Estudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de oro

dc.contributor.advisorNEIRA ARENAS, GUSTAVO
dc.contributor.authorOchoa Correa, Lucía Inés
dc.contributor.researchgroupGrupo de Explotacion y Aprovechamiento Sostenible de Recursos Minerales - Geaminspa
dc.date.accessioned2022-08-16T16:10:14Z
dc.date.available2022-08-16T16:10:14Z
dc.date.issued2022-08-13
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEste trabajo presenta una posible ruta de beneficio para minerales de tierras raras (REE) y otros minerales como magnetita, ilmenita, rutilo y circones contenidos en las arenas negras de un proceso industrial de minería aluvial de oro. Esta ruta de beneficio comprende separaciones por tamaño, magnéticas, gravimétricas y electrostáticas de una corriente que hace parte de los relaves actuales de la explotación de un depósito de placer aluvial de oro ubicado en el Bajo Cauca Antioqueño (Colombia). Esta corriente presenta una concentración de minerales pesados superior al 50%, distribuidos en diferentes rangos de tamaño y asociaciones mineralógicas. Se encontró que la monacita, mineral de tierras raras de mayor interés, se encuentra concentrado en la fracción gruesa (+20 mallas, tamaño mayor a 0,85 milímetros), con un 1,4% de participación en esta fracción, esta fracción de gruesos a su vez equivale al 7% del total de la corriente sometida a estudio, y en la fracción fina (-70 mallas, tamaños menores a 0,212 milímetros), con un 0,23% de participación en esta fracción que a su vez equivale al 27% de la corriente de este estudio. Partiendo de un muestreo sistemático de la corriente de interés del proceso actual de beneficio aluvial, ensayos de separación y con ayuda del software LIMN®, se establecieron parámetros para la concentración de monacita y otros minerales de interés. La caracterización óptica, física, química y mineralógica de los concentrados obtenidos permitió inferir que, para lograr la recuperación de los minerales de tierras raras puede ser necesario un proceso de liberación mediante conminución, a fin de alcanzar los requerimientos de comercialización de concentrados, esto requiere un análisis técnico económico más profundo. El estudio de calidad realizado evidenció la potencialidad de aprovechamiento de minerales principales de hierro (como magnetita), titanio (ilmenita), monacita y circones, con variadas asociaciones mineralógicas. (Texto tomado de la fuente)spa
dc.description.abstractThis paper presents a possible route to rare minerals benefit, and also other minerals such as magnetite, ilmenite, rutile, and circones, present in the black sands of an industrial aluvial gold mining company. This benefit route includes size, magnetic, gravimetric, and electrostatic separation of one of the currents that are part of the dredge tails in the mining process of an aluvial placer deposit located in El Bajo Cauca Antioqueño (Colombia). This current contains a heavy mineral concentration higher than 50%, distributed in different ranges of size and mineralogical associations. It was found that the monacite, the rare sands mineral of greater interest is concentrated in the gross section (+20 mesh, size bigger than 0.85 millimeters), with a 1,4% participation in this fraction, which represents the 7% of the total current under study, and in the fine fraction (-70 mesh, sizes under 0,212 millimeters), with a 0.23% of participation in this fraction, which also represents 27% of the current under study. Starting from systematic sampling of the currents of interest of the actual aluvial benefit process and with the support of the Software LIMN®, separation test and based of the, the parameters of concentration of the minerals of interest were stablished, for monacita. The optical, physical, chemical, and mineralogical characterization of the concentrates obtained, allowed to infer that the recovery of the minerals in the rare sands may require a comminution liberation process, with the purpose of achieving the requirements to commercialize the concentrates, which also requires a deeper technical and economic analysis. The quality study, showed the potential of the exploitation of the principal minerals of iron (such us magnetite), titanium (ilmenite), monacite and circones, with various mineralogical associations.eng
dc.description.curricularareaÁrea Curricular de Recursos Mineralesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Mineralesspa
dc.description.researchareaBeneficio de Mineralesspa
dc.description.sponsorshipMineros Aluvial SAS BICspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.description.sponsorshipLeeds Universityspa
dc.format.extentxx, 128 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81915
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Mineralesspa
dc.relation.referencesASTM C 1444 - 00. (2000). Standard test method for measuring the angle of repose of free-flowing mold. ASTM International, 1, 15–16.spa
dc.relation.referencesBradley S. Van Gosen, Philip L. Verplanck, Robert R. Seal II, K. R. L., & Gambogi, and J. (2013). Rare-Earth Elements Chapter O of Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802 – O U . S . Department of the Interior. USGS - U.S. Geological Survey, 01–031. https://doi.org/https://doi.org/10.3133/pp1802Ospa
dc.relation.referencesBustamante, O. M., Gaviria, A. C., & Restrepo, O. J. (2008). CONCENTRACIÓN DE MINERALES (Vol. 17, Issue 34, pp. 39–46). IM CIMEX.spa
dc.relation.referencesCarpco Inc. (1995). OPERATING MANUAL FOR LABORATORY ELECTROSTTATIC SEPARATOR HT(15, 25, 36) 111-15. SEPOR.spa
dc.relation.referencesD2320-98, A. D. (1998). Standard Test Method for Density of Solid Pitch (Pycnometer Method ). 98(Reapproved 2003), 1–3.spa
dc.relation.referencesDíaz, M. (1992). Primer Estimado Producción Arenas Negras para Mineros Nacionales-Confidencial.spa
dc.relation.referencesDushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 103521. https://doi.org/https://doi.org/10.1016/j.oregeorev.2020.103521spa
dc.relation.referencesEcheverri L., F., & Parra B., J. J. (2019). Los lantánidos: ni tierras ni raras. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43, 291–296.spa
dc.relation.referencesElsner, H. (2010). Assessment Manual: Heavy Minerals of Economic Importance. (Ilmenite and Leucoxene, Rutile, Zircon, Monazite and Xenotime, Kyanite, Sillimanite and Andalusite, Staurolite, Garnet, Chromite, Magnetite, Cassiterite, Columbite-Tantalite,Wolframite and Scheeli.spa
dc.relation.referencesElsner, H. (2013). Zircon – insufficient supply in the future? DERA Deutsche Rohstoffagentur.spa
dc.relation.referencesEvans, A. (1993). Ore Geology and Industrial Minerals. In B. Company (Ed.), Blackwell Science (Third, Vol. 39, Issue 5).spa
dc.relation.referencesFrimmel, H. E., & James, C. S. (2021). Placer Deposits and Processes (D. Alderton & S. A. B. T.-E. of G. (Second E. Elias (eds.); pp. 877–898). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-102908-4.00004-7spa
dc.relation.referencesGalsin, J. S. (2019). Chapter 18 - Magnetism. In J. S. B. T.-S. S. P. Galsin (Ed.), Solid State Physics: An Introduction to Theory (pp. 383–405). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817103-5.00018-9spa
dc.relation.referencesGambogi, J. (2021). Rare Earths. In Mineral Commodity Summaries. U.S. Geological Survey.spa
dc.relation.referencesGarzanti, E., & Andò, S. (2019). Heavy Minerals for Junior Woodchucks. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030148spa
dc.relation.referencesGonçalves, C., & Braga, P. (2019). Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas. Minerals, 9(3), 176. https://doi.org/10.3390/min9030176spa
dc.relation.referencesGupta, A, & Yan, D. S. (2006a). Chapter 15 - Gravity Separation. In A Gupta & D. S. B. T.-M. P. D. and O. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (pp. 494–554). Elsevier Science. https://doi.org/10.1016/B978-0-444-51636-7.X5000-1spa
dc.relation.referencesGupta, A, & Yan, D. S. (2006b). Chapter 2 - Particle Size Estimation and Distributions (A Gupta & D. S. B. T.-M. P. D. and O. Yan (eds.); pp. 32–62). Elsevier Science. https://doi.org/https://doi.org/10.1016/B978-044451636-7/50003-6spa
dc.relation.referencesGupta, A, & Yan, D. S. (2016). Chapter 16 - Gravity Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Edition) (pp. 563–628). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00016-2spa
dc.relation.referencesGupta, Ashok, & Yan, D. (2016). Chapter 17 - Magnetic and Electrostatic Separation. In Ashok Gupta & D. B. T.-M. P. D. and O. (Second E. Yan (Eds.), Mineral Processing Design and Operations (Second Edition) (2nd ed., pp. 629–687). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63589-1.00017-4spa
dc.relation.referencesHaldar, S. K. (2018a). Chapter 12 - Elements of Mining (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 229–258). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00012-5spa
dc.relation.referencesHaldar, S. K. (2018b). Chapter 13 - Mineral Processing (S. K. B. T.-M. E. (Second E. Haldar (ed.); pp. 259–290). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-814022-2.00013-7spa
dc.relation.referencesHaldar, S. K. (2018d). Economic Mineral Deposits and Host Rocks. In Mineral Exploration (2nd ed., pp. 25–45). Joe Hayton. https://doi.org/10.1016/B978-0-12-814022-2.00002-2spa
dc.relation.referencesHikichi, Y., & Nomura, T. (1987). Melting Temperatures of Monazite and Xenotime. Journal of the American Ceramic Society, 70(10), C‐252-C‐253. https://doi.org/10.1111/j.1151-2916.1987.tb04890.xspa
dc.relation.referencesHoshino, M., Sanematsu, K., & Watanabe, Y. (2016). Chapter 279 - REE Mineralogy and Resources. In B. Jean-Claude & P. B. T.-H. on the P. and C. of R. E. Vitalij K. (Eds.), Including Actinides (Vol. 49, pp. 129–291). Elsevier. https://doi.org/https://doi.org/10.1016/bs.hpcre.2016.03.006spa
dc.relation.referencesIUPAC. (2005). NOMENCLATURE OF INORGANIC CHEMISTRY. http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdfspa
dc.relation.referencesJones, G. (2009). Mineral Sands: An Overview of the Industry. In Iluka. http://cdn.ceo.ca.s3-us-west-2.amazonaws.com/1d8eduo-mineral-sands---an-overview-of-the-industry-by-greg-jones-manager-development-geology.pdfspa
dc.relation.referencesJordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/https://doi.org/10.1016/j.mineng.2012.10.017spa
dc.relation.referencesJordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 1: Gravity and magnetic separation. Minerals Engineering, 99, 111–122. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.006spa
dc.relation.referencesJordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Sheridan, R. S., Teng, C., Demers, H., Gauvin, R., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 2: Characterisation of products from gravity and magnetic separation. Minerals Engineering, 99, 96–110. https://doi.org/https://doi.org/10.1016/j.mineng.2016.04.007spa
dc.relation.referencesKim, K., & Jeong, S. (2019). Separation of Monazite from Placer Deposit by Magnetic Separation. In Minerals (Vol. 9, Issue 3). https://doi.org/10.3390/min9030149spa
dc.relation.referencesKomar, P. D. (2018). Placer Deposits BT - Encyclopedia of Coastal Science (C. W. Finkl & C. Makowski (eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-48657-4_246-2spa
dc.relation.referencesKomar, P. D. (2019). Placer Deposits (pp. 1–3). https://doi.org/10.1007/978-3-319-48657-4_246-2spa
dc.relation.referencesLamus, C. (2005). Mineralogia aplicada al uso y aprovechamiento de las arenas negras. Universidad Nacional de Colombia.spa
dc.relation.referencesLaurence, R. (2005). INTRODUCTION TO ORE-FORMING PROCESSES. Blackwell Publishing.spa
dc.relation.referencesMacdonald, E. H. (1983). Alluvial Mining: The geology, technology and economics placers. Springer. https://doi.org/10.1007/978-94-017-5361-6spa
dc.relation.referencesMange, M. A., & Maurer, H. F. W. (1992). Heavy Minerals in Colour. CHAPMAN & HALL.spa
dc.relation.referencesManser, R. J., Barley, R. W., & Wills, B. A. (1991). The shaking table concentrator — The influence of operating conditions and table parameters on mineral separation — The development of a mathematical model for normal operating conditions. Minerals Engineering, 4(3), 369–381. https://doi.org/https://doi.org/10.1016/0892-6875(91)90142-Ispa
dc.relation.referencesMazo.Z, J. (2011). UNA MIRADA AL ESTUDIO Y LAS APLICACIONES TECNOLÓGICAS Y BIOMÉDICAS DE LA MAGNETITA. In Revista EIA (pp. 207–223). scieloco.spa
dc.relation.referencesNoval, V. E., Ochoa Puentes, C., & Carriazo, J. G. (2017). Magnetita (Fe 3 O 4 ): Una estructura inorgánica con multiples aplicaciones en catálisis heterogénea. In Revista Colombiana de Química (Vol. 46, pp. 42–59). scieloco.spa
dc.relation.referencesO.Burt, R. (1984). Gravity Concentration Technology. Elsevier Science B.V.spa
dc.relation.referencesOberteuffer, J. (1974). Magnetic separation: A review of principles, devices, and applications. IEEE Transactions on Magnetics, 10(2), 223–238. https://doi.org/10.1109/TMAG.1974.1058315spa
dc.relation.referencesPellant, C. (2000). ROCKS AND MINERALS.spa
dc.relation.referencesRey, C. M. (2011). Magnetic separation. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (Eds.), 100 Years of Superconductivity (pp. 797–809). Elsevier. https://doi.org/10.1201/b22268-58spa
dc.relation.referencesSivamohan, R., & Forssberg, E. (1985). Principles of tabling. International Journal of Mineral Processing, 15(4), 281–295. https://doi.org/https://doi.org/10.1016/0301-7516(85)90046-8spa
dc.relation.referencesSlatt, R. M. (2006). Chapter 6 Fluvial deposits and reservoirs. In R. M. B. T.-H. of P. E. and P. Slatt (Ed.), Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers (Vol. 6, pp. 203–248). Elsevier. https://doi.org/https://doi.org/10.1016/S1567-8032(06)80041-8spa
dc.relation.referencesStanding, C. (2016). Mineral sands. Applied Earth Science, 125(3), 105–106. https://doi.org/10.1080/03717453.2016.1201897spa
dc.relation.referencesSvoboda, J. (2005). Magnetic Separation (K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. B. T.-E. of M. S. and T. Veyssière (eds.); pp. 1–7). Elsevier. https://doi.org/https://doi.org/10.1016/B0-08-043152-6/02031-3spa
dc.relation.referencesTransmin Metallurgical Consultants. (1995). LIMN The Flowsheet Processor (pp. 1–95). Transmin Metallurgical Consultants.spa
dc.relation.referencesTrujillo, D. (2015). Desarrollo de un proceso de recuperación de dióxido de titanio a partir de la ilmenita presente en las arenas ferrotitaníferas de la zona de Mompiche [Quito : EPN, 2015.]. https://bibdigital.epn.edu.ec/handle/15000/10597spa
dc.relation.referencesVan Gosen, B. ., Bleiwas, D. ., Bedinger, G. ., Ellefsen, K. ., & Shah, A. . (2016). Coastal deposits of heavy mineral sands; global significance and us resources. Mining Engineering, 68(10), 36–43. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991435202&partnerID=40&md5=db1bbb926d500419d5139a0b303a679espa
dc.relation.referencesVan Gosen, B. S., & Sengupta, D. (2016, July 12). PLACER-TYPE RARE EARTH ELEMENT DEPOSITS. https://doi.org/10.1130/abs/2016am-279551spa
dc.relation.referencesWills, B. A., & Finch, J. A. (2016a). Chapter 10 - Gravity Concentration. In B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (Eds.), Will’s Mineral Processing Technology (pp. 223–244). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00010-8spa
dc.relation.referencesWills, B. A., & Finch, J. A. (2016b). Chapter 13 - Magnetic and Electrical Separation (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 381–407). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00013-3spa
dc.relation.referencesWills, B. A., & Finch, J. A. (2016c). Chapter 4 - Particle Size Analysis (B. A. Wills & J. A. B. T.-W. M. P. T. (Eighth E. Finch (eds.); pp. 91–107). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-097053-0.00004-2spa
dc.relation.referencesZhou, B., Li, Z., & Chen, C. (2017). Global potential of rare earth resources and rare earth demand from clean technologies. In Minerals (Vol. 7, Issue 11). MDPI AG. https://doi.org/10.3390/min7110203spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.lembMetales de tierras raras
dc.subject.lembRare earth metals
dc.subject.proposalArenas negrasspa
dc.subject.proposalREEeng
dc.subject.proposalMinerales pesadosspa
dc.subject.proposalConcentraciónspa
dc.subject.proposalAluvialspa
dc.subject.proposalBlack sandseng
dc.subject.proposalConcentrationeng
dc.subject.proposalAlluvialeng
dc.subject.proposalHeavy mineralseng
dc.titleEstudio de recuperabilidad y calidad de minerales de tierras raras como subproducto de la minería aluvial de orospa
dc.title.translatedStudy of recovery and quality of rare earth minerals as alluvial gold mining by producteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBUILDING RESEARCH AND INNOVATION CAPABILITIES FOR THE SUSTAINABLE EXPLOITATION OF BLACK SANDS AS A SOURCE OF RARE EARTH ELEMENTSspa
oaire.fundernameThe Royal Academy of Engineeringspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026137102.2022.pdf
Tamaño:
5.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Recursos Minerales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: