egeol.42668.435spa
dc.relation.referencesCáceres, C., y Etayo Serna, F. (1969). Bosquejo Geológico de la Región del Tequendama. En 1er Congreso Colombiano de Geología, Opúsculo guía, Excursión pre–congreso. [s.n.].spa
dc.relation.referencesCarson, G. A. (1987). Silicification fabrics from the Cenomanian and basal Turonian of Devon, England: isotopic results. Geological Society, London, Special Publications, 36(1), 87–102. https://doi.org/10.1144/GSL.SP.1987.036.01.08spa
dc.relation.referencesCecil, C. B. (2015). Paleoclimate and the origin of Paleozoic chert: time to reexamine the origins of chert in the rock record. The Sedimentary Record, 13(3), 4–10. https://www.researchgate.net/profile/C_Cecil/publication/281404996_Paleoclimate_and_the_origin_of_Paleozoic_chert_Time_to_reexamine_the_origin_of_chert_in_the_rock_record/links/55e72acd08ae21d099c148d2.pdfspa
dc.relation.referencesCediel, F. (1968). El Grupo Giron: Una Molasa Mesozoica de la Cordillera Oriental. Boletin Geolgico, XVI(1–3), 5–96.spa
dc.relation.referencesChoquette, P. ., y Pray, L. . (1970). Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. American Association of Petroleum Geologists Bulletin, 54(2), 207–250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865dspa
dc.relation.referencesClavijo, J. (1995). Mapa Geológico De Colombia Plancha 75 - Aguachica.spa
dc.relation.referencesCook, P. J., y Shergold, J. H. (1986). Proterozoic and Cambrian phosphorites - an introduction. Phosphate Deposits of the World, Vol. 1: Proterozoic and Cambrian Phosphorites, 1, 1–8.spa
dc.relation.referencesCorrigan, H. T. (1967). Guidebook to the geology of the upper Magdalena basin, northern portion. Colombian Society of Petroleum Geologists and Geophysists.spa
dc.relation.referencesDe Porta, J. (1965). La Estratigrafía del Cretácico Superior y Terciario en el Extremo S del Valle Medio del Magdalena. Boletín De Geología, 19(1), 5–50. https://doi.org/10.18273/revbolspa
dc.relation.referencesDeMaster, D. J. (2003). The Diagenesis of Biogenic Silica: Chemical Transformations Occurring in the Water Column, Seabed, and Crust. En Treatise on Geochemistry (Vol. 1, Issue 4, pp. 87–98). Elsevier. https://doi.org/10.1016/B0-08-043751-6/07095-Xspa
dc.relation.referencesDunham, R. J. (1962). Classification of Carbonate Rocks According to Depositional Texture. Classification of Carbonate Rocks: American Association of Petroleum Geologists Memoir, 108–121. http://archives.datapages.com/data/specpubs/carbona2/data/a038/a038/0001/0100/0108.htmspa
dc.relation.referencesEtayo Serna, F. (1968). El Sistema Cretáceo en la Región de Villa de Leiva y Zonas Próximas. Geología Colombiana, 5(0), 5–74.spa
dc.relation.referencesEtayo Serna, F. (1994). Estudios geológicos del Valle Superior del Magdalena. Universidad Nacional de Colombia, Departamento de Geociencias.spa
dc.relation.referencesEtayo Serna, F., Renzoni, G., y Barrero, D. (1969). Contornos Sucesivos del Mar Cretáceo en Colombia. En F. Etayo-Serna y C. Caceres-Giron (Eds.), Primer Congreso Colombiano de Geología (pp. 217–252). Universidad Nacional de Colombia.spa
dc.relation.referencesFolk, R. L. (1980). Petrology of Sedimentary Rocks. Hemphill Publishing Company.spa
dc.relation.referencesFuquen, J. A., Nuñez Tello, A., y Acosta, J. E. (1993). Geología de la Plancha 282 “Chaparral - Tolima”, Colombia.spa
dc.relation.referencesGao, G; Land, L. S. (1991). Nodular chert from the Arbuckle Group, Slick Hills, SW Oklahoma: a combined field, petrographic and isotopic study. Sedimentology, 857–870.spa
dc.relation.referencesGuan, C., Wang, W., Zhou, C., Muscente, A. D., Wan, B., Chen, X., Yuan, X., Chen, Z., y Ouyang, Q. (2017). Controls on fossil pyritization: Redox conditions, sedimentary organic matter content, and Chuaria preservation in the Ediacaran Lantian Biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 474, 26–35. https://doi.org/10.1016/j.palaeo.2016.05.013spa
dc.relation.referencesGuerrero, J., Sarmiento, G., y Navarrete, R. (2000). The Stratigraphy of the W Side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of Selected Areas and Type Localities Including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, 25, 45–110.spa
dc.relation.referencesHardie, L. A. (1996). Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and 164 Procesos de Silicificación de las Unidades del Turoniano – Campaniano en la Cuenca Cretácica Colombiana potash evaporites over the past 600 m.y. Geology, 24(3), 279–283. https://doi.org/10.1130/0091-7613(1996)024<0279:SVISCA>2.3.CO;2spa
dc.relation.referencesHarrison, W. E., Hesse, R., y Gieskes, J. M. (1982). Relationship between Sedimentary Facies and Interstitial Water Chemistry of Slope, Trench, and Cocos Plate Sites from the Middle America Trench Transect, Active Margin off Guatemala, Deep Sea Drilling Project Leg 67. En Initial Reports of the Deep Sea Drilling Project, 67 (Vol. 498, Issue October 2013, pp. 1–224). U.S. Government Printing Office. https://doi.org/10.2973/dsdp.proc.67.129.1982spa
dc.relation.referencesHeath, G. R., y Moberly, R. (1971). Cherts from the Western Pacific, Leg.7, DSDP. Initial Reports of the Deep Sea Drilling Project, 7, 991–1007. https://doi.org/10.1126/science.166.3910.1311spa
dc.relation.referencesHernández, S. (2020). Litogeoquímica de las Unidades del Cretácico Superior, su Relación con las Áreas de Aporte y Evolución de los Medios Sedimentarios, Cuenca del Valle Superior del Magdalena, Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesHerrera Quijano, S. (2015). Caracterización Mineralógica de la Formación La Luna , en el Sinclinal del Nuevo Mundo Mediante Difracción de Rayos X (DRX). En Universidad Nacional de Colombia, Trabajos de Grado Geociencias. Universidad Nacional de Colombia.spa
dc.relation.referencesHesse, R. (1988). Origin of chert: diagenesis of biogenic siliceous sediments. Diagenesis, 15(3), 227–252.spa
dc.relation.referencesHesse, R. (1989). Silica diagenesis: origin of inorganic and replacement cherts. Earth Science Reviews, 26(C), 253–284. https://doi.org/10.1016/0012-8252(89)90024-Xspa
dc.relation.referencesHettner, A. (1892). La Cordillera de Bogotá. Resultados de Viajes y Estudios. Servicio Geológico Nacional.spa
dc.relation.referencesHolland, H. D. (2005). Sea level, sediments and the composition of seawater. American Journal of Science, 305(3), 220–239. https://doi.org/10.2475/ajs.305.3.220spa
dc.relation.referencesHorton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., y Stockli, D. F. (2010). Linking Sedimentation in the Northern Andes to Basement Configuration, Mesozoic Extension, and Cenozoic Shortening: Evidence from Detrital Zircon U-Pb ages, Eastern Cordillera, Colombia. Bulletin of the Geological Society of America, 122(9–10), 1423–1442. https://doi.org/10.1130/B30118.1spa
dc.relation.referencesHubach, E. (1957). CONTRIBUCION A LAS UNIDADES ESTRATIGRAFICAS DE COLOMBIA. En 1212.spa
dc.relation.referencesHumphries, D. W. (1956). Chert: Its Age and Origin in the Hythe Beds of the Western Weald. Proceedings of the Geologists’ Association, 67(3–4), 296–313. https://doi.org/10.1016/S0016-7878(56)80028-Xspa
dc.relation.referencesHurd, D. C., y Theyer, F. (1977). Changes in the physical and chemical properties of biogenic silica from the Central Equatorial Pacific: Part II. Refractive Index, Density, and Water Content of Acid-Cleaned Samples. En American Journal of Science (Vol. 277, pp. 1168–1202).spa
dc.relation.referencesInternational Commission on Stratigraphy. (n.d.). ICS - Stratigraphic Guide. Retrieved February 19, 2020, from http://www.stratigraphy.org/index.php/icsstratigraphicguidespa
dc.relation.referencesJochum, L. M., Chen, X., Lever, M. A., Loy, A., Jørgensen, B. B., Schramm, A., y Kjeldsen, K. U. (2017). Depth Distribution and Assembly of Sulfatereducing Microbial Communities in Marine Sediments of Aarhus Bay. Applied and Environmental Microbiology, 83(23). https://doi.org/10.1128/AEM.01547-17spa
dc.relation.referencesJulivert, M. (1968). Lexico Estratigrafico M Julivert (Vol. 5). Centre National de la Recherche Scientifique.spa
dc.relation.referencesKastner, M., y Gieskes, J. M. (1983). Opal-A to opal-CT transformation: A kinetic study. Developments in Sedimentology, 36(C), 211–227. https://doi.org/10.1016/S0070-4571(08)70092-Xspa
dc.relation.referencesKastner, M., Keene, J. B., y Gieskes, J. M. (1977). Diagenesis of Siliceous Oozes- I. Chemical Controls on the Rate of Opal-A to Opal-CT Transformation-an Experimental Study. Geochimica et Cosmochimica Acta, 41(8). https://doi.org/10.1016/0016-7037(77)90099-0spa
dc.relation.referencesKnauth, L. P. (1979). A Model for the Origin of Chert in Limestone. Geology, 7(6), 274. https://doi.org/10.1130/0091-7613(1979)7<274:AMFTOO>2.0.CO;2spa
dc.relation.referencesLangenheim, R. L. J. (1959). Preliminary report on the stratigraphy of the Giron formation in Santander and Boyaca. Boletín de Geología, 3, 35–50. https://doi.org/10.18273/revbolspa
dc.relation.referencesMaliva, R. G., y Siever, R. (1989). Nodular Chert Formation in Carbonate Rocks. The Journal of Geology, 97(4), 421–433. https://doi.org/10.1086/629320spa
dc.relation.referencesMckee, E. D., y Weir, G. W. (1953). Terminology for Stratification and Cross-Stratification in Sedimentary Rocks. Bulletin of the Geological Society of America, 64, 381–390. https://doi.org/10.1130/0016-7606(1953)64spa
dc.relation.referencesMojica, J., y Llinas, R. (1984). Observaciones Recientes Sobre las Características del Basamento Económico del Valle Superior del Magdalena en la Región de Payandé-Rovira (Tolima, Colombia), y en Especial sobre la Estratigrafía y Petrografía del Miembro Chicala (= Parte Baja de la Fm. Sa. Geología Colombiana, 13, 81–128.spa
dc.relation.referencesMojica, J., y Macia, C. (1981). Características estratigráficas y edad de la Formación Yaví, Mesozoico de la región entre Prado y Dolores, Tolima, Colombia. Geología Colombiana - An International Journal on Geosciences, 12(0), 7–31.spa
dc.relation.referencesMontoya, D. M., y Reyes, G. A. (2003). Geología de la Plancha 209 Zipaquirá.spa
dc.relation.referencesMora, J. a. (2003). Modelo Estratigráfico para el Cretácico Basal (Aptiano-Albiano) en el norte de la Sub-cuenca de Neiva, Valle Superior del Magdalena, Colombia.[PAPER IN. VIII Simposio Bolivariano - Exploracion Petrolera En Las Cuencas Subandinas. http://archives.datapages.com/data/colombia_acggp/simp8/tomo2/Paper85.pdfspa
dc.relation.referencesMorales, L. G. (1958). General Geology and Oil Occurences of Middle Magdalena Valley, Colombia. SP 18: Habitat of Oil, AAPG Speci(Basin or Areal Analysisor Evaluation), 641–695. https://doi.org/https://doi.org/10.1306/SV18350C25spa
dc.relation.referencesMuscente, A. D., Schiffbauer, J. D., Broce, J., Laflamme, M., O’Donnell, K., Boag, T. H., Meyer, M., Hawkins, A. D., Huntley, J. W., McNamara, M., MacKenzie, L. A., Stanley, G. D., Hinman, N. W., Hofmann, M. H., y Xiao, S. (2017). Exceptionally Preserved Fossil Assemblages Through Geologic Time and Space. Gondwana Research, 48, 164–188. https://doi.org/10.1016/j.gr.2017.04.020spa
dc.relation.referencesNeuendorf, K. K. E., y American Geological Institute. (2005). Glossary of Geology (J. A. Jackson, J. P. Mehl, y K. K. E. Neuendorf (eds.); 5th ed.). Springer Science y Business Media, 2005. https://books.google.com.co/books?id=SfnSesBc-RgCspa
dc.relation.referencesNorth American Commission on Stratigraphic Nomenclature. (2005). North American Stratigraphic Code. AAPG Bulletin, 89(11), 1547–1591. https://doi.org/10.1306/07050504129spa
dc.relation.referencesOehler, J. H. (1975). Origin and Distribution of Silica Lepispheres in Porcelanite From the Monterey Formation of California. JOURNAL OF SEDIMENTARY PETROLOGY, 45(1), 252–257.spa
dc.relation.referencesParks, G. A. (1965). The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chemical Reviews, 65(2), 177–198. https://doi.org/10.1021/cr60234a002spa
dc.relation.referencesPatarroyo, P. (2011). Sucesión de Amonitas del Cretácico Superior (Cenomaniano - Coniaciano) de la Parte más Alta de la Formación Hondita y de la Formación Loma Gorda en la Quebrada Bambucá, Aipe - Huila (Colombia, S. A.). Boletin de Geología, 33, 69–92.spa
dc.relation.referencesPatarroyo, P., y Rojas, A. (2007). La sucesión y la fauna del Turoniano de la Formación San Rafael en Pesca y su comparación con la sección tipo en Samacá ( Boyacá- Turonian succession and fauna of the San Rafael Formation in Pesca and its comparation with the type section in Samaca (Boya. Geología Colombiana, 32(32), 89–96.spa
dc.relation.referencesPérez, G., y Salazar, A. (1978). Estratigrafía y Facies del Grupo Guadalupe. Geología Colombiana, 10, 7–86. http://www.revistas.unal.edu.co/index.php/geocol/article/view/30407/30566spa
dc.relation.referencesPrauss, M. L. (2015). Marine palynology of the Oceanic Anoxic Event 3 (OAE3, Coniacian - Santonian) at Tarfaya, Morocco, NW Africa - transition from preservation to production controlled accumulation of marine organic carbon. Cretaceous Research, 53, 19–37. https://doi.org/10.1016/j.cretres.2014.10.005spa
dc.relation.referencesRaasveldt, H. C., Carvajal, J. M., Buenahora, G., y Servicio Geologico Naciona, M. de minas y petroleos. (1957). Mapa geológico de la plancha K-9 Armero (Edición pr). Servicio Geologico Naciona, Ministerio de minas y petroleos.spa
dc.relation.referencesReineck, H. E., y Singh, I. B. (1980). Depositional sedimentary environments, with reference to terrigenous clastics. En Depositional sedimentary environments, with reference to terrigenous clastics. Second edition ( Textbook). (2nd ed.). Springer-Verlag.spa
dc.relation.referencesRenzoni, G., y Ospina, C. (1969). Geología del cuadrángulo J-12. http://recordcenter.sgc.gov.co/B4/13010010001546/documento/pdf/0101015461102000.pdfspa
dc.relation.referencesS. W. Wise, K. R. K. (1972). Inferred Diagenetic History of Weakly Silicified Deep-Sea Chalk. AAPG Bulletin, 56. https://doi.org/10.1306/819A4186-16C5-11D7-8645000102C1865Dspa
dc.relation.referencesSageman, B. (2009). Ocean anoxic events. Encyclopedia of Earth Sciences Series, 185–198. https://doi.org/10.1007/978-1-4020-4411-3_155spa
dc.relation.referencesSagemann, J., Bale, S. J., Briggs, D. E. G., y Parkes, R. J. (1999). Controls on the formation of authigenic minerals in association with decaying organic matter: An experimental approach. Geochimica et Cosmochimica Acta, 63(7–8), 1083–1095. https://doi.org/10.1016/S0016-7037(99)00087-3spa
dc.relation.referencesSarmiento, L. F., Van Wess, J. D., y Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383–411. https://doi.org/10.1016/j.jsames.2006.07.003spa
dc.relation.referencesSarmiento Pérez, G. A., Puentes Ortiz, E. J., y Sierra, C. (2015). Estratigrafía de la Formación La Luna en el Sinclinal de Nuevo Mundo, Valle Medio del Magdalena. Geología Norandina, 12, 24.spa
dc.relation.referencesScotese, C. R. (2015). Some Thoughts on Global Climate Change: The Transition from Icehouse to Hothouse.spa
dc.relation.referencesSpencer, R. J., y Hardie, L. A. (1990). Control of seawater composition by mixing river waters and mid-ocean ridge hydrothermal brines. Fluid-Mineral Interactions: A Tribute to H.P. Eugster, 2(2), 409–419.spa
dc.relation.referencesTaborda A., B., y Geophysicists., C. S. of P. G. and. (1965). Guidebook to the geology of the De Mares Concession : field trip of February 26-28, 1965. Colombian Society of Petroleum Geologists and Geophysicists.spa
dc.relation.referencesTaliaferro, N. l. (1934). Contraction Phenomena in Cherts. Geological Society of America Bulletin, 45(2), 189–232. https://doi.org/10.1130/GSAB-45-189spa
dc.relation.referencesTerraza, R. (2003). Origen diagenético de Cherts y Porcelanitas en las formaciones Lidita Inferior y Lidita Superior (Grupo Olini), al sur de San Luis (Tolima), Valle Superior del Magdalena, Colombia. Geología Colombiana, 28, 79–94.spa
dc.relation.referencesTerraza, Roberto. (2020). “Formación la Luna”: expresión espuria en la geología colombiana. En F. Etayo Serna y Comité Editorial Servicio Geológico Colombiano (Eds.), Estudios Geológicos y Paleontológicos sobre el Cretácico en la región del Embalse del Río Sogamoso, Valle Medio del Magdalena (pp. 303–362). Servicio Geológico Colombiano (SGC).spa
dc.relation.referencesThorez, J. (1975). Phyllosilicates and Clay Minerals: a Laboratory Handbook for Their X-Ray Diffraction Analysis (G. Lelotte (ed.); Vol. 13, Issue 3). La Universidad de California. https://doi.org/10.1139/t76-035spa
dc.relation.referencesTrewin, N. H., y Fayers, S. R. (2005). Sedimentary Rocks | Chert. En Encyclopedia of Geology (pp. 51–62). Elsevier. https://doi.org/10.1016/B0-12-369396-9/00315-4spa
dc.relation.referencesUlloa, C., y Rodriguez, E. (1991). Memoria explicativa Plancha 190. Chiquinquirá (Departamento de Boyacá).spa
dc.relation.referencesVelandia P., F., Marquinez, A., y Nuñez T., G. (2001). Memoria Explicativa del Mapa Geológico del Departamento del Huila. En Mapa Geológico del Departamento del Huila (Issue Enero). https://doi.org/10.13140/2.1.3373.0885spa
dc.relation.referencesVergara, L., y Rodriguez, G. (1996). Consideraciones sobre la Petrografía y Diagénesis de los Grupos Guadalupe (Cordillera Oriental) y Palmichal (Piedemonte Llanero). Geología Colombiana, 21(1971), 41–63.spa
dc.relation.referencesVillamil, T. (1998). Chronology, Relative Sea-Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia. En Paleogeographic Evolution and Non-Glacial Eustacy, Northern South America (Vol. 58, Issue 58, pp. 161–216). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.98.58.0161spa
dc.relation.referencesVillamil, T., Arango, C., y Hay, W. W. (1999). Plate tectonic paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America. En Evolution of the Cretaceous Ocean-Climate System (Vol. 332, Issue August 2009, pp. 191–202). Geological Society of America. https://doi.org/10.1130/0-8137-2332-9.191spa
dc.relation.referencesWarren, J. (2000). Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1–3), 1–81. https://doi.org/10.1016/S0012-8252(00)00022-2spa
dc.relation.referencesWheeler, O. (1929). Report on the Palmira series with notes on stratigraphy of the Umir, Lisama, and la Paz formations near the eastern part of the mares concession. Imperial Oil Ltd.spa
dc.relation.referencesWilkin, R. T., y Barnes, H. L. (1996). Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60(21), 4167–4179. https://doi.org/10.1016/S0016-7037(97)81466-4spa
dc.relation.referencesWilson, R. C. L. (1966). Silica Diagenesis in Upper Jurassic Limestones of Southern England. Journal of Sedimentary Petrology, 36(4), 1036–1049.spa
dc.relation.referencesWise, S. W., y Weaver, F. M. (1974). Chertification of Oceanic Sediments. En Pelagic Sediments: On Land and under the Sea (Vol. 1, pp. 301–326). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444304855.ch13spa
dc.relation.referencesWolanski, E., Asaeda, T., y Imberger, J. (1989). Mixing across a lutocline. Limnology and Oceanography, 34(5), 931–938. https://doi.org/10.4319/lo.1989.34.5.0931spa
dc.relation.referencesYoung, H. R., Li, R., y Kuroda, M. (2012). Silicification in Mississippian Lodgepole Formation, northeastern flank of Williston basin, Manitoba, Canada. Journal of Earth Science, 23(1), 1–18. https://doi.org/10.1007/s12583-012-0229-6spa
dc.rightsDerechos Reservados - Universidad Nacional de Colombia, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc558 - Ciencias de la tierra de América del Surspa
dc.subject.proposalSilicificaciónspa
dc.subject.proposalCretácico colombianospa
dc.subject.proposalGeoquímicaspa
dc.subject.proposalZona de sulfatoreducción microbialspa
dc.subject.proposalcherteng
dc.subject.proposalMateria Orgánicaspa
dc.subject.proposalsílicespa
dc.subject.proposalSilicificationeng
dc.subject.proposalcolombian Cretaceouseng
dc.subject.proposalgeochemistryeng
dc.subject.proposalmicrobial sulfatereduction zoneeng
dc.subject.proposalorganic mattereng
dc.subject.proposalsilicaeng
dc.subject.unescoCuenca
dc.subject.unescoRoca sedimentaria
dc.subject.unescoMateria orgánica
dc.titleProcesos de silicificación de las unidades del Turoniano – Campaniano en la Cuenca Cretácica Colombianaspa
dc.title.translatedSilicification processes of Turonian - Campanian units in the Cretaceous Colombian Basineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_version corregida final final.pdf
Tamaño:
43.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: