Automatic detection of colorectal polyps larger than 5 mm in colonoscopy videos

dc.contributor.advisorRomero Castro, Edgar Eduardospa
dc.contributor.authorBravo Higuera, Diego Fernandospa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupCIM@LAB (Computer Imaging and Medical Applications Laboratory)spa
dc.date.accessioned2020-08-13T03:21:19Zspa
dc.date.available2020-08-13T03:21:19Zspa
dc.date.issued2020-01-06spa
dc.description.abstractEl cáncer colorrectal (CCR) fue la segunda causa más común de muerte por cáncer en el mundo en 2018 y se ha convertido en una prioridad de salud pública mundial. Por lo tanto, la prevención de CCR mediante la detección temprana y la eliminación de lesiones neoplásicas es de suma importancia. Por lo general, el CCR comienza con pequeñas masas benignas o neoplasias comúnmente llamadas pólipos. En la mayoría de los casos, los pólipos evolucionan lentamente en adenocarcinoma o cáncer. La colonoscopia es el examen estándar para diagnosticar y tratar el CCR. Durante este procedimiento, un gastroenterólogo realiza una exploración visual de todo el colon para detectar esas lesiones y definir una actitud terapéutica. Sin embargo, algunos estudios de población a gran escala han informado que aproximadamente el 25% de los pólipos no son detectados durante la colonoscopia. Los pacientes con una tasa de omisión de pólipos pueden desarrollar CCR y en una etapa tardía, la tasa de supervivencia es inferior al 15%. La detección de pólipos es una tarea compleja que depende en gran medida de la experiencia del especialista y fatiga ocular, preparación intestinal del paciente y la variación biológica. Por lo tanto, un sistema automático de detección de pólipos como segundo lector puede ayudar a reducir la tasa de omisión de pólipos, resaltando las posibles regiones polipoides para aumentar la atención de los expertos. Este trabajo presenta un conjunto de métodos automáticos para apoyar el diagnóstico médico, inspirados en las características visuales, información contextual y temporal de las lesiones polipoides mayores de 5 milímetros, esta descripción permite la diferenciación de la clase de pólipo y no pólipo.spa
dc.description.abstractColorectal cancer (CRC) was the second most common cause of cancer death in the world in 2018 and it has become a global public health priority. Therefore, the prevention of CRC through the early detection and elimination of neoplastic lesions is of paramount importance. Usually, the CRC begins as small benign masses or neoplasias commonly called polyps. In most cases, polyps slowly evolve in adenocarcinoma or cancer. Colonoscopy is the standard test to diagnose and treat CRC. During this procedure, a visual examination of the entire colon is performed by a gastroenterologist detecting those lesions and defining a therapeutic attitude. However, some large-scale population studies have reported that approximately 25% of polyps are missed during colonoscopy exploration. The patients with a miss-rate of polyps can develop CRC and at a late stage, the survival rate is less than 15%. Polyp detection is a complex task being highly dependent on the specialist experience and fatigue, bowel preparation of the patient, and biological variation. Therefore, an automatic polyp detection system as a second reader could help to reduce the polyp miss rate, highlighting possible polypoid regions to increase the attention of experts. This work presents a set of automatic methods to support medical diagnosis, inspired in the visual features, contextual and temporal information of polypoid lesions larger than 5 millimeters, this description allows the differentiation of the polyp and non-polyp class.spa
dc.description.additionalLine: Digital Anatomy by Images Researchspa
dc.description.commentsFurther author information: (Send correspondence to Diego Bravo) Diego Bravo: E-mail: dbravoh@unal.edu.co, Telephone: +57 3004513232spa
dc.description.degreelevelMaestríaspa
dc.description.projectAutomatic Detection of Colorectal Polyps Larger than 5 mm in Colonoscopy Videosspa
dc.format.extent89spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78013
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.references[1] WHO, “Oms — cáncer,” 2016. www.who.int/mediacentre/factsheets/fs297/es/.spa
dc.relation.references[2] Globocan, “Cancers fact sheets : Colorectal cancer,” 2012.spa
dc.relation.references[3] A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, “Global patterns of cancer incidence and mortality rates and trends, " Cancer Epidemiology and Prevention Biomarkers, vol. 19, no. 8, pp. 1893–1907, 2010.spa
dc.relation.references[4] “American cancer society - key statistics for colorectal cancer”, accessed February 21, 2018.” ww.cancer.org/cancer/colonandrectumcancer.spa
dc.relation.references[5] J. R. M. Velásquez, C. M. E. Vélez, and F. J. Baños, “Pólipo difícil enfoque y manejo,”Revista Colombiana de Gastroenterología, vol. 27, no. 4, pp. 292–302, 2012.spa
dc.relation.references[6] P. in the Paris Workshop, “The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon, " Gastrointestinal Endoscopy, vol. 58, no. 6SUPPL, pp. S3–S43, 2003.spa
dc.relation.references[7] F. Haumaier, W. Sterlacci, and M. Vieth, “Histological and molecular classification of gastrointestinal polyps, "Best Practice and Research: Clinical Gastroenterology, vol. 31, no. 4, pp. 369–379, 2017.spa
dc.relation.references[8] P. M. Colucci, S. H. Yale, and C. J. Rall, “Colorectal polyps, "Clinical medicine &research, vol. 1, no. 3, pp. 261–262, 2003.spa
dc.relation.references[9] A. Axon, M. Diebold, M. Fujino, R. Fujita, R. Genta, J. Gonvers, M. Guelrud, H. Inoue, M. Jung, H. Kashida, et al., “Update on the Paris classification of superficial neoplastic lesions in the digestive tract, "Endoscopy, vol. 37, no. 6, pp. 570–578, 2005.spa
dc.relation.references[10] S. Gupta, “Trouble in Paris (classification): polyp morphology is in the eye of the beholder, "American Journal of Gastroenterology, vol. 110, no. 1, pp. 188–191, 2015.spa
dc.relation.references[11] S. Kudo, S. Hirota, T. Nakajima, S. Hosobe, H. Kusaka, T. Kobayashi, M. Hinamori, and A. Yagyuu, “Colorectal tumors and pit pattern., "Journal of clinical pathology, vol. 47, no. 10, pp. 880–885, 1994.spa
dc.relation.references[12] L. Bujanda, A. Cosme, I. Gil, and J. I. Arenas-Mirave, “Malignant colorectal polyps, "World journal of gastroenterology: WJG, vol. 16, no. 25, p. 3103, 2010.spa
dc.relation.references[13] A. Castells, M. Marzo-Castillejo, J. Mascort, F. Amador, M. Andreu, B. Bellas, A. Ferrández, J. Ferrándiz, M. Giráldez, V. Gonzalo, et al., “Clinical practice guideline.prevention of colorectal cancer. 2009 update. Asociación española de gastroenterología,”Gastroenterologia y hepatologia, vol. 32, no. 10, pp. 717–e1, 2009.spa
dc.relation.references[14] Ministerio de salud colombia: Gpc cancer colorectal,”2017. www.imss.gob.mx/sites/all/statics/guiasclinicas/234GER.pd.spa
dc.relation.references[15] “American society or gastrointestinal endoscopy, “colorectal cancer screening”, accessed April 08, 2020.” www.asge.org.spa
dc.relation.references[16] S. J. Winawer, A. G. Zauber, M. N. Ho, M. J. O'Brien, L. S. Gottlieb, S. S. Sternberg, J. D. Waye, M. Schapiro, J. H. Bond, J. F. Panish, et al., “Prevention of colorectal cancer by colonoscopic polypectomy, "New England Journal of Medicine, vol. 329, no. 27, pp. 1977–1981, 1993.spa
dc.relation.references[17] A. G. Zauber, S. J. Winawer, M. J. O'Brien, I. Lansdorp-Vogelaar, M. van Ballegooijen, B. F. Hankey, W. Shi, J. H. Bond, M. Schapiro, J. F. Panish, et al., “Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths, "New England Journal of Medicine, vol. 366, no. 8, pp. 687–696, 2012.spa
dc.relation.references[18] A. Bond and S. Sarkar, “New technologies and techniques to improve adenoma detection in colonoscopy, "World Journal of gastrointestinal endoscopy, vol. 7, no. 10, p. 969,2015.spa
dc.relation.references[19] S. Gross, A. Buchner, J. Crook, J. Cangemi, M. F. Picco, H. C. Wolfsen, K. DeVault, D. Loeb, M. Raimondo, T. A. Woodward, et al., “A comparison of high definition-image enhanced colonoscopy and standard white-light colonoscopy for colorectal polyp detection, "Endoscopy, vol. 43, no. 12, pp. 1045–1051, 2011.spa
dc.relation.references[20] A. Adler, K. Wegscheider, D. Lieberman, A. Aminalai, J. Aschenbeck, R. Drossel, M. Mayr, M. Mroß, M. Scheel, A. Schr ̈oder, et al., “Factors determining the quality of screening colonoscopy: a prospective study on adenoma detection rates, from 12 134examinations (berlin colonoscopy project 3, becop-3), "Gut, vol. 62, no. 2, pp. 236–241,2013.spa
dc.relation.references[21] L. M. W. K. Song, D. G. Adler, B. Chand, J. D. Conway, J. M. Croffie, J. A. DiSario, D. S. Mishkin, R. J. Shah, L. Somogyi, W. M. Tierney, et al., “Chromoendoscopy," Gastrointestinal Endoscopy, vol. 66, no. 4, pp. 639–649, 2007.spa
dc.relation.references[22] K. Gono, T. Obi, M. Yamaguchi, N. Oyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging, "Journal of biomedical optics, vol. 9, no. 3, pp. 568–578, 2004.spa
dc.relation.references[23] Olympus, “Narrowband imaging - a new wave of diagnostic possibilities.”www.keymed.co.uk/index.cfm/page/products.index.cfm/cid/3245/navid/869/parentid/207.spa
dc.relation.references[24] L.-M. W. K. Song, S. Banerjee, D. Desilets, D. L. Diehl, F. A. Farraye, V. Kaul, S. R.Kethu, R. S. Kwon, P. Mamula, M. C. Pedrosa, et al., “Autofluorescence imaging, "Gastrointestinal Endoscopy, vol. 73, no. 4, pp. 647–650, 2011.spa
dc.relation.references[25] V. K. Dik, L. M. Moons, and P. D. Siersema, “Endoscopic innovations to increase the adenoma detection rate during colonoscopy, "World journal of gastroenterology: WJG, vol. 20, no. 9, p. 2200, 2014.spa
dc.relation.references[26] M. Titi, G. Gupta, and P. Sharma, “Advanced colonoscopic imaging: Do new technologies improve adenoma detection?, "Gastroenterol Endosc News, vol. 12, 2014.spa
dc.relation.references[27] D. I. Gheonea, A. Saftoiu, T. Ciurea, C. Popescu, C. V. Georgescu, and A. Malos,“Confocal laser endomicroscopy of the colon,”J Gastrointestin Liver Dis, vol. 19,no. 2, pp. 207–11, 2010.spa
dc.relation.references[28] D. I. Gheonea, T. Cˆart ̧ˆan ̆a, T. Ciurea, C. Popescu, A. B ̆ad ̆ar ̆au, and A. S ̆aftoiu, “Con-focal laser endomicroscopy and Immuno endoscopy for real-time assessment of vascularization in gastrointestinal malignancies,” World journal of gastroenterology: WJG, vol. 17, no. 1, p. 21, 2011.spa
dc.relation.references[29] J. E. East, B. P. Saunders, D. Burling, D. Boone, S. Halligan, and S. A. Taylor, “Surface visualization at ct colonography simulated colonoscopy: effect of varying field of view and retrograde view,” American Journal of Gastroenterology, vol. 102, no. 11, pp. 2529–2535, 2007.spa
dc.relation.references[30] J. D. Waye, R. I. Heigh, D. E. Fleischer, J. A. Leighton, S. Gurudu, L. B. Aldrich, J. Li, S. Ramrakhiani, S. A. Edmundowicz, D. S. Early, et al., “A retrograde-viewing device improves detection of adenomas in the colon: a prospective efficacy evaluation(with videos), "Gastrointestinal Endoscopy, vol. 71, no. 3, pp. 551–556, 2010.spa
dc.relation.references[31] S. Kondo, Y. Yamaji, H. Watabe, A. Yamada, T. Sugimoto, M. Ohta, K. Ogura, M. Okamoto, H. Yoshida, T. Kawabe, et al., “A randomized controlled trial evaluating the usefulness of a transparent hood attached to the tip of the colonoscope," American Journal of Gastroenterology, vol. 102, no. 1, pp. 75–81, 2007.spa
dc.relation.references[32] L. Rabeneck and L. F. Paszat, “Circumstances in which colonoscopy misses cancer, "Frontline gastroenterology, vol. 1, no. 1, pp. 52–58, 2010.spa
dc.relation.references[33] C. M. le Clercq, M. W. Bouwens, E. J. Rondagh, C. M. Bakker, E. T. Keulen, R. J.de Ridder, B. Winkens, A. A. Masclee, and S. Sanduleanu, “Postcolonoscopy colorectal cancers are preventable: a population-based study, "Gut, vol. 63, no. 6, pp. 957–963,2014.spa
dc.relation.references[34] S. J. Winawer, A. G. Zauber, R. H. Fletcher, J. S. Stillman, M. J. O’Brien, B. Levin, R. A. Smith, D. A. Lieberman, R. W. Burt, T. R. Levin, et al., “Guidelines for colonoscopy surveillance after polypectomy: a consensus update by the us multi-society task force on colorectal cancer and the American cancer society,” CA: a cancer journal for clinicians, vol. 56, no. 3, pp. 143–159, 2006.spa
dc.relation.references[35] D. K. Rex, C. J. Kahi, B. Levin, R. A. Smith, J. H. Bond, D. Brooks, R. W. Burt, T. Byers, R. H. Fletcher, N. Hyman, et al., “Guidelines for colonoscopy surveillance after cancer resection: a consensus update by the American cancer society and us multi-society task force on colorectal cancer,” CA: a cancer journal for clinicians, vol. 56, no. 3, pp. 160–167, 2006.spa
dc.relation.references[36] D. A. Lieberman, D. K. Rex, S. J. Winawer, F. M. Giardiello, D. A. Johnson, and T. R. Levin, “Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the us multi-society task force on colorectal cancer,” Gastroenterology, vol. 143, no. 3, pp. 844–857, 2012.spa
dc.relation.references[37] J. C. Van Rijn, J. B. Reitsma, J. Stoker, P. M. Bossuyt, S. J. Van Deventer, andE. Dekker, “Polyp miss rate determined by tandem colonoscopy: a systematic review,”American Journal of Gastroenterology, vol. 101, no. 2, pp. 343–350, 2006.spa
dc.relation.references[38] B. Bressler, L. F. Paszat, Z. Chen, D. M. Rothwell, C. Vinden, and L. Rabeneck, “Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis,” Gastroenterology, vol. 132, no. 1, pp. 96–102, 2007.spa
dc.relation.references[39] H. N. Choi, H. H. Kim, J. S. Oh, H. S. Jang, H. S. Hwang, E. Y. Kim, J. G. Kwon, and J. T. Jung, “Factors influencing the miss rate of polyps in a tandem colonoscopy study,” The Korean Journal of Gastroenterology, vol. 64, no. 1, pp. 24–30, 2014.spa
dc.relation.references[40] N. H. Kim, Y. S. Jung, W. S. Jeong, H.-J. Yang, S.-K. Park, K. Choi, and D. I.Park, “Miss rate of colorectal neoplastic polyps and risk factors for missed polyps inconsecutive colonoscopies,” Intestinal Research, vol. 15, no. 3, p. 411, 2017.spa
dc.relation.references[41] J. M. Cha, “Interval cancers after a negative colonoscopy finding in a Korean population: a small step for gastroenterologists but one giant leap for Koreans,” Intestinalresearch, vol. 12, no. 2, p. 169, 2014.spa
dc.relation.references[42] T. J. Lee, C. J. Rees, R. G. Blanks, S. M. Moss, C. Nickerson, K. C. Wright, P. W.James, R. J. McNally, J. Patnick, and M. D. Rutter, “Colonoscopic factors associated with adenoma detection in a national colorectal cancer screening program,” Endoscopy, vol. 46, no. 03, pp. 203–211, 2014.spa
dc.relation.references[43] D. A. Leffler, R. Kheraj, A. Bhansali, H. Yamanaka, N. Neeman, S. Sheth, M. Sawhney, J. T. Lamont, and M. D. Aronson, “Adenoma detection rates vary minimally with time of day and case rank: a prospective study of 2139 first screening colonoscopies,” Gastrointestinal Endoscopy, vol. 75, no. 3, pp. 554–560, 2012.spa
dc.relation.references[44] K. H. Paeck, W. J. Heo, D. I. Park, Y. H. Kim, S. H. Lee, C. K. Lee, C. S. Eun, and D. S. Han, “Colonoscopy scheduling influences adenoma and polyp detection rates.,” Hepato-gastroenterology, vol. 60, no. 127, pp. 1647–1652, 2013.spa
dc.relation.references[45] H. N. Choi, H. H. Kim, J. S. Oh, H. S. Jang, H. S. Hwang, E. Y. Kim, J. G. Kwon, and J. T. Jung, “Factors influencing the miss rate of polyps in a tandem colonoscopy study,” The Korean Journal of Gastroenterology, vol. 64, no. 1, pp. 24–30, 2014.spa
dc.relation.references[46] J. Aranda-Hernández, J. Hwang, and G. Kandel, “Seeing better-evidence based re-commendations on optimizing colonoscopy adenoma detection rate,” World journal of gastroenterology, vol. 22, no. 5, p. 1767, 2016.spa
dc.relation.references[47] Y.-J. Cho, S.-H. Bae, and K.-J. Yoon, “Multi-classifier-based automatic polyp detection in endoscopic images,” Journal of Medical and Biological Engineering, vol. 36, no. 6, pp. 871–882, 2016.spa
dc.relation.references[48] S. Krishnan, X. Yang, K. Chan, S. Kumar, and P. Goh, “Intestinal abnormality detection from endoscopic images,” in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No. 98CH36286), vol. 2, pp. 895–898, IEEE, 1998.spa
dc.relation.references[49] S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras, and M. Tzivras, “Computer-aided tumor detection in endoscopic video using color wavelet features,” IEEE transactions on information technology in biomedicine, vol. 7, no. 3, pp. 141–152,2003.spa
dc.relation.references[50] M. P. Tjoa and S. M. Krishnan, “Feature extraction for the analysis of colon status from the endoscopic images,” BioMedical Engineering OnLine, vol. 2, no. 1, p. 9, 2003.spa
dc.relation.references[51] P. Li, K. L. Chan, and S. M. Krishnan, “Learning a multi-size patch-based hybrid kernel machine ensemble for abnormal region detection in colonoscopic images,” in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05), vol. 2, pp. 670–675, IEEE, 2005.spa
dc.relation.references[52] B. V. Dhandra, R. Hegadi, M. Hangarge, and V. S. Malemath, “Analysis of abnormality in endoscopic images using combined hsi color space and watershed segmentation,” in18th International Conference on Pattern Recognition (ICPR’06), vol. 4, pp. 695–698, IEEE, 2006.spa
dc.relation.references[53] M. T. Coimbra and J. S. Cunha, “Mpeg-7 visual descriptors—contributions for automated feature extraction in capsule endoscopy,” IEEE transactions on circuits and systems for video technology, vol. 16, no. 5, pp. 628–637, 2006.spa
dc.relation.references[54] S. Hwang, J. Oh, W. Tavanapong, J. Wong, and P. C. De Groen, “Polyp detection in colonoscopy video using elliptical shape feature,” in2007 IEEE International Conference on Image Processing, vol. 2, pp. II–465, IEEE, 2007.spa
dc.relation.references[55] S. Ameling, S. Wirth, D. Paulus, G. Lacey, and F. Vilarino, “Texture-based polyp de-tection in colonoscopy,” inBildverarbeitung f ̈ur die Medizin 2009, pp. 346–350, Springer, 2009.spa
dc.relation.references[56] C. Van Wijk, V. F. Van Ravesteijn, F. M. Vos, and L. J. Van Vliet, “Detection and segmentation of colonic polyps on implicit isosurfaces by second principal curvature flow,” IEEE Transactions on Medical Imaging, vol. 29, no. 3, pp. 688–698, 2010.spa
dc.relation.references[57] H. Zhu, Y. Fan, H. Lu, and Z. Liang, “Improved curvature estimation for computer-aided detection of colonic polyps in ct colonography,” Academic Radiology, vol. 18, no. 8, pp. 1024–1034, 2011.spa
dc.relation.references[58] J. Bernal, J. Sánchez, and F. Vilarino, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, 2012.spa
dc.relation.references[59] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 2, pp. 283–293, 2014.spa
dc.relation.references[60] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilarino, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs.saliency maps from physicians,” Computerized Medical Imaging and Graphics, vol. 43, pp. 99–111, 2015.spa
dc.relation.references[61] Y.-J. Cho, S.-H. Bae, and K.-J. Yoon, “Multi-classifier-based automatic polyp detection in endoscopic images,” Journal of Medical and Biological Engineering, vol. 36, no. 6, pp. 871–882, 2016.spa
dc.relation.references[62] N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE transactions on medical imaging, vol. 35, no. 2, pp. 630–644, 2015.spa
dc.relation.references[63] Y. Yuan, D. Li, and M. Q.-H. Meng, “Automatic polyp detection via a novel unified bottom-up and top-down saliency approach,” IEEE Journal of biomedical and health informatics, vol. 22, no. 4, pp. 1250–1260, 2017.spa
dc.relation.references[64] R. Zhang, Y. Zheng, T. W. C. Mak, R. Yu, S. H. Wong, J. Y. Lau, and C. C. Poon, “Automatic detection and classification of colorectal polyps by transferring low-level cnn features from nonmedical domain,” IEEE journal of biomedical and health informatics, vol. 21, no. 1, pp. 41–47, 2016.spa
dc.relation.references[65] J. Bernal, N. Tajkbaksh, F. J. Sánchez, B. J. Matuszewski, H. Chen, L. Yu, Q. An-germann, O. Romain, B. Rustad, I. Balasingham, et al., “Comparative validation of polyp detection methods in video colonoscopy: results from the miccai 2015 endoscopic vision challenge,” IEEE transactions on medical imaging, vol. 36, no. 6, pp. 1231–1249,2017.spa
dc.relation.references[66] D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, andH. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” inInternational Conferenceon Multimedia Modeling, pp. 451–462, Springer, 2020.spa
dc.relation.references[67] H. Pohl and D. J. Robertson, “Colorectal cancers detected after colonoscopy frequently result from missed lesions,” Clinical Gastroenterology and Hepatology, vol. 8, no. 10, pp. 858–864, 2010.spa
dc.relation.references[68] K. Garborg, “Colorectal Cancer Screening,” Colorectal Cancer, vol. 95, no. April 2001, pp. 1–15, 2015.spa
dc.relation.references[69] T. N. Witte and R. Enns, “The difficult colonoscopy,” Canadian Journal of Gastroenterology, vol. 21, no. 8, pp. 487–490, 2007.spa
dc.relation.references[70] Y. Shin, I. Balasingham, and S. Member, “Comparison of Handcraft Feature-based SVM and CNN based Deep Learning Framework for Automatic Polyp Classification,”2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3277–3280, 2017.spa
dc.relation.references[71] M. Ganz, X. Yang, and G. Slabaugh, “Automatic segmentation of polyps in colonoscopic narrow-band imaging data,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 8, pp. 2144–2151, 2012.spa
dc.relation.references[72] S. Esedoglu and J. Shen, “Digital Inpainting Based on the Mumford-Shah-Euler ImageModel,” European Journal of Applied Mathematics, vol. 4, no. 612, pp. 353–370, 2002.spa
dc.relation.references[73] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S ̈usstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE Transactions on pattern analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2281, 2012.spa
dc.relation.references[74] O. L. Junior, D. Delgado, V. Gon ̧calves, and U. Nunes, “Trainable classifier-fusion schemes: An application to pedestrian detection,” IEEE Conference on IntelligentTransportation Systems, Proceedings, ITSC, pp. 432–437, 2009.spa
dc.relation.references[75] T. Ojala, M. Pietik ̈ainen, and T. M ̈aenp ̈a ̈a, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002.spa
dc.relation.references[76] R. Haralick, K. Shanmugan, and I. Dinstein, “Textural features for image classification,” 1973.spa
dc.relation.references[77] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.spa
dc.relation.references[78] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR2017, vol. 2017-January, pp. 1800–1807, 2017.spa
dc.relation.references[79] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale VisualRecognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.spa
dc.relation.references[80] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” in advances in neural information processing systems, pp. 2951–2959, 2012.spa
dc.relation.references[81] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 68, no. 6, pp. 394–424, 2018.spa
dc.relation.references[82] American cancer society, “key statistics for colorectal cancer”,”2018. http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics, accessed June 12, 2019.spa
dc.relation.references[83] W. M. Grady and S. D. Markowitz, “The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening,” Digestive diseases and sciences, vol. 60, no. 3, pp. 762–772, 2015.spa
dc.relation.references[84] M. T. Accuracy, “Perspectives in clinical gastroenterology and hepatology,” Clinical Gastroenterology and Hepatology, vol. 12, pp. 1964–1972, 2014.spa
dc.relation.references[85] S. G. Patel and D. J. Ahnen, “Prevention of interval colorectal cancers: what every clinician needs to know,” Clinical Gastroenterology and Hepatology, vol. 12, no. 1, pp. 7–15, 2014.spa
dc.relation.references[86] P. Wang, T. M. Berzin, J. R. G. Brown, S. Bharadwaj, A. Becq, X. Xiao, P. Liu, L. Li, Y. Song, D. Zhang, et al., “Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomized controlled study,” Gut, vol. 68, no. 10, pp. 1813–1819, 2019.spa
dc.relation.references[87] Y. Zheng, R. Zhang, R. Yu, Y. Jiang, T. W. Mak, S. H. Wong, J. Y. Lau, and C. C.Poon, “Localisation of colorectal polyps by convolutional neural network features learnt from white light and narrow-band endoscopic images of multiple databases,” in201840th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4142–4145, IEEE, 2018.spa
dc.relation.references[88] N. Hayashi, S. Tanaka, D. G. Hewett, T. R. Kaltenbach, Y. Sano, T. Ponchon, B. P.Saunders, D. K. Rex, and R. M. Soetikno, “Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (nice) classification,” Gastrointestinal Endoscopy, vol. 78, no. 4, pp. 625–632,2013.spa
dc.relation.references[89] S.-E. Kudo, K. Wakamura, N. Ikehara, Y. Mori, H. Inoue, and S. Hamatani, “Diagnosis of colorectal lesions with a novel endocytoscopic classification–a pilot study,” Endoscopy, vol. 43, no. 10, pp. 869–875, 2011.spa
dc.relation.references[90] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using generalized Gaussian density and kullback-Leibler distance,” IEEE transactions on image processing, vol. 11, no. 2, pp. 146–158, 2002.spa
dc.relation.references[91] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.spa
dc.relation.references[92] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D. Johan-sen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt, et al., “Kvasir: A multi-class image dataset for computer-aided gastrointestinal disease detection,” in Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169, 2017.spa
dc.relation.references[93] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.spa
dc.relation.references[94] “American cancer society, “key statistics for colorectal cancer”, accessed January 13, 2020.” www.cancer.org/cancer/colonandrectumcancer.spa
dc.relation.references[95] A. Leufkens, M. Van Oijen, F. Vleggaar, and P. Siersema, “Factors influencing the miss rate of polyps in a back-to-back colonoscopy study,” Endoscopy, vol. 44, no. 05, pp. 470–475, 2012.spa
dc.relation.references[96] Y. Shin, H. A. Qadir, L. Aabakken, J. Bergsland, and I. Balasingham, “Automatic colon polyp detection using region-based deep CNN and post-learning approaches,” IEEE Access, vol. 6, pp. 40950–40962, 2018.spa
dc.relation.references[97] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.spa
dc.relation.references[98] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826, 2016.spa
dc.relation.references[99] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.spa
dc.relation.references[100] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”arXiv preprint arXiv:1409.1556, 2014.spa
dc.relation.references[101] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” In international Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.spa
dc.relation.references[102] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, 2017.spa
dc.relation.references[103] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-net,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 5, pp. 749–753, 2018.spa
dc.relation.references[104] V. Iglovikov and A. Shvets, “Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation,”arXiv preprint arXiv:1801.05746, 2018.spa
dc.relation.references[105] M. Everingham and J. Winn, “The pascal visual object classes challenge 2012 (voc2012)development kit,” Pattern Analysis, Statistical Modelling, and Computational Learning, Tech. Rep, 2011.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc362 - Problemas sociales y servicios para grupo de personasspa
dc.subject.proposalpolypeng
dc.subject.proposalcáncer colorectalspa
dc.subject.proposalpólipospa
dc.subject.proposalmiss-rateeng
dc.subject.proposaltasa de perdidaspa
dc.subject.proposalcolorectal cancereng
dc.subject.proposaldetectioneng
dc.subject.proposaldetecciónspa
dc.subject.proposalautomatic methodeng
dc.subject.proposalmétodo automáticospa
dc.titleAutomatic detection of colorectal polyps larger than 5 mm in colonoscopy videosspa
dc.title.alternativeDetección automática de pólipos colorrectales mayores a 5 mm en videos de colonoscopiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026568969.2020.pdf
Tamaño:
21.05 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: