Feature representation frameworks for decoding brain motor imagery patterns
dc.contributor.advisor | Castellanos Domínguez, César Germán | |
dc.contributor.advisor | Velásquez Martínez, Luisa Fernanda | |
dc.contributor.author | Zapata Castaño, Frank Yesid | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000138411 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=oNUg-cIAAAAJ&hl=es&authuser=1 | spa |
dc.contributor.orcid | Zapata Castaño, Frank Yesid [0000-0003-2214-3355] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/F-Zapata-Castano | spa |
dc.contributor.researchgroup | Grupo de Control y Procesamiento Digital de Señales | spa |
dc.date.accessioned | 2023-06-28T20:39:02Z | |
dc.date.available | 2023-06-28T20:39:02Z | |
dc.date.issued | 2023 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | The EEG recording records the electrical activity of the brain and measures activity with electrodes on the scalp; This record is the most widely used in the clinical and research fields due to its low cost and high temporal resolution. Due to the good temporal reso lution, Brain-Computer Interfaces (BCI) have been used frequently as a tool to decode brain activity and convert it into commands or instructions that other devices can under stand. The most well-known BCI systems are based on the Motor Imagery(MI) paradigm that corresponds to the imagination of a motor action without execution. That takes ad vantage of the synchronization dynamics of the brain. Event-Related Desynchronization and Synchronization show the channel-wise temporal dynamics related to motor activity. However, ERD/S it shows the temporal dynamics of the MI task, which presents per chan nel as the average energy relative to a segment to identify the onset of an MI intention, demands the application of a large bank of narrowband filters to find dynamic changes, and the assumption of temporal alignment ignores the between-trial temporal variations of neuronal activity. In this work, we present a signal filtering analysis based on the extraction of spatial, spectral, and temporal features that decode brain dynamics in the MI paradigm, such as the estimation of Supervised Temporal Patterns (STP) resulting from the solution of a problem. of generalized eigenvalues, taking into account temporal variations in brain ac tivity. In addition, the signal filtering analysis detects the temporal dynamics, in another case the result of Functional Connectivity (wPLI) is presented to see the spatial relation ship, through frequency and time, as happens with the detailed analysis presented by the ERD/S that is also related to MI tasks in response induced within each trial. Finally, with the extraction of the spatial, frequency, and temporal pattern, the group analysis is carried out, which allows recognition of the common activity, about the neuronal response in the presence of a stimulus, helping in the process of recognizing relevant information. (Texto tomado de la fuente) | eng |
dc.description.abstract | El Electroencefalograma (EEG) es un registro con el cual se mide la actividad eléctrica del cerebro, se lleva a cabo mediante electrodos ubicados sobre el cuero cabelludo; este registro es el más utilizado en el campo clínico y de investigación debido a su bajo costo y alta resolución temporal. Debido a esto, el EEG ha sido ampliamente utilizado en las Interfaces Cerebro-Computadora (ICC) como una herramienta para decodificar la actividad cerebral y convertirla en comandos o instrucciones que otros dispositivos puedan entender. Los sistemas BCI más conocidos se basan en el paradigma Imaginación Motora (IM) que corresponde a la imaginación de una acción motora sin ejecución. Eso aprovecha la dinámica de sincronización del cerebro. La Desincronización y Sincronización Relacionadas con Eventos muestran la dinámica temporal a nivel de canal relacionada con la actividad motora. Sin embargo, ERD/S exige la aplicación de un gran banco de filtros de banda estrecha para encontrar cambios dinámicos, y la suposición de alineación temporal ignora las variaciones temporales entre ensayos de la actividad neuronal. En este trabajo, presentamos un análisis de filtrado de señales basado en la extracción de características espaciales, espectrales y temporales que decodifican la dinámica cerebral en el paradigma MI, como la estimación de Patrones Temporales Supervisados (PTS) que resulta de la solución de un problema de autovalores generalizados, teniendo en cuenta las variaciones temporales de la actividad cerebral. Además, el análisis de filtrado de señales detecta la dinámica temporal, en otro caso se presenta el resultado de Conectividad Funcional (wPLI) para ver relación espacial, a través de la frecuencia y el tiempo, como también sucede con el análisis detallado que presenta el ERD/S que es relacionada con las tareas de MI en respuesta inducida dentro de cada ensayo. Finalmente con la extracción del patrón espacial, frecuencial y temporal, se lleva al análisis de grupo que permite reconocer la actividad común, en referencia con la respuesta neuronal en presencia de un estímulo, ayudando en el proceso de reconocer información relevante. | spa |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Automatización Industrial con enfoque en tratamiento de bioseñales (EEG) | spa |
dc.description.technicalinfo | Codes: Presentation of algorithms developed in the different works of this work. Repositorio Github: - Chapter 1: https://github.com/FrankYesid/Supervised-Temporal-Patterns-STP - Chapter 2: https://github.com/FrankYesid/MaskERDs - Chapter 3: https://github.com/FrankYesid/Group_analysis_EEG - Chapter Future work: https://github.com/FrankYesid/Music-EEG-Activity | eng |
dc.format.extent | xii, 62 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84097 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | R. A. Ramadan and A. V. Vasilakos, “Brain computer interface: Control signals review,” Neurocomputing, vol. 223, pp. 26–44, 2017. | spa |
dc.relation.references | G. Arfaras, A. Athanasiou, N. Pandria, et al., “Visual versus kinesthetic motor im agery for bci control of robotic arms (mercury 2.0),” in 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), IEEE, 2017, pp. 440–445. | spa |
dc.relation.references | D. T. Bundy, L. Souders, K. Baranyai, et al., “Contralesional brain–computer inter face control of a powered exoskeleton for motor recovery in chronic stroke survivors,” Stroke, vol. 48, no. 7, pp. 1908–1915, 2017. | spa |
dc.relation.references | H. Cho, M. Ahn, S. Ahn, M. Kwon, and S. C. Jun, “Eeg datasets for motor imagery brain computer interface,” Gigascience, 2017. | spa |
dc.relation.references | H.-L. Halme and L. Parkkonen, “Across-subject offline decoding of motor imagery from meg and eeg,” Scientific reports, vol. 8, no. 1, pp. 1–12, 2018. | spa |
dc.relation.references | Y. He, M. Steines, J. Sommer, et al., “Spatial–temporal dynamics of gesture–speech integration: A simultaneous eeg-fmri study,” Brain Structure and Function, vol. 223, no. 7, pp. 3073–3089, 2018. | spa |
dc.relation.references | G. Pfurtscheller, C. Brunner, A. Schl¨ogl, and F. L. Da Silva, “Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks,” NeuroImage, vol. 31, no. 1, pp. 153–159, 2006 | spa |
dc.relation.references | Z. Dai, J. De Souza, J. Lim, et al., “Eeg cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands,” Frontiers in human neuroscience, vol. 11, p. 237, 2017. | spa |
dc.relation.references | Z. Emami and T. Chau, “Investigating the effects of visual distractors on the per formance of a motor imagery brain-computer interface,” Clinical Neurophysiology, vol. 129, no. 6, pp. 1268–1275, 2018. | spa |
dc.relation.references | G. Pfurtscheller and F. L. Da Silva, “Event-related eeg/meg synchronization and desynchronization: Basic principles,” Clinical neurophysiology, vol. 110, no. 11, pp. 1842– 1857, 1999. | spa |
dc.relation.references | M. X. Cohen, “Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters,” European Journal of Neuroscience, 2017. | spa |
dc.relation.references | I. Daly, S. J. Nasuto, and K. Warwick, “Brain computer interface control via func tional connectivity dynamics,” Pattern recognition, vol. 45, no. 6, pp. 2123–2136, 2012. | spa |
dc.relation.references | M. X. Cohen, Analyzing neural time series data: theory and practice. MIT press, 2014 | spa |
dc.relation.references | S. Bhinge, R. Mowakeaa, V. D. Calhoun, and T. Adalı, “Extraction of time-varying spatiotemporal networks using parameter-tuned constrained iva,” IEEE transactions on medical imaging, vol. 38, no. 7, pp. 1715–1725, 2019. | spa |
dc.relation.references | B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, “Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data,” Clinical neu rophysiology, vol. 113, no. 1, pp. 43–47, 2002. | spa |
dc.relation.references | B. T´oth, K. Janacsek, A. Tak´acs, A. K´obor, Z. Zavecz, and D. Nemeth, “Dynamics ´ of eeg functional connectivity during statistical learning,” Neurobiology of Learning and Memory, vol. 144, pp. 216–229, 2017. | spa |
dc.relation.references | R. T. Canolty, E. Edwards, S. S. Dalal, et al., “High gamma power is phase-locked to theta oscillations in human neocortex,” science, vol. 313, no. 5793, pp. 1626–1628, 2006. | spa |
dc.relation.references | F. Shamsi, A. Haddad, and L. Najafizadeh, “Early classification of motor tasks using dynamic functional connectivity graphs from eeg,” Journal of neural engineering, vol. 18, no. 1, p. 016 015, 2021 | spa |
dc.relation.references | H. Yu, S. Ba, Y. Guo, L. Guo, and G. Xu, “Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm,” Brain Sciences, vol. 12, no. 2, p. 194, 2022 | spa |
dc.relation.references | J. R. Stieger, S. A. Engel, and B. He, “Continuous sensorimotor rhythm based brain computer interface learning in a large population,” Scientific Data, vol. 8, no. 1, pp. 1–10, 2021. | spa |
dc.relation.references | D. H. Mathalon and V. S. Sohal, “Neural oscillations and synchrony in brain dys function and neuropsychiatric disorders: It’s about time,” JAMA psychiatry, vol. 72, no. 8, pp. 840–844, 2015. | spa |
dc.relation.references | Y. Yang, S. Chevallier, J. Wiart, and I. Bloch, “Subject-specific time-frequency selection for multi-class motor imagery-based bcis using few laplacian eeg channels,” Biomedical Signal Processing and Control, vol. 38, pp. 302–311, 2017, issn: 1746- 8094. doi: https://doi.org/10.1016/j.bspc.2017.06.016. | spa |
dc.relation.references | Y. Bian, H. Qi, L. Zhao, D. Ming, T. Guo, and X. Fu, “Improvements in event-related desynchronization and classification performance of motor imagery using instruc tive dynamic guidance and complex tasks,” Computers in Biology and Medicine, vol. 96, pp. 266–273, 2018, issn: 0010-4825. doi: https://doi.org/10.1016/j. compbiomed.2018.03.018. | spa |
dc.relation.references | H. Yuan and B. He, “Brain–computer interfaces using sensorimotor rhythms: Cur rent state and future perspectives,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1425–1435, 2014. | spa |
dc.relation.references | R. Grandchamp and A. Delorme, “Single-trial normalization for event-related spec tral decomposition reduces sensitivity to noisy trials,” Frontiers in psychology, vol. 2, p. 236, 2011. | spa |
dc.relation.references | A. J. Brockmeier, “Learning and exploiting recurrent patterns in neural data,” Ph.D. dissertation, University of Florida, 2014. | spa |
dc.relation.references | N. Bigdely-Shamlo, G. Ibagon, C. Kothe, and T. Mullen, “Finding the optimal cross subject eeg data alignment method for analysis and bci,” in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2018, pp. 1110–1115. | spa |
dc.relation.references | R. Labounek, D. A. Bridwell, R. Mareˇcek, et al., “Stable scalp eeg spatiospectral patterns across paradigms estimated by group ica,” Brain topography, vol. 31, no. 1, pp. 76–89, 2018. | spa |
dc.relation.references | D. A. Bridwell, J. F. Cavanagh, A. G. Collins, et al., “Moving beyond erp compo nents: A selective review of approaches to integrate eeg and behavior,” Frontiers in human neuroscience, vol. 12, p. 106, 2018 | spa |
dc.relation.references | S. Brandl, K. Muller, and W. Samek, “Alternative CSP approaches for multimodal distributed BCI data,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016, pp. 003 742–003 747. | spa |
dc.relation.references | B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, “Optimizing spatial filters for robust eeg single-trial analysis,” IEEE Signal processing magazine, vol. 25, no. 1, pp. 41–56, 2007. | spa |
dc.relation.references | K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b,” Frontiers in neuroscience, vol. 6, p. 39, 2012. | spa |
dc.relation.references | Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface,” Journal of neuroscience methods, vol. 255, pp. 85–91, 2015. | spa |
dc.relation.references | M. Miao, H. Zeng, A. Wang, C. Zhao, and F. Liu, “Discriminative spatial-frequency temporal feature extraction and classification of motor imagery eeg: An sparse regres sion and weighted na¨ıve bayesian classifier-based approach,” Journal of neuroscience methods, vol. 278, pp. 13–24, 2017. | spa |
dc.relation.references | R. Huster, S. M. Plis, and V. D. Calhoun, “Group-level component analyses of EEG: Validation and evaluation,” Frontiers in neuroscience, vol. 9, p. 254, 2015. | spa |
dc.relation.references | E. Allen, E. Damaraju, T. Eichele, L. Wu, and V. D. Calhoun, “EEG signatures of dynamic functional network connectivity states,” Brain topography, vol. 31, no. 1, pp. 101–116, 2018. | spa |
dc.relation.references | B. Blankertz, C. Sannelli, S. Halder, et al., “Neurophysiological predictor of smr based bci performance,” Neuroimage, vol. 51, no. 4, pp. 1303–1309, 2010. | spa |
dc.relation.references | E. E. Hagberg, R. Ackerley, D. Lundqvist, J. Schneiderman, V. Jousm¨aki, and J. Wessberg, “Spatio-temporal profile of brain activity during gentle touch investigated with magnetoencephalography,” NeuroImage, vol. 201, p. 116 024, 2019 | spa |
dc.relation.references | S. P. Ahlfors, J. Han, J. W. Belliveau, and M. S. H¨am¨al¨ainen, “Sensitivity of meg and eeg to source orientation,” Brain topography, vol. 23, no. 3, pp. 227–232, 2010. | spa |
dc.relation.references | S. Yu, M. M¨uckschel, and C. Beste, “Event-related synchronization/desynchronization and functional neuroanatomical regions associated with fatigue effects on cognitive flexibility,” Journal of Neurophysiology, vol. 126, no. 2, pp. 383–397, 2021. | spa |
dc.relation.references | G. Pfurtscheller and A. Aranibar, “Event-related cortical desynchronization detected by power measurements of scalp eeg,” Electroencephalography and clinical neurophys iology, vol. 42, no. 6, pp. 817–826, 1977. | spa |
dc.relation.references | G. Pfurtscheller and A. Aranibar, “Evaluation of event-related desynchronization (erd) preceding and following voluntary self-paced movement,” Electroencephalogra phy and clinical neurophysiology, vol. 46, no. 2, pp. 138–146, 1979. | spa |
dc.relation.references | C. Neuper and G. Pfurtscheller, “Event-related dynamics of cortical rhythms: Frequency specific features and functional correlates,” International journal of psychophysiol ogy, vol. 43, no. 1, pp. 41–58, 2001. | spa |
dc.relation.references | D. Cheyne, W. Gaetz, L. Garnero, et al., “Neuromagnetic imaging of cortical oscil lations accompanying tactile stimulation,” Cognitive brain research, vol. 17, no. 3, pp. 599–611, 2003. | spa |
dc.relation.references | C. Neuper, M. W¨ortz, and G. Pfurtscheller, “Erd/ers patterns reflecting sensorimotor activation and deactivation,” Progress in brain research, vol. 159, pp. 211–222, 2006. | spa |
dc.relation.references | R. Ackerley, E. Eriksson, and J. Wessberg, “Ultra-late eeg potential evoked by prefer ential activation of unmyelinated tactile afferents in human hairy skin,” Neuroscience letters, vol. 535, pp. 62–66, 2013 | spa |
dc.relation.references | S.-B. Lee, H.-J. Kim, H. Kim, J.-H. Jeong, S.-W. Lee, and D.-J. Kim, “Comparative analysis of features extracted from eeg spatial, spectral and temporal domains for binary and multiclass motor imagery classification,” Information Sciences, vol. 502, pp. 190–200, 2019 | spa |
dc.relation.references | B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, “Visualization of significant erd/ers patterns in multichannel eeg and ecog data,” Clinical neurophys iology, vol. 113, no. 1, pp. 43–47, 2002. | spa |
dc.relation.references | G. R. M¨uller-Putz, D. Zimmermann, B. Graimann, K. Nestinger, G. Korisek, and G. Pfurtscheller, “Event-related beta eeg-changes during passive and attempted foot movements in paraplegic patients,” Brain research, vol. 1137, pp. 84–91, 2007. | spa |
dc.relation.references | M. Hardmeier, F. Hatz, H. Bousleiman, C. Schindler, C. J. Stam, and P. Fuhr, “Reproducibility of functional connectivity and graph measures based on the phase lag index (pli) and weighted phase lag index (wpli) derived from high resolution eeg,” PloS one, vol. 9, no. 10, e108648, 2014. | spa |
dc.relation.references | S. Aviyente, A. Tootell, and E. M. Bernat, “Time-frequency phase-synchrony ap proaches with erps,” International Journal of Psychophysiology, vol. 111, pp. 88–97, 2017. | spa |
dc.relation.references | S. Dai and Q. Wei, “Electrode channel selection based on backtracking search opti mization in motor imagery brain–computer interfaces,” Journal of integrative neu roscience, vol. 16, no. 3, pp. 241–254, 2017 | spa |
dc.relation.references | R. Mahamune and S. H. Laskar, “An automatic channel selection method based on the standard deviation of wavelet coefficients for motor imagery based brain– computer interfacing,” International Journal of Imaging Systems and Technology, vol. 33, no. 2, pp. 714–728, 2023. | spa |
dc.relation.references | M. H. Alomari, E. A. Awada, A. Samaha, and K. Alkamha, “Wavelet-based feature extraction for the analysis of eeg signals associated with imagined fists and feet movements,” Computer and Information Science, vol. 7, no. 2, p. 17, 2014 | spa |
dc.relation.references | R. V. Chacko, B. Kim, S. W. Jung, et al., “Distinct phase-amplitude couplings distinguish cognitive processes in human attention,” NeuroImage, vol. 175, pp. 111– 121, 2018, issn: 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2018. 03.003. | spa |
dc.relation.references | A. M. Alvarez-Meza, L. F. Vel´asquez-Mart´ınez, and G. Castellanos-Dominguez, ´ “Time-series discrimination using feature relevance analysis in motor imagery clas sification,” Neurocomputing, vol. 151, pp. 122–129, 2015. | spa |
dc.relation.references | M. Ahn, H. Cho, S. Ahn, and S. C. Jun, “High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery,” PloS one, vol. 8, no. 11, e80886, 2013. | spa |
dc.relation.references | C. Saiote, A. Tacchino, G. Brichetto, et al., “Resting-state functional connectiv ity and motor imagery brain activation,” Human brain mapping, vol. 37, no. 11, pp. 3847–3857, 2016. | spa |
dc.relation.references | N. Yeung, R. Bogacz, C. B. Holroyd, S. Nieuwenhuis, and J. D. Cohen, “Theta phase resetting and the error-related negativity,” Psychophysiology, vol. 44, no. 1, pp. 39–49, 2007 | spa |
dc.relation.references | W. Jian, M. Chen, and D. J. McFarland, “Eeg based zero-phase phase-locking value (plv) and effects of spatial filtering during actual movement,” Brain research bulletin, vol. 130, pp. 156–164, 2017 | spa |
dc.relation.references | D. Wang, D. Miao, and G. Blohm, “Multi-class motor imagery eeg decoding for brain-computer interfaces,” Frontiers in neuroscience, vol. 6, p. 151, 2012 | spa |
dc.relation.references | K. A. Garrison, D. Scheinost, E. S. Finn, X. Shen, and R. T. Constable, “The (in) stability of functional brain network measures across thresholds,” Neuroimage, vol. 118, pp. 651–661, 2015. | spa |
dc.relation.references | D. L. Harrington, M. Rubinov, S. Durgerian, et al., “Network topology and func tional connectivity disturbances precede the onset of huntington´s disease,” Brain, vol. 138, no. 8, pp. 2332–2346, 2015 | spa |
dc.relation.references | R. Scherer and C. Vidaurre, “Motor imagery based brain–computer interfaces,” in Smart Wheelchairs and Brain-Computer Interfaces, Elsevier, 2018, pp. 171–195 | spa |
dc.relation.references | K. Kasahara, C. S. DaSalla, M. Honda, and T. Hanakawa, “Neuroanatomical corre lates of brain–computer interface performance,” Neuroimage, vol. 110, pp. 95–100, 2015. | spa |
dc.relation.references | S.-H. Park and S.-G. Lee, “Small sample setting and frequency band selection prob lem solving using subband regularized common spatial pattern,” IEEE Sensors Jour nal, vol. 17, no. 10, pp. 2977–2983, 2017. | spa |
dc.relation.references | G. Pfurtscheller, C. Neuper, K. Pichler-Zalaudek, G. Edlinger, and F. H. L. da Silva, “Do brain oscillations of different frequencies indicate interaction between cortical areas in humans?” Neuroscience letters, vol. 286, no. 1, pp. 66–68, 2000. | spa |
dc.relation.references | Z.-c. Tang, C. Li, J.-f. Wu, P.-c. Liu, and S.-w. Cheng, “Classification of eeg-based single-trial motor imagery tasks using a b-csp method for bci,” Frontiers of Infor mation Technology & Electronic Engineering, vol. 20, no. 8, pp. 1087–1098, 2019. | spa |
dc.relation.references | S. Kumar, K. Mamun, and A. Sharma, “Csp-tsm: Optimizing the performance of riemannian tangent space mapping using common spatial pattern for mi-bci,” Com puters in biology and medicine, vol. 91, pp. 231–242, 2017 | spa |
dc.relation.references | G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K.-R. Muller, “Combined optimization of spatial and temporal filters for improving brain-computer interfacing,” IEEE transactions on biomedical engineering, vol. 53, no. 11, pp. 2274– 2281, 2006. | spa |
dc.relation.references | W. He, P. Wei, L. Wang, and Y. Zou, “A novel EMD-based common spatial pattern for motor imagery brain-computer interface,” in Biomedical and Health Informatics (BHI), IEEE, 2012, pp. 216–219. | spa |
dc.relation.references | M. Tariq, P. M. Trivailo, and M. Simic, “Mu-beta event-related (de) synchronization and eeg classification of left-right foot dorsiflexion kinaesthetic motor imagery for bci,” Plos one, vol. 15, no. 3, e0230184, 2020. | spa |
dc.relation.references | L. Velasquez-Martinez, J. Caicedo-Acosta, and G. Castellanos-Dominguez, “Entropy based estimation of event-related de/synchronization in motor imagery using vector quantized patterns,” Entropy, vol. 22, no. 6, p. 703, 2020 | spa |
dc.relation.references | G. Liu and J. Wang, “Eeg: An analytic brain-computer interface algorithm,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 643– 655, 2022. | spa |
dc.relation.references | V. Carmen, S. T. H, and S. Alois, “BioSig: The free and open source software library for biomedical signal processing,” Computational intelligence and neuro science, vol. 2011, 2011. | spa |
dc.relation.references | D. Vidaurre, R. Abeysuriya, R. Becker, et al., “Discovering dynamic brain networks from big data in rest and task,” Neuroimage, vol. 180, pp. 646–656, 2018 | spa |
dc.relation.references | M. Miao, A. Wang, and F. Liu, “A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery eeg pattern recognition,” Medical & biological engineering & computing, vol. 55, no. 9, pp. 1589– 1603, 2017. | spa |
dc.relation.references | M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage, vol. 52, no. 3, pp. 1059–1069, 2010. | spa |
dc.relation.references | J. Gonzalez-Astudillo, T. Cattai, G. Bassignana, M.-C. Corsi, and F. D. V. Fallani, “Network-based brain–computer interfaces: Principles and applications,” Journal of Neural Engineering, vol. 18, no. 1, p. 011 001, 2021. | spa |
dc.relation.references | Z. Feng, L. Qian, H. Hu, and Y. Sun, “Functional connectivity for motor imaginary recognition in brain-computer interface,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2020, pp. 3678–3682 | spa |
dc.relation.references | P. Babaeeghazvini, L. M. Rueda-Delgado, H. Zivari Adab, J. Gooijers, S. Swinnen, and A. Daffertshofer, “A combined diffusion-weighted and electroencephalography study on age-related differences in connectivity in the motor network during biman ual performance,” Human Brain Mapping, vol. 40, no. 6, pp. 1799–1813, 2019. | spa |
dc.relation.references | M. Lee, Y.-H. Kim, and S.-W. Lee, “Motor impairment in stroke patients is associ ated with network properties during consecutive motor imagery,” IEEE Transactions on Biomedical Engineering, 2022. | spa |
dc.relation.references | X. Xiong, Z. Yu, T. Ma, et al., “Weighted brain network metrics for decoding action intention understanding based on eeg,” Frontiers in Human Neuroscience, vol. 14, p. 232, 2020. | spa |
dc.relation.references | J. Liu, Y. Zhu, H. Sun, T. Ristaniemi, and F. Cong, “Sustaining attention for a prolonged duration affects dynamic organizations of frequency-specific functional connectivity,” Brain topography, vol. 33, no. 6, pp. 677–692, 2020. | spa |
dc.relation.references | M. Yu, “Benchmarking metrics for inferring functional connectivity from multi channel eeg and meg: A simulation study,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 12, p. 123 124, 2020. | spa |
dc.relation.references | M. Hamedi, S.-H. Salleh, and A. M. Noor, “Electroencephalographic motor imagery brain connectivity analysis for bci: A review,” Neural computation, vol. 28, no. 6, pp. 999–1041, 2016. | spa |
dc.relation.references | L. F. Velasquez-Martinez, F. Zapata-Castano, and G. Castellanos-Dominguez, “Dy namic modeling of common brain neural activity in motor imagery tasks,” Frontiers in Neuroscience, vol. 14, p. 714, 2020. | spa |
dc.relation.references | K. Styszko, L. Samek, K. Szramowiat, et al., “Oxidative potential of pm10 and pm2. 5 collected at high air pollution site related to chemical composition: Krakow case study,” Air Quality, Atmosphere & Health, vol. 10, no. 9, pp. 1123–1137, 2017. | spa |
dc.relation.references | J. S. Aznar, C. Aguilar-Paredes, L. S´anchez-G´omez, L. E. Bruni, and A. Wulff Abramsson, “Methodology for detection of erd/ers eeg patterns produced by cut events in film fragments,” in International Conference on Human-Computer Inter action, Springer, 2020, pp. 157–17 | spa |
dc.relation.references | I. Gutberlet and M. De Vos, “1q1 real-time eeg feedback during simultaneous eeg– fmri identifies the 2 cortical signature of motor imagery,” | spa |
dc.relation.references | B. Z. Allison, E. W. Wolpaw, and J. R. Wolpaw, “Brain–computer interface systems: Progress and prospects,” Expert review of medical devices, vol. 4, no. 4, pp. 463–474, 2007. | spa |
dc.relation.references | R. J. Huster and L. Raud, “A tutorial review on multi-subject decomposition of eeg,” Brain topography, vol. 31, no. 1, pp. 3–16, 2018 | spa |
dc.relation.references | J. Terrien, G. Germain, C. Marque, and B. Karlsson, “Bivariate piecewise stationary segmentation; improved pre-treatment for synchronization measures used on non stationary biological signals,” Medical engineering & physics, vol. 35, no. 8, pp. 1188– 1196, 2013. | spa |
dc.relation.references | C. V. Reinhold Scherer, “Chapter 8 - motor imagery based brainˆa¿“computer in terfaces,” P. Diez, Ed., pp. 171–195, 2018. | spa |
dc.relation.references | J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clinical neurophysiol ogy, vol. 113, no. 6, pp. 767–791, 2002. | spa |
dc.relation.references | M. Ahn, S. Ahn, J. H. Hong, et al., “Gamma band activity associated with bci performance: Simultaneous meg/eeg study,” Frontiers in human neuroscience, vol. 7, p. 848, 2013. | spa |
dc.relation.references | C. Zich, S. Debener, C. Kranczioch, M. G. Bleichner, I. Gutberlet, and M. De Vos, “Real-time eeg feedback during simultaneous eeg–fmri identifies the cortical signa ture of motor imagery,” Neuroimage, vol. 114, pp. 438–447, 2015 | spa |
dc.relation.references | F Y Zapata, O W Gomez et al. ”Graph Strength for Identification of Pre-training Desynchronization”. In: Springer (2023), pp. 36-44 | spa |
dc.relation.references | F Y Zapata et al. ”wPLI for Pre-Training Desynchronization Identification”. In: CITIS (2022), 7751. | spa |
dc.relation.references | L F Velasquez, F Y Zapata et al. ”Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks”. In: Frontiers in Neuroscience (2020), 14, 714. | spa |
dc.relation.references | L F Velasquez, F Y Zapata et al. ”Group differences in time-frequency relevant patterns for user-independent BCI applications”. In: Springer Cham (2019), 138- 145. | spa |
dc.relation.references | L F Velasquez, F Y Zapata et al. ”Detecting EEG dynamic changes using supervised temporal patterns”. In: Springer Cham (2018), 351-358 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.proposal | Actividad cerebral | spa |
dc.subject.proposal | Análisis de relevancia de características | spa |
dc.subject.proposal | Características de tiempo corto | spa |
dc.subject.proposal | Electroencefalografía | spa |
dc.subject.proposal | Imaginación motora | spa |
dc.subject.proposal | Interfaz hombre máquina | spa |
dc.subject.proposal | Características de señales de electroencefalografía | spa |
dc.subject.proposal | Electroencephalography (EEG) signal | eng |
dc.subject.proposal | Neural activity | eng |
dc.subject.proposal | Brain-machine interface | eng |
dc.subject.proposal | Motor imagery | eng |
dc.subject.proposal | Preprocessing | eng |
dc.subject.proposal | Short-time features | eng |
dc.subject.proposal | Feature relevance analysis | eng |
dc.subject.proposal | EEG Signal Features | eng |
dc.subject.unesco | Tecnología médica | spa |
dc.subject.unesco | Medical technology | eng |
dc.title | Feature representation frameworks for decoding brain motor imagery patterns | eng |
dc.title.translated | Representación de características para decodificar patrones de imágenes motoras cerebrales | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053821738.2023.pdf
- Tamaño:
- 26.91 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería — Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: