Impact of light-matter coupling on correlations across the classical-quantum boundary in quantum electrodynamics

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.authorRestrepo Cuartas, Juan Pablo
dc.contributor.cvlacJ.P. Restrepo Cuartas [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000815977]spa
dc.contributor.googlescholarJ.P. Restrepo Cuartas [gomejp]spa
dc.contributor.orcidJ.P. Restrepo Cuartas [0000-0002-7430-7393]spa
dc.contributor.researchgroupSuperconductividad y Nanotecnologíaspa
dc.contributor.scopusJ.P. Restrepo Cuartas [56017135600]spa
dc.contributor.scopusJ.P. Restrepo Cuartas [56017135600]spa
dc.date.accessioned2024-01-25T15:21:09Z
dc.date.available2024-01-25T15:21:09Z
dc.date.issued2023-12-12
dc.descriptionilustraciones, diagramasspa
dc.description.abstractThis thesis commences with a comprehensive introduction, paving the way for the subsequent adaptation of four articles. Following this adaptation, the analysis narrows its focus to delve into the nuances of each article. In this analysis, we have explored various interrelated aspects of light-matter interactions in quantum systems, focusing on the role of different quasiparticle representations, the quantum dynamics of emitter assemblies within cavities, the phase transition from coherent to quantum-correlated phases, and the polariton vortices dynamics using a completely quantum approach. Our findings have provided valuable insights into the behavior of these complex quantum systems, as well as their potential applications and future research directions. The comparative analysis of quasiparticle representations in a two-quantum dotmicrocavity system has underlined the importance of selecting an appropriate basis to capture the system’s essential features and quasiparticle behavior effectively. We found that the polariton basis, consisting of dressed states of photons and excitons, can capture the underlying physics in various regimes of our model. Understanding the relationship between different bases and their ability to describe the system allows for a more accurate interpretation of the underlying physical processes, which is crucial for the design and implementation of quantum systems and devices. This understanding proved essential when analyzing the quantum dynamics of an assembly of emitters embedded within a cavity. We demonstrated that the efficient transfer of a threefold star light quantum state into the assembly of emitters is achievable only within the limit of a large number of emitters. This finding highlights the critical role of scalability in successfully manipulating quantum states and designing and optimizing experiments involving such systems. Moreover, our study revealed that the dressed states of photons and matter become independent of the number of two-level atoms in the assembly as the number of emitters increases, which is characterized by the cyclic appearance of antibunching and superbunching regimes. The insights gained from exploring the phase transition from coherent to quantumcorrelated phases in light-matter interactions have enabled us better to understand the interplay between quasiparticles and their coupling strengths. We identified that the assembly of emitters reaches coherence slightly before the photonic field, highlighting the subtle interplay between light and matter subsystems. Our findings have also revealed the critical role of quantum correlations in determining the system’s overall behavior, emphasizing the importance of studying entanglement properties across different regimes. Lastly, our investigation of polariton vortices dynamics using a completely quantum approach has shown that quantum superposition between light and matter leads to a more prosperous trajectory of the vortex core. Quantum exchange coupling results in interference effects on the trajectories of the vortex cores in both components, with more complex structures serving as solid evidence of quantum entanglement between the polariton components. (Texto tomado de la fuente)eng
dc.description.abstractEsta tesis comienza con una introducción exhaustiva, allanando el camino para la posterior adaptación de cuatro artículos. Tras esta adaptación, el análisis estrecha su enfoque para profundizar en los matices de cada artículo. En este análisis, hemos explorado varios aspectos interrelacionados de la interacción entre luz y materia en sistemas cuánticos. Centrándonos en el papel de las diferentes representaciones de cuasipartículas, la dinámica cuántica de conjuntos de emisores dentro de cavidades, la transición de fase de estados coherentes a estados cuánticoscorrelacionados, y finalmente, la dinámica de vórtices polaritónicos utilizando un enfoque completamente cuántico. Nuestros hallazgos han proporcionado valiosos conocimientos sobre el comportamiento de estos sistemas cuánticos complejos, así como sus posibles aplicaciones y direcciones futuras en investigación. Iniciamos con el análisis comparativo de las representaciones de cuasipartículas en un sistema conformado por dos puntos cuánticos inmersos en una cavidad. Este muestra la importancia de seleccionar una base adecuada para capturar de manera efectiva las características esenciales del sistema y el comportamiento de las cuasipartículas. En esta contribución descubrimos que la base de polaritones, compuesta por estados vestidos de fotones y excitones, puede capturar la física subyacente en varios regímenes de nuestro modelo. Comprender la relación entre las diferentes bases y su capacidad para describir el sistema permite una interpretación más precisa de los procesos físicos subyacentes, lo cual es crucial para el diseño e implementación de sistemas y dispositivos cuánticos. Esta comprensión resultó esencial al analizar la dinámica cuántica de un conjunto de emisores incrustados dentro de una cavidad. Demostramos que la transferencia eficiente de un estado cuántico de luz en forma de estrella triple al conjunto de emisores solo se puede lograr dentro del límite de un gran número de emisores. Este hallazgo destaca el papel crítico de la escalabilidad en la manipulación exitosa de estados cuánticos y el diseño y optimización de experimentos que involucran dichos sistemas. Además, nuestro estudio reveló que los estados vestidos de fotones y materia se vuelven independientes del número de átomos de dos niveles en el conjunto a medida que aumenta el número de emisores, lo cual se caracteriza por la aparición cíclica de regímenes de antibunching y superbunching. Las ideas obtenidas al explorar la transición de fase de estados coherentes a estados cuántico-correlacionados en las interacciones entre luz y materia nos han permitido comprender mejor la interacción entre cuasipartículas y sus fuerzas de acoplamiento. Identificamos que el conjunto de emisores alcanza la coherencia ligeramente antes que el campo fotónico, destacando la interacción sutil entre los subsistemas de luz y materia. Nuestros hallazgos también han revelado el papel crítico de las correlaciones cuánticas en la determinación del comportamiento general del sistema, enfatizando la importancia de estudiar las propiedades de entrelazamiento en diferentes regímenes. Finalmente, al analizar la dinámica de vórtices polaritónicos utilizando un enfoque completamente cuántico hemos encontrado que la superposición cuántica entre luz y materia conduce a una familia de trayectorias más rica del núcleo del vórtice. El acoplamiento de intercambio cuántico de excitaciones individuales resulta en efectos de interferencia en las trayectorias de los núcleos de vórtices en ambos componentes, con estructuras más complejas que sirven como evidencia sólida del entrelazamiento cuántico entre los componentes polaritónicos.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.researchareaÓptica Cuántica, Materia Condensad aspa
dc.format.extentxvi, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85440
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesB. P. Abbott et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016. doi: 10.1103/PhysRevLett.116. 061102.spa
dc.relation.referencesSamuel N. Alperin and Natalia G. Berloff. Multiply charged vortex states of polariton condensates. Optica, 8(3):301, Mar 2021. doi: 10.1364/OPTICA.418377.spa
dc.relation.referencesLuigi Amico, Rosario Fazio, Andreas Osterloh, and Vlatko Vedral. Entanglement in many-body systems. Rev. Mod. Phys., 80:517, May 2008. doi: 10.1103/ RevModPhys.80.517.spa
dc.relation.referencesA. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 457(7227):291, 2009. doi: 10.1038/nature07640.spa
dc.relation.referencesD. A. Antonosyan, T. V. Gevorgyan, and G. Yu. Kryuchkyan. Three-photon states in nonlinear crystal superlattices. Phys. Rev. A, 83:43807, 2011.spa
dc.relation.referencesF. T. Arecchi, Eric Courtens, Robert Gilmore, and Harry Thomas. Atomic coherent states in quantum optics. Phys. Rev. A, 6:2211–2237, Dec 1972.spa
dc.relation.referencesKristin B Arnardottir, Ivan V Iorsh, Timothy CH Liew, and Ivan A Shelykh. Hyperbolic region in an array of quantum wires in a planar cavity. ACS Photonics, 4(5):1165, 2017.spa
dc.relation.referencesFrank Arute, Kunal Arya, and et al Babbush. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, 2019.spa
dc.relation.referencesAlán Aspuru-Guzik and Philip Walther. Photonic quantum simulators. Nature Physics, 8(4):285, 2012. doi: 10.1038/nphys2253.spa
dc.relation.referencesKirill A Atlasov, Milan Calic, Karl Fredrik Karlsson, Pascal Gallo, Alok Rudra, Benjamin Dwir, and Eli Kapon. Photonic-crystal microcavity laser with sitecontrolled quantum-wire active medium. Optics Express, 17(20):18178, 2009.spa
dc.relation.referencesStefano Azzini, Dario Gerace, Matteo Galli, Isabelle Sagnes, Rémy Braive, Aristide Lemaître, Jacqueline Bloch, and Daniele Bajoni. Ultra-low threshold polariton lasing in photonic crystal cavities. Applied Physics Letters, 99(11):111106, 2011.spa
dc.relation.referencesDaniele Bajoni, Pascale Senellart, Esther Wertz, Isabelle Sagnes, Audrey Miard, Aristide Lemaître, and Jacqueline Bloch. Polariton laser using single micropillar GaAs−GaAlAs semiconductor cavities. Phys. Rev. Lett., 100:047401, Jan 2008.spa
dc.relation.referencesÁlvaro Cuevas et al. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Science Advances, 4(4):eaao6814, apr 2018. doi: 10.1126/sciadv.aao6814.spa
dc.relation.referencesAndrew J. Daley. Quantum computing and quantum simulation with group-ii atoms. Quantum Information Processing, 10(6):865, 2011. doi: 10.1007/s11128-011-0293- 3.spa
dc.relation.referencesE. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor. Entanglement and lasing with two quantum dots in a microcavity. Phys. Rev. B, 76:235317, 2007.spa
dc.relation.referencesHui Deng, Gregor Weihs, David Snoke, Jacqueline Bloch, and Yoshihisa Yamamoto. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proceedings of the National Academy of Sciences, 100(26):15318, 2003.spa
dc.relation.referencesHui Deng, Hartmut Haug, and Yoshihisa Yamamoto. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys., 82:1489, 2010. doi: 10.1103/RevModPhys.82.1489.spa
dc.relation.referencesR. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93:99, 1954.spa
dc.relation.referencesL. Dominici, D. Colas, S. Donati, J. P. Restrepo Cuartas, M. De Giorgi, D. Ballarini, G. Guirales, J. C. López Carreño, A. Bramati, G. Gigli, E. del Valle, F. P. Laussy, and D. Sanvitto. Ultrafast control and rabi oscillations of polaritons. Phys. Rev. Lett., 113:226401, Nov 2014. doi: 10.1103/PhysRevLett.113.226401.spa
dc.relation.referencesLorenzo Dominici, Galbadrakh Dagvadorj, Jonathan M. Fellows, Dario Ballarini, Milena De Giorgi, Francesca M. Marchetti, Bruno Piccirillo, Lorenzo Marrucci, Alberto Bramati, Giuseppe Gigli, Marzena H. Szymañska, and Daniele Sanvitto. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci. Adv., 1(11):1–10, 2015. doi: 10.1126/sciadv.1500807.spa
dc.relation.referencesLorenzo Dominici, David Colas, Antonio Gianfrate, Amir Rahmani, Vincenzo Ardizzone, Dario Ballarini, Milena De Giorgi, Giuseppe Gigli, Fabrice P. Laussy, Daniele Sanvitto, and Nina Voronova. Full-bloch beams and ultrafast rabi-rotating vortices. Phys. Rev. Research, 3:013007, 2021. doi: 10.1103/PhysRevResearch.3. 013007.spa
dc.relation.referencesLorenzo Dominici, Nina Voronova, Amir Rahmani, David Colas, Dario Ballarini, Milena De Giorgi, Giuseppe Gigli, Fabrice P. Laussy, and Daniele Sanvitto. Coupled quantum vortex kinematics and berry curvature in real space. arXiv, 2022. doi: 10.48550/ARXIV.2202.13210.spa
dc.relation.referencesLorenzo Dominici et al. Interactions and scattering of quantum vortices in a polariton fluid. Nature Communications, 9(1):1467, 2018. doi: 10.1038/s41467-018-03736-5.spa
dc.relation.referencesStefano Donati, Lorenzo Dominici, Galbadrakh Dagvadorj, Dario Ballarini, Milena De Giorgi, Alberto Bramati, Giuseppe Gigli, Yuri G. Rubo, Marzena Hanna Szymańska, and Daniele Sanvitto. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proceedings of the National Academy of Sciences of the United States of America, 113(52):14926–14931, dec 2016. doi: 10.1073/pnas.1610123114.spa
dc.relation.referencesJonathan P. Dowling, G. S. Agarwal, and Wolfgang P. Schleich. Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms. Phys. Rev. A, 49:4101–4109, May 1994.spa
dc.relation.referencesP. R. Eastham and P. B. Littlewood. Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity. Phys. Rev. B, 64:235101, 2001.spa
dc.relation.referencesSophia E Economou, Netanel Lindner, and Terry Rudolph. Optically generated 2- dimensional photonic cluster state from coupled quantum dots. Physical Review Letters, 105(9):093601, 2010.spa
dc.relation.referencesMatthew D Eisaman, JMAPS Fan, Alan Migdall, and Sergey V Polyakov. Invited review article: Single-photon sources and detectors. Review of Scientific Instruments, 82(7):071101, 2011.spa
dc.relation.referencesP. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and E. A. Cornell. Observation of long-lived vortex aggregates in rapidly rotating bose-einstein condensates. Phys. Rev. Lett., 90:170405, May 2003. doi: 10.1103/PhysRevLett.90.170405.spa
dc.relation.referencesRuffin E Evans, Mihir K Bhaskar, Denis D Sukachev, Christian T Nguyen, Alp Sipahigil, Michael J Burek, Bartholomeus Machielse, Grace H Zhang, Alexander S Zibrov, Edward Bielejec, et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science, 362(6415):662, 2018.spa
dc.relation.referencesA. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4:859, 2008.spa
dc.relation.referencesM. Feng, Y. P. Zhong, T. Liu, L. L. Yan, W. L. Yang, J. Twamley, and H. Wang. Exploring the quantum critical behaviour in a driven tavis–cummings circuit. Nature Communications, 6(1):7111, 2015.spa
dc.relation.referencesA.L. Fetter and A.A. Svidzinsky. Vortices in a trapped dilute Bose–Einstein condensate. Journal of Physics: Condensed Matter, 13(12):R135, 2001. doi: 10.1088/0953-8984/13/12/201.spa
dc.relation.referencesR.P. Feynman. Chapter II. Application of quantum mechanics to liquid helium. In C.J. Gorter, editor, Progress in Low Temperature Physics, volume 1, pages 17–53. Elsevier, 1955. doi: 10.1016/S0079-6417(08)60077-3.spa
dc.relation.referencesJ. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff. Climbing the Jaynes–Cummings ladder and observing its √ n nonlinearity in a cavity QED system. Nature, 454:315, 2008.spa
dc.relation.referencesJ. M. Fink, R. Bianchetti, M. Baur, M. Goeppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff. Dressed collective qubit states and the Tavis-Cummings model in circuit QED. Phys. Rev. Lett., 103:083601, 2009.spa
dc.relation.referencesT. A. Fisher, A. M. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts. Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field. Phys. Rev. B, 53:R10469, 1996. doi: 10.1103/physrevb.53.r10469.spa
dc.relation.referencesM D Fraser, G Roumpos, and Y Yamamoto. Vortex–antivortex pair dynamics in an exciton–polariton condensate. New Journal of Physics, 11(11):113048, nov 2009. doi: 10.1088/1367-2630/11/11/113048.spa
dc.relation.referencesXinghui Gao, Wei Hu, Stefan Schumacher, and Xuekai Ma. Unidirectional vortex waveguides and multistable vortex pairs in polariton condensates. Opt. Lett., 47 (13):3235–3238, Jul 2022. doi: 10.1364/OL.457724.spa
dc.relation.referencesBarry M. Garraway. The Dicke model in quantum optics: Dicke model revisited. Phil. Trans. R. Soc. A, 369:1137, 2011.spa
dc.relation.referencesErik M Gauger, Ahsan Nazir, Simon C Benjamin, Thomas M Stace, and Brendon W Lovett. Robust adiabatic approach to optical spin entangling in coupled quantum dots. New Journal of Physics, 10(7):73016, 2008.spa
dc.relation.referencesMichael Gegg, Alexander Carmele, Andreas Knorr, and Marten Marten Richter. Superradiant to subradiant phase transition in the open system dicke model: dark state cascades. New Journal of Physics, 20(1):013006, 2018.spa
dc.relation.referencesIulia Georgescu. Trapped ion quantum computing turns 25. Nature Reviews Physics, 2(6):278–278, 2020.spa
dc.relation.referencesChristopher Gerry and Peter Knight. Introductory Quantum Optics. Cambridge University Press, 2004.spa
dc.relation.referencesT. V. Gevorgyan. Three-photon states in phase space. Contemporary Physics, 50: 44–48, 2015.spa
dc.relation.referencesChristopher Gies, Jan Wiersig, Michael Lorke, and Frank Jahnke. Semiconductor model for quantum-dot-based microcavity lasers. Physical Review A, 75(1):013803, 2007.spa
dc.relation.referencesStefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys., 80:1215–1274, Oct 2008. doi: 10.1103/ RevModPhys.80.1215.spa
dc.relation.referencesN. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74:145, 2002.spa
dc.relation.referencesR. J. Glauber. Photon correlations. Phys. Rev. Lett., 10:84, 1963a.spa
dc.relation.referencesR. J. Glauber. Photon correlations. Phys. Rev. Lett., 10:84, 1963a.spa
dc.relation.referencesA. Gonzalez-Tudela, E. del Valle, E. Cancellieri, C. Tejedor, D. Sanvitto, and F. P. Laussy. Effect of pure dephasing on the Jaynes-Cummings nonlinearities. Opt. Express, 18:7002, 2010a.spa
dc.relation.referencesA. Gonzalez-Tudela, E. del Valle, C. Tejedor, and F.P. Laussy. Anticrossing in the PL spectrum of light–matter coupling under incoherent continuous pumping. Superlatt. Microstruct., 47:16, 2010b.spa
dc.relation.referencesP. Grangier, G. Reymond, and N. Schlosser. Implementations of Quantum Computing Using Cavity Quantum Electrodynamics Schemes. Fortschr. Phys., 48:859, 2000.spa
dc.relation.referencesM. Gross and S. Haroche. Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep., 93:301, 1982.spa
dc.relation.referencesG. M. Gusev, A. A. Quivy, T. E. Lamas, J. R. Leite, A. K. Bakarov, A. I. Toropov, O. Estibals, and J. C. Portal. Magnetotransport of a quasi-three-dimensional electron gas in the lowest landau level. Phys. Rev. B, 65:205316, May 2002. doi: 10.1103/PhysRevB.65.205316.spa
dc.relation.referencesR. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson. Coherent light emission from GaAs junctions. Phys. Rev. Lett., 9:366, 1962.spa
dc.relation.referencesR. Hanbury Brown and R. Twiss. Interferometry of the intensity fluctuations in light. I. Basic theory of the correlation between photons in coherent beams of radiation. Proc. Roy. Soc, A 242:300, 1957.spa
dc.relation.referencesR. Hanbury Brown and R. Twiss. Interferometry of the intensity fluctuations in light. III. Applications to astronomy. Proc. Roy. Soc, 248:199, 1958.spa
dc.relation.referencesR. Hanbury Brown and R. Q. Twiss. A test of a new type of stellar interferometer on Sirius. Nature, 178:1046, 1956.spa
dc.relation.referencesSerge Haroche and Jean-Michel Raimond. Exploring the quantum : atoms, cavities, and photons. Oxford University Pres, 2006.spa
dc.relation.referencesShu He, Liwei Duan, and Qing-Hu Chen. Exact solvability, non-integrability, and genuine multipartite entanglement dynamics of the dicke model. New Journal of Physics, 17(4):043033, apr 2015.spa
dc.relation.referencesTobias Heindel, Alexander Thoma, Martin von Helversen, Marco Schmidt, Alexander Schlehahn, Manuel Gschrey, Peter Schnauber, J-H Schulze, André Strittmatter, Jörn Beyer, et al. A bright triggered twin-photon source in the solid state. Nature Communications, 8:14870, 2017.spa
dc.relation.referencesTobias Heindel, Alexander Thoma, Martin von Helversen, Marco Schmidt, Alexander Schlehahn, Manuel Gschrey, Peter Schnauber, J-H Schulze, André Strittmatter, Jörn Beyer, et al. A bright triggered twin-photon source in the solid state. Nature Communications, 8:14870, 2017.spa
dc.relation.referencesJino Heo, Chang-Ho Hong, Min-Sung Kang, Hyeon Yang, Hyung-Jin Yang, Jong-Phil Hong, and Seong-Gon Choi. Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities. Scientific Reports, 7(1):14905, 2017.spa
dc.relation.referencesKlaus Hepp and Elliott H. Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model. Ann. Phys. (N. Y)., 76(2): 360–404, 1973a. ISSN 1096035X. doi: 10.1016/0003-4916(73)90039-0.spa
dc.relation.referencesKlaus Hepp and Elliott H. Lieb. Equilibrium statistical mechanics of matter interacting with the quantized radiation field. Phys. Rev. A, 8:2517–2525, 1973b. doi: 10.1103/PhysRevA.8.2517.spa
dc.relation.referencesTomoyuki Horikiri, Makoto Yamaguchi, Kenji Kamide, Yasuhiro Matsuo, Tim Byrnes, Natsuko Ishida, Andreas Löffler, Sven Höfling, Yutaka Shikano, Tetsuo Ogawa, Alfred Forchel, and Yoshihisa Yamamoto. High-energy side-peak emission of exciton-polariton condensates in high density regime. Scientific Reports, page 25655, 2016.spa
dc.relation.referencesRyszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009. doi: 10.1103/ RevModPhys.81.865.spa
dc.relation.referencesS. Hughes and H. Kamada. Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide. Phys. Rev. B, 70:195313, 2004.spa
dc.relation.referencesRyosuke Imai and Yoshiya Yamanaka. Dynamical properties of the finite-size dicke model coupled to a thermal reservoir. Journal of the Physical Society of Japan, 88 (2):024401, 2019.spa
dc.relation.referencesFrank Jahnke, Christopher Gies, Marc Aßmann, Manfred Bayer, H. A. M. Leymann, Alexander Foerster, Jan Wiersig, Christian Schneider, Martin Kamp, and Sven Höfling. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers. Nature Communications, 7(1):11540, 2016.spa
dc.relation.referencesR Jayaprakash, FG Kalaitzakis, G Christmann, K Tsagaraki, Moïra Hocevar, B Gayral, E Monroy, and NT Pelekanos. Ultra-low threshold polariton lasing at room temperature in a gan membrane microcavity with a zero-dimensional trap. Scientific Reports, 7(1):5542, 2017.spa
dc.relation.referencesE. Joos and H. D. Zeh. The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59(2):223, 1985. doi: 10.1007/BF01725541.spa
dc.relation.referencesChaitanya Joshi, Jonas Larson, and Timothy P. Spiller. Quantum state engineering in hybrid open quantum systems. Phys. Rev. A, 93:043818, Apr 2016.spa
dc.relation.referencesJ. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang. Bose–Einstein condensation of exciton polaritons. Nature, 443:409, 2006.spa
dc.relation.referencesJ. Kasprzak, D. D. Solnyshkov, R. André, Le Si Dang, and G. Malpuech. Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes. Phys. Rev. Lett., 101:146404, Oct 2008.spa
dc.relation.referencesJ. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein. Up on the jaynes–cummings ladder of a quantum-dot/microcavity system. Nature Materials, 9(4):304, 2010. doi: 10.1038/nmat2717.spa
dc.relation.referencesA. V. Kavokin. Exciton-polaritons in microcavities: present and future. Appl. Phys. A, 89:241, 2007.spa
dc.relation.referencesAlexey V. Kavokin, Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Microcavities (2nd edn). Oxford University Press, 2017. doi: 10.1093/ oso/9780198782995.001.0001.spa
dc.relation.referencesM Khoshnegar, A Jafari-Salim, MH Ansari, and AH Majedi. Toward tripartite hybrid entanglement in quantum dot molecules. New Journal of Physics, 16(2):023019, 2014.spa
dc.relation.referencesH. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks. Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning. Opt. Express, 19:2589, 2011.spa
dc.relation.referencesH. J. Kimble. The quantum internet. Nature, 453(7198):1023, 2008. doi: 10.1038/ nature07127.spa
dc.relation.referencesM Kira, F Jahnke, SW Koch, JD Berger, DV Wick, TR Nelson Jr, G Khitrova, and HM Gibbs. Quantum theory of nonlinear semiconductor microcavity luminescence explaining “boser” experiments. Physical Review Letters, 79(25):5170, 1997.spa
dc.relation.referencesJhon R. Klauder and E.C.G. Sudarshan. Fundamentals of Quantum Optics. Dover Books on Physics, 2006.spa
dc.relation.referencesSören Kreinberg, Weng W Chow, Janik Wolters, Christian Schneider, Christopher Gies, Frank Jahnke, Sven Höfling, Martin Kamp, and Stephan Reitzenstein. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light: Science & Applications, 6(8):7030, 2017.spa
dc.relation.referencesStanislav Yu. Kruchinin, Ivan D. Rukhlenko, Anvar S. Baimuratov, Mikhail Yu. Leonov, Vadim K. Turkov, Yurii K. Gun’ko, Alexander V. Baranov, and Anatoly V. Fedorov. Photoluminescence of a quantum-dot molecule. Journal of Applied Physics, 117(1):14306, 2015.spa
dc.relation.referencesK. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, and B. Deveaud-Plédran. Quantized vortices in an exciton-polariton condensate. Nat. Phys., 4(9):706, 2008a. doi: 10.1038/nphys1051.spa
dc.relation.referencesK. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, and B. Deveaud-Plédran. Quantized vortices in an exciton-polariton condensate. Nat. Phys., 4:706, 2008b.spa
dc.relation.referencesPavlos G Lagoudakis, MD Martin, Jeremy J Baumberg, Guillaume Malpuech, and Alexey Kavokin. Coexistence of low threshold lasing and strong coupling in microcavities. Journal of Applied Physics, 95(5):2487, 2004.spa
dc.relation.referencesB. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White. Towards quantum chemistry on a quantum computer. Nature Chemistry, 2(2):106, 2010. doi: 10.1038/nchem.483.spa
dc.relation.referencesF. P. Laussy, E. del Valle, and C. Tejedor. Strong coupling of quantum dots in microcavities. Phys. Rev. Lett., 101:083601, 2008.spa
dc.relation.referencesF.P. Laussy and A. V. Kavokin. Plmcn7 in cuba: Polariton era begins? Superlatt. Microstruct., 43:383, 2008.spa
dc.relation.referencesLe Si Dang, D. Heger, R. André, F. Boeuf, and R. Romestain. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett., 81: 3920, 1998.spa
dc.relation.referencesA J Leggett. Testing the limits of quantum mechanics: motivation, state of play, prospects. Journal of Physics: Condensed Matter, 14(15):R415, 2002. doi: 10. 1088/0953-8984/14/15/201.spa
dc.relation.referencesAnthony J. Leggett. Nobel lecture: Superfluid 3He: the early days as seen by a theorist. Rev. Mod. Phys., 76:999–1011, Dec 2004. doi: 10.1103/RevModPhys.76. 999.spa
dc.relation.referencesChristopher C. Leon, Anna Rosławska, Abhishek Grewal, Olle Gunnarsson, Klaus Kuhnke, and Klaus Kern. Photon superbunching from a generic tunnel junction. Science Advances, 5(5), 2019.spa
dc.relation.referencesS. Lerma-Hernández, J. Chávez-Carlos, M. A. Bastarrachea-Magnani, B. López-del Carpio, and J. G. Hirsch. Dynamics of coherent states in regular and chaotic regimes of the non-integrable dicke model. AIP Conference Proceedings, 1950(1): 030002, 2018.spa
dc.relation.referencesChuang Li, Elijah M Sampuli, Jie Song, Yan Xia, and Weiqiang Ding. One-step engineering many-atom NOON state. New Journal of Physics, 20(9):093019, 2018. doi: 10.1088/1367-2630/aadf9e.spa
dc.relation.referencesD. Lidar and T. Burn. Quantum Error Correction. Cambridge University Press, 2013. doi: 10.1017/CBO9781139034807.spa
dc.relation.referencesT.C.H. Liew, I.A. Shelykh, and G. Malpuech. Polaritonic devices. Physica E, 43: 1543, 2011.spa
dc.relation.referencesJ. C. López-Careño and H. Vinck-Posada. Preparation of a three-photon state in a nonlinear cavity–quantum dot system. Phys. Scr., 2014:14027, 2014. L. G. Lutterbach and L. Davidovich. Method for direct measurement of thespa
dc.relation.referencesL. G. Lutterbach and L. Davidovich. Method for direct measurement of the wigner function in cavity qed and ion traps. Phys. Rev. Lett., 78:2547, Mar 1997.spa
dc.relation.referencesXuekai Ma, Yaroslav V. Kartashov, Tingge Gao, Lluis Torner, and Stefan Schumacher. Spiraling vortices in exciton-polariton condensates. Phys. Rev. B, 102: 045309, Jul 2020. doi: 10.1103/PhysRevB.102.045309.spa
dc.relation.referencesT. H. Maiman. Stimulated optical radiation in ruby. Nature, 187(4736):493, 1960. doi: 10.1038/187493a0.spa
dc.relation.referencesMarco T. Manzoni, Ludwig Mathey, and Darrick E. Chang. Designing exotic manybody states of atomic spin and motion in photonic crystals. Nature Communications, 8(1):14696, 2017.spa
dc.relation.referencesLijun Mao, Yanxia Liu, and Yunbo Zhang. Entanglement dynamics of the ultrastrong-coupling three-qubit dicke model. Phys. Rev. A, 93:052305, May 2016a.spa
dc.relation.referencesLijun Mao, Yanxia Liu, and Yunbo Zhang. Entanglement dynamics of the ultrastrong-coupling three-qubit dicke model. Phys. Rev. A, 93:052305, 2016b.spa
dc.relation.referencesX. Marie, P. Renucci, S. Dubourg, T. Amand, P. Le Jeune, J. Barrau, J. Bloch, and R. Planel. Coherent control of exciton polaritons in a semiconductor microcavity. Phys. Rev. B, 59:R2494–R2497, Jan 1999. doi: 10.1103/PhysRevB.59.R2494.spa
dc.relation.referencesC. Marletto and V. Vedral. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett., 119:240402, Dec 2017. doi: 10.1103/PhysRevLett.119.240402.spa
dc.relation.referencesFitria Miftasani and Paweł Machnikowski. Photon-photon correlation statistics in the collective emission from ensembles of self-assembled quantum dots. Phys. Rev. B, 93:075311, 2016.spa
dc.relation.referencesGary J. Mooney, Charles D. Hill, and Lloyd C. L. Hollenberg. Entanglement in a 20-qubit superconducting quantum computer. Scientific Reports, 9(1):13465, 2019.spa
dc.relation.referencesDaniel Najer, Immo Söllner, Pavel Sekatski, Vincent Dolique, Matthias C. Löbl, Daniel Riedel, Rüdiger Schott, Sebastian Starosielec, Sascha R. Valentin, Andreas D. Wieck, Nicolas Sangouard, Arne Ludwig, and Richard J. Warburton. A gated quantum dot strongly coupled to an optical microcavity. Nature, 575 (7784):622–627, 2019.spa
dc.relation.referencesMichael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition, 2011. ISBN 1107002176, 9781107002173.spa
dc.relation.referencesJ. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning. Demonstration of an all-optical quantum controlled-not gate. Nature, 426(6964):264–267, 2003.spa
dc.relation.referencesJ. L. O’Brien, A. Furusawa, and J. Vuckovic. Photonic quantum technologies. Nat. Phys., 3:687, 2009.spa
dc.relation.referencesTomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, and Iacopo Carusotto. Topological photonics. Rev. Mod. Phys., 91: 015006, Mar 2019. doi: 10.1103/RevModPhys.91.015006.spa
dc.relation.referencesO. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim. Two-dimensional photonic band-gap defect mode laser. Science, 284:1819, 1999.spa
dc.relation.referencesYandong Peng, Aihong Yang, Bing Chen, Lei Li, Shande Liu, and Hongju Guo. Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption. Applied Physics Letters, 109(14):141101, 2016.spa
dc.relation.referencesJ. I. Perea, D. Porras, and C. Tejedor. Dynamics of the excitations of a quantum dot in a microcavity. Phys. Rev. B, 70:115304, 2004.spa
dc.relation.referencesNikolay V. Petrov, Bogdan Sokolenko, Maksim S. Kulya, Andrei Gorodetsky, and Aleksey V. Chernykh. Design of broadband terahertz vector and vortex beams: I. review of materials and components. Light: Advanced Manufacturing, 3(43), 2022. doi: 10.37188/lam.2022.043.spa
dc.relation.referencesL. Pezzè and A. Smerzi. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 90:35005, 2018.spa
dc.relation.referencesDavid Pines and Philippe Nozières. The Theory of Quantum Liquids. CRC Press, 1966. doi: 10.4324/9780429492662.spa
dc.relation.referencesGuillermo F. Quinteiro Rosen, Pablo I. Tamborenea, and Tilmann Kuhn. Interplay between optical vortices and condensed matter. Rev. Mod. Phys., 94:035003, Aug 2022. doi: 10.1103/RevModPhys.94.035003.spa
dc.relation.referencesMario A. Quiroz-Juárez, Jorge Chávez-Carlos, José L. Aragón, Jorge G. Hirsch, and Roberto de J. León-Montiel. Experimental realization of the classical dicke model. Phys. Rev. Research, 2:033169, Jul 2020.spa
dc.relation.referencesAmir Rahmani and Lorenzo Dominici. Detuning control of Rabi vortex oscillations in light-matter coupling. Phys. Rev. B, 100(9):094310, 2019. doi: 10.1103/PhysRevB. 100.094310.spa
dc.relation.referencesHanz Y Ramírez and Shun-Jen Cheng. Tunneling effects on fine-structure splitting in quantum-dot molecules. Physical Review Letters, 104(20):206402, 2010.spa
dc.relation.referencesJ.E. Ramírez-Muñoz, J.P. Restrepo Cuartas, and H. Vinck-Posada. Quantum correlations between two cavity qed systems coupled by a mechanical resonator. The European Physical Journal B, 91(11):268, 2018a. doi: 10.1140/epjb/e2018-90438-4.spa
dc.relation.referencesJ.E. Ramírez-Muñoz, J.P. Restrepo Cuartas, and H. Vinck-Posada. Indirect strong coupling regime between a quantum emitter and a cavity mediated by a mechanical resonator. Physics Letters A, 382(42):3109–3114, 2018b. doi: 10.1016/j.physleta. 2018.08.001.spa
dc.relation.referencesYago del Valle Inclan Redondo, Christian Schneider, Sebastian Klembt, Sven Höfling, Seigo Tarucha, and Michael D. Fraser. Optically driven rotation of excitonpolariton condensates. arXiv, 2022. doi: 10.48550/ARXIV.2209.01904.spa
dc.relation.referencesJ. P. Restrepo Cuartas and J. L. Sanz-Vicario. Information and entanglement measures applied to the analysis of complexity in doubly excited states of helium. Phys. Rev. A, 91(5):1–15, 2015.spa
dc.relation.referencesFabian Ripka, Harald Kübler, Robert Löw, and Tilman Pfau. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science, 362 (6413):446, 2018.spa
dc.relation.referencesHelmut Ritsch, Peter Domokos, Ferdinand Brennecke, and Tilman Esslinger. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 85:553, 2013.spa
dc.relation.referencesR. A. Robles Robles, S. A. Chilingaryan, B. M. Rodríguez-Lara, and Ray-Kuang Lee. Ground state in the finite dicke model for interacting qubits. Phys. Rev. A, 91:033819, Mar 2015.spa
dc.relation.referencesB. Rodríguez-Lara and Ray-Kuang Lee. Quantum phase transition of nonlinear light in the finite size dicke hamiltonian. Journal of the Optical Society of America B, 27, 05 2010.spa
dc.relation.referencesJS Rojas-Arias, BA Rodríguez, and H Vinck-Posada. Magnetic control of dipolaritons in quantum dots. Journal of Physics: Condensed Matter, 28(50):505302, 2016.spa
dc.relation.referencesArmand Rundquist, Michal Bajcsy, Arka Majumdar, Tomas Sarmiento, Kevin Fischer, Konstantinos G. Lagoudakis, Sonia Buckley, Alexander Y. Piggott, and Jelena Vučković. Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Phys. Rev. A, 90:023846, 2014.spa
dc.relation.referencesD. Sanvitto, A. Amo, F. P. Laussy, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña. Polariton condensates put in motion. Nanotechnology, 21:134025, 2010.spa
dc.relation.referencesDaniele Sanvitto and Stéphane Kéna-Cohen. The road towards polaritonic devices. Nature Materials, 15(10):1061, 2016.spa
dc.relation.referencesKazuki Sasaki, Naoya Suzuki, and Hiroki Saito. Bénard–von kármán vortex street in a bose-einstein condensate. Phys. Rev. Lett., 104:150404, Apr 2010. doi: 10. 1103/PhysRevLett.104.150404.spa
dc.relation.referencesP. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberspa
dc.relation.referencesMaximilian Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 76:1267, Feb 2005. doi: 10.1103/RevModPhys.76.1267.spa
dc.relation.referencesRoman Schmied and Philipp Treutlein. Tomographic reconstruction of the wigner function on the bloch sphere. New Journal of Physics, 13(6):065019, jun 2011.spa
dc.relation.referencesUlrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326(1):96, 2011. ISSN 0003-4916. doi: https: //doi.org/10.1016/j.aop.2010.09.012.spa
dc.relation.referencesMarlan O. Scully. Correlated spontaneous emission on the Volga. Laser Phys., 17 (5):635, 2007.spa
dc.relation.referencesP. Senellart and J. Bloch. Nonlinear emission of microcavity polaritons in the low density regime. Phys. Rev. Lett., 82:1233, 1999.spa
dc.relation.referencesChong Sheng, Yao Wang, Yijun Chang, Huiming Wang, Yongheng Lu, Yingyue Yang, Shining Zhu, Xianmin Jin, and Hui Liu. Bound vortex light in an emulated topological defect in photonic lattices. Light: Science & Applications, 11(1):243, 2022. doi: 10.1038/s41377-022-00931-4.spa
dc.relation.referencesY. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Leanhardt, M. Prentiss, D. E. Pritchard, and W. Ketterle. Dynamical instability of a doubly quantized vortex in a bose-einstein condensate. Phys. Rev. Lett., 93:160406, Oct 2004. doi: 10.1103/PhysRevLett.93.160406.spa
dc.relation.referencesKirill A. Sitnik, Sergey Alyatkin, Julian D. Töpfer, Ivan Gnusov, Tamsin Cookson, Helgi Sigurdsson, and Pavlos G. Lagoudakis. Spontaneous formation of timeperiodic vortex cluster in nonlinear fluids of light. Phys. Rev. Lett., 128:237402, Jun 2022. doi: 10.1103/PhysRevLett.128.237402.spa
dc.relation.referencesNiccolo Somaschi, Valérian Giesz, Lorenzo De Santis, JC Loredo, Marcelo P Almeida, Gaston Hornecker, Simone Luca Portalupi, Thomas Grange, Carlos Antón, Justin Demory, et al. Near-optimal single-photon sources in the solid state. Nature Photonics, 10(5):340, 2016.spa
dc.relation.referencesRoberto Stassi, Mauro Cirio, and Franco Nori. Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime. npj Quantum Information, 6(1):67, 2020.spa
dc.relation.referencesMartin J. Stevens, Scott Glancy, Sae Woo Nam, and Richard P. Mirin. Third-order antibunching from an imperfect single-photon source. Opt. Express, 22(3):3244– 3260, 2014.spa
dc.relation.referencesD. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez, and D. Ballarini. Entanglement properties of quantum polaritons. Phys. Rev. B, 93:205302, May 2016. doi: 10.1103/PhysRevB.93.205302.spa
dc.relation.referencesD. G. Suárez-Forero et al. Quantum hydrodynamics of a single particle. Light: Science & Applications, 9(1):85, dec 2020. ISSN 2047-7538. doi: 10.1038/s41377- 020-0324-x.spa
dc.relation.referencesR. T. Sutherland and F. Robicheaux. Coherent forward broadening in cold atom clouds. Phys. Rev. A, 93(2):023407, 2016.spa
dc.relation.referencesGerard ’t Hooft. Physics on the boundary between classical and quantum mechanics. Journal of Physics: Conference Series, 504(1):012003, apr 2014. doi: 10.1088/ 1742-6596/504/1/012003.spa
dc.relation.referencesGerard ’t Hooft. Models on the boundary between classical and quantum mechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2047):20140236, 2015. doi: 10.1098/rsta.2014.0236.spa
dc.relation.referencesA. Tabata, M. R. Martins, J. B. B. Oliveira, T. E. Lamas, C. A. Duarte, E. C. F. da Silva, and G. M. Gusev. Many-body effects in wide parabolic AlGaAs quantum wells. Journal of Applied Physics, 102(9):093715, 2007. doi: 10.1063/1.2809418.spa
dc.relation.referencesA Tabata, J B B Oliveira, E C F da Silva, T E Lamas, C A Duarte, and G M Gusev. Excitons in undoped AlGaAs/GaAs wide parabolic quantum wells. Journal of Physics: Conference Series, 210:012052, 2010. doi: 10.1088/1742-6596/210/1/ 012052.spa
dc.relation.referencesM. Tavis and F. W. Cummings. Exact solution for an n-molecule-radiation-field hamiltonian. Phys. Rev., 170:379, 1968.spa
dc.relation.referencesSi-Cong Tian, Ren-Gang Wan, Lian-He Li, Cun-Zhu Tong, and Yong-Qiang Ning. Cavity linewidth narrowing by tunneling induced double dark resonances in triple quantum dot molecules. Optics Communications, 334:94, 2015a.spa
dc.relation.referencesSi-Cong Tian, Ren-Gang Wan, En-Bo Xing, Jia-Min Rong, Hao Wu, Li-Jie Wang, Shi-Li Shu, Cun-Zhu Tong, and Yong-Qiang Ning. Tunneling induced transparency and giant kerr nonlinearity in multiple quantum dot molecules. Physica E: Lowdimensional Systems and Nanostructures, 69:349, 2015b.spa
dc.relation.referencesGiacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and Giuseppe Carleo. Neural-network quantum state tomography. Nature Physics, 14(5):447, 2018.spa
dc.relation.referencesG. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg. Sculpting oscillators with light within a nonlinear quantum fluid. Nat. Phys., 8:190, 2012.spa
dc.relation.referencesM. Tse, Haocun Yu, N. Kijbunchoo, and et al. Fernandez-Galiana. Quantumenhanced advanced ligo detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett., 123:231107, Dec 2019.spa
dc.relation.referencesOleksandr Tsyplyatyev and Daniel Loss. Classical and quantum regimes of the inhomogeneous dicke model and its ehrenfest time. Phys. Rev. B, 82:024305, Jul 2010.spa
dc.relation.referencesS. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler. Photon statistics of semiconductor microcavity lasers. Phys. Rev. Lett., 98:043906, 2007.spa
dc.relation.referencesS. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, and Y. Yamamoto. Observation of Bogoliubov excitations in exciton-polariton condensates. Nat. Phys., 4:700, 2008.spa
dc.relation.referencesHerbert Vinck-Posada, Boris A. Rodriguez, P. S. S. Guimaraes, Alejandro Cabo, and Augusto Gonzalez. Photon emission as a source of coherent behavior of polaritons. Phys. Rev. Lett., 98:167405, Apr 2007a.spa
dc.relation.referencesHerbert Vinck-Posada, Boris A. Rodriguez, P. S. S. Guimaraes, Alejandro Cabo, and Augusto Gonzalez. Photon emission as a source of coherent behavior of polaritons. Phys. Rev. Lett., 98:167405, 2007b. doi: 10.1103/PhysRevLett.98.167405.spa
dc.relation.referencesGrigory E. Volovik. The Universe in a Helium Droplet. Clarendon Press - Oxford, 2003.spa
dc.relation.referencesY. K. Wang and F. T. Hioe. Phase transition in the dicke model of superradiance. Phys. Rev. A, 7:831–836, Mar 1973. doi: 10.1103/PhysRevA.7.831.spa
dc.relation.referencesZhiping Wang, Shenglai Zhen, Xuqiang Wu, Jun Zhu, Zhigang Cao, and Benli Yu. Controllable optical bistability via tunneling induced transparency in quantum dot molecules. Optics Communications, 304:7–10, 2013.spa
dc.relation.referencesC. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69:3314, 1992.spa
dc.relation.referencesE. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749–759, Jun 1932.spa
dc.relation.referencesWilliam K Wootters. Entanglement of formation and concurrence. Quantum Information & Computation, 1(1):27, 2001.spa
dc.relation.referencesC. Wu, C. Guo, Y. Wang, G. Wang, X-L. Feng, and J-L. Chen. Generation of dicke states in the ultrastrong-coupling regime of circuit qed systems. Phys. Rev. A, 95: 013845, 2017.spa
dc.relation.referencesMakoto Yamaguchi, Kenji Kamide, Ryota Nii, Tetsuo Ogawa, and Yoshihisa Yamamoto. Second thresholds in BEC-BCS-laser crossover of exciton - polariton systems. Phys. Rev. Lett., 111:026404, Jul 2013.spa
dc.relation.referencesY Yamamoto and A Imamo¯glu. Mesoscopic Quantum Optics. Wiley, 1999.spa
dc.relation.referencesChunchao Yu, Lihui Sun, Huafeng Zhang, and Fang Chen. Controllable optical bistability in double quantum dot molecule. IET Optoelectronics, 12(4):215, 2018.spa
dc.relation.referencesH. J. Zhao, V. R. Misko, J. Tempere, and F. Nori. Pattern formation in vortex matter with pinning and frustrated intervortex interactions. Phys. Rev. B, 95: 104519, Mar 2017. doi: 10.1103/PhysRevB.95.104519.spa
dc.relation.referencesHengyun Zhou, Joonhee Choi, Soonwon Choi, Renate Landig, Alexander M. Douglas, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Paola Cappellaro, Helena S. Knowles, Hongkun Park, and Mikhail D. Lukin. Quantum metrology with strongly interacting spin systems. Phys. Rev. X, 10:031003, Jul 2020.spa
dc.relation.referencesJ H Zou, T Liu, M Feng, W L Yang, C Y Chen, and J Twamley. Quantum phase transition in a driven tavis–cummings model. New Journal of Physics, 15(12): 123032, dec 2013.spa
dc.relation.referencesW. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys., 75:715, 2003.spa
dc.relation.referencesWojciech H. Zurek. Decoherence and the Transition from Quantum to Classical. Physics Today, 44(10):36, 1991. ISSN 0031-9228. doi: 10.1063/1.881293.spa
dc.relation.referencesWojciech H. Zurek. Causality in condensates: Gray solitons as relics of bec formation. Phys. Rev. Lett., 102:105702, Mar 2009. doi: 10.1103/PhysRevLett.102.105702.spa
dc.relation.referencesMahmoud Abdel-Aty. Linear entropy of a driven central spin interacting with an antiferromagnetic environment. Natural Science, 6(07):532, 2014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembÓptica cuánticaspa
dc.subject.lembQuantum opticseng
dc.subject.lembMateriaspa
dc.subject.lembMattereng
dc.subject.proposalQuantum Opticseng
dc.subject.proposalCondensed Matter Physicseng
dc.subject.proposalQuantum Vortexeng
dc.subject.proposalQuantum Phase Transitionseng
dc.subject.proposalÓptica Cuánticaspa
dc.subject.proposalFísica de la Materia Condensadaspa
dc.subject.proposalVortices Cuánticosspa
dc.subject.proposalTransiciones de Fase Cuánticasspa
dc.titleImpact of light-matter coupling on correlations across the classical-quantum boundary in quantum electrodynamicseng
dc.title.translatedImpacto del acoplamiento luz-materia en las correlaciones a lo largo de la frontera clásico-cuántica en electrodinámica cuánticaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleMINCIENCIAS, BECA DE DOCTORADOS 785spa
oaire.fundernameMINCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
98607005.2023.pdf
Tamaño:
42.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: