Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente

dc.contributor.advisorNiño Vásquez, Luis Fernandospa
dc.contributor.advisorColonia, Carol Bibianaspa
dc.contributor.authorFlórez Becerra, Gustavospa
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisispa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.date.accessioned2024-04-22T22:26:28Z
dc.date.available2024-04-22T22:26:28Z
dc.date.issued2024-04-18
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl modelo matemático SVEIR (Susceptibles, Vacunados, Expuestos, Infectados, Recuperados) propuesto para representar el contagio de varicela en el contexto de la ciudad de Bogotá, incluye la utilización de una función periódica para representar el comportamiento estacional por semana epidemiológica, el cual fue identificado en los casos históricos de varicela individual reportados por el INS de Colombia entre los años 2007 y 2020. Como resultado de los análisis de sensibilidad y las simulaciones realizadas sobre el modelo matemático, se identificó que el parámetro de tasa de vacunación tiene un impacto negativo sobre el número básico de reproducción R0. Se realizó la implementación en ambiente computacional, de un controlador basado en lógica difusa que permita adaptar el valor de cada parámetro en relación con la desviación del comportamiento del modelo respecto a un comportamiento deseado en términos del número de individuos infectados. El sistema de inferencia difusa propuesto permitió identificar que una tasa adaptativa de vacunación cercana al 94 % durante la finalización de cada pico de inferior de contagio (semanas 16 y 38), logra un comportamiento inferior al valor de referencia definido. (Texto tomado de la fuente).spa
dc.description.abstractThe SVEIR mathematical model (Susceptible, Vaccinated, Exposed, Infected, Recovered) proposed to represent the spread of varicella (chickenpox) in the context of Bogota city, includes the use of a periodical function to represent the seasonal behavior by epidemiological week, which was identified in the historical cases of individual varicella reported by the INS of Colombia between 2007 and 2020. As a result of sensitivity analyses and simulations performed on the mathematical model, it was identified that the vaccination rate parameter has a negative impact on the basic reproductive number R0. We implemented in a computational environment, a controller based on fuzzy logic that allows us to adapt the value of each parameter in relation to the deviation of the behavior of the model, regarding a desired behavior in terms of the number of infected individuals. The proposed fuzzy inference system identified that an adaptive vaccination rate close to 94 % during the termination of each peak of lower contagion (weeks 16 y 38), achieves a behavior lower than the defined reference value.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación aplicadaspa
dc.format.extentxii, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85952
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.indexedBiremespa
dc.relation.referencesCoberturas de vacunación Bogotá, D.C. 2007-2021. https://saludata.saludcapital.gov.co/osb/wp-content/uploads/2023/01/Coberturas-de-Vacunacion.pdf. – Accessed: 2022-06-30spa
dc.relation.referencesPoblación de Bogotá D.C. y localidades 2005-2035. https://saludata.saludcapital.gov.co/osb/index.php/datos-desalud/ demografia/piramidepoblacional/. – Accessed: 2022-06-30spa
dc.relation.referencesTasa de mortalidad en menores de 5 años en Bogotá D.C. https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/demografia/tmninez/.– Accessed: 2022-06-30spa
dc.relation.referencesAbdul Kuddus, M. ; McBryde, E.S. ; Adekunle, A.I. ; White, L.J. ; Meehan, M.T.: Mathematical analysis of a two-strain disease model with amplification. En: Chaos, Solitons Fractals. 143 (2021)spa
dc.relation.referencesAbernethy, S. ; Gooding, R.J.: The importance of chaotic attractors in modelling tumour growth. En: Physica A: Statistical Mechanics and its Applications. 507 (2018)spa
dc.relation.referencesAminullah, E. ; Erman, E.: Policy innovation and emergence of innovative health technology: The system dynamics modelling of early COVID-19 handling in Indonesia. En: Agricultural Systems. 66 (2021)spa
dc.relation.referencesAnsah, J.P. ; Inn, R.L.H. ; Ahmad, S.: An evaluation of the impact of aggressive hypertension, diabetes and smoking cessation management on CVD outcomes at the population level: a dynamic simulation analysis. BMC Public Health. En: General 19 (2019)spa
dc.relation.referencesBarrero, L.A. ; Goult, E. ; Rodriguez, D. ; Hernandez, L.J. ; Kaufer, B. ; Kurth, T. ; Domenech de Cell`es, M.: Delineating the Seasonality of Varicella and Its Association With Climate in the Tropical Country of Colombia. En: J Infect Dis 15 (2023)spa
dc.relation.referencesBerhe, H.W. ; Makinde, O.D.: Computational modelling and optimal control of measles epidemic in human population. En: Biosystems. 190 (2020)spa
dc.relation.referencesBezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algoritms. New York: Plenum Press, 2021spa
dc.relation.referencesBrisson, M. ; Melkonyan, G. ; Drolet, M. ; De Serres, G. ; Thibeault, R. ; De Wals, P.: Modeling the impact of one- and two-dose varicella vaccination on the epidemiology of varicella and zoster. En: Vaccine. 28 (2010)spa
dc.relation.referencesCastellacci, F.: Co-evolutionary growth: A system dynamics model. En: Economic Modelling. 70 (2018)spa
dc.relation.referencesCastillo, O. ; Soria, J. ; Cortes-Antonio, P.: Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Poland : Springer International Publishing, 2021spa
dc.relation.referencesChen, K. ; Pun, C.S. ; Wong, H.Y.: Efficient social distancing during the COVID-19 pandemic: Integrating economic and public health considerations. En: European Journal of Operational Research. 25 (2021)spa
dc.relation.referencesDias, S. ; Queiroz, K. ; Araujo, A.: Controlling epidemic diseases based only on social distancing level: General case. En: General 25 (2021)spa
dc.relation.referencesDiekmann, O. ; Heesterbeek, J.A.P. ; Roberts, M.G.: The construction of nextgeneration matrices for compartmental epidemic models. En: J. R. Soc. Interface. 7 (2010), p. 873–885spa
dc.relation.referencesDonatelli, M. ; Magarey, R.D. ; Bregaglio, S. ; Willocquet, L. ; Whish, J.P.M. ; Savary, S.: Modelling the impacts of pests and diseases on agricultural systems. En: Agricultural Systems. 155 (2017)spa
dc.relation.referencesDunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. En: PLOS. 3 (1973), p. 32–57spa
dc.relation.referencesEl Hajji, M. ; Alshaikh, D.M. ; Almuallem, N.A.: Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination. En: Applications of Differential Equations to Mathematical Biology. 11 (2023)spa
dc.relation.referencesFathabadi, H.: On Stability Analysis of Nonlinear Systems. En: General 25 (2021)spa
dc.relation.referencesGao, Z. ; Gidding, HF. ; Wood, J.G. ; MacIntyre, C.R.: Modelling the impact of one-dose vs. two-dose vaccination regimens on the epidemiology of varicella zoster virus in Australia. En: Vaccine. 138 (2010)spa
dc.relation.referencesGershon, A. ; Breuer, J. ; Cohen, J. ; Cohrs, R.J. ; Gershon, M.D. ; Gilden, D. ; Grose, C. ; Hambleton, S. ; Kennedy, P.G.E. ; Oxman, M.N. ; Seward, J.F. ; Yamanishi, K.: Varicella zoster virus infection. En: Nat Rev Dis Primers. 15016 (2015)spa
dc.relation.referencesGillis, M. ; Urban, R. ; Saif, A. ; Kamal, N. ; Murphy, M.: A simulation-optimization framework for optimizing response strategies to epidemics. En: Operations Research Perspectives. 25 (2021)spa
dc.relation.referencesGuo, Y. ; Li, T.: Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in China. En: Appl Math Comput. (2021)spa
dc.relation.referencesHariharan, S. ; Shangerganesh, L. ; Debbouche, A. ; Antonov, V.: Stability analysis of spatiotemporal reaction-diffusion mathematical model incorporating the varicella virus transmission. En: The European Physical Journal Plus 138 (2023)spa
dc.relation.referencesHeininger, U ; Seward, J.F.: Varicella. En: The Lancet. 368 (2006), p. 1365–1376spa
dc.relation.referencesHekimoglu, M.: Sensitivity Analysis of System Dynamics Models By Behavior Pattern Measures. En: General (2015)spa
dc.relation.referencesHernández-Mejía, G. ; Alanis, A.Y. ; Hernández-Vargas, E.A.: Neural inverse optimal control for discrete-time impulsive systems. En: Neurocomputing. 314 (2018)spa
dc.relation.referencesJia, S. ; Liu, X. ; Yan, G.: Environmental, economic and health cobenefits of the combination strategy for alleviating traffic and emission pressure. En: Energy Reports. 6 (2020)spa
dc.relation.referencesKarsai, J. ; Csuma-Kovács, R. ; Dánielisz, et a.: Modeling the transmission dynamics of varicella in Hungary. En: J.Math.Industry 10 (2020)spa
dc.relation.referencesKermack, F. ; McKendrick, D.: A contribution to the mathematical theory of epidemics. En: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 115 (1927), p. 700–721spa
dc.relation.referencesKhajanchi, S. ; Sarkar, K. ; Sooppy, Nisar ; S.F., Abdelwahab: Mathematical modeling of the COVID-19 pandemic with intervention strategies. En: Results in Physics 25 (2012)spa
dc.relation.referencesKhajji, B. ; Kouidere, A. ; Elhia, M. ; Balatif, O. ; Rachik, M.: Fractional optimal control problem for an age-structured model of COVID-19 transmission. En: Chaos, Solitons Fractals. 143 (2021)spa
dc.relation.referencesKretzschmar, M.: Disease modeling for public health: added value, challenges, and institutional constraints. En: J Public Health. 41 (2020), p. 39–51spa
dc.relation.referencesKuniya, T. ; Siegenfeld, A.F. ; Kollepara, P.K. ; Bar-Yam, Y.: Modeling Complex Systems: A Case Study of Compartmental Models in Epidemiology. En: Complexity. 2022 (2022)spa
dc.relation.referencesMarangi, L. ; Mirinaviciute, G. ; Flem, E. ; Scalia Tomba, G. ; Guzzetta, G. ; Freiesleben de Blasio, B. ; Manfredi, P.: The natural history of varicella zoster virus infection in Norway: Further insights on exogenous boosting and progressive immunity to herpes zoster. En: PLOS. 12 (2017)spa
dc.relation.referencesMat Daud, A.A. ; Toh, C.Q. ; Saidun, S.: Mathematical modeling and analysis of anemia during pregnancy and postpartum. En: General 140 (2021), p. 87–95spa
dc.relation.referencesMeng, W.U. ; Shengxi, L.: Optimal fuzzy control of SIR epidemic with state dependent cost function. En: 2017 International Conference on Fuzzy Theory and Its Applications (iFUZZY), 2017, p. 1–6spa
dc.relation.referencesMichael, E. ; Madon, S.: Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control. En: Infect Dis Poverty 6 (2017)spa
dc.relation.referencesMohallem Paiva, H. ; Magalhães Afonso, R.J. ; Scarpelli de Lima Alvarenga Caldeira, F.M. ; De Andrade Velasquez, E.: A computational tool for trend analysis and forecast of the COVID-19 pandemic. En: Applied Soft Computing. (2021)spa
dc.relation.referencesNgoteya, F.N. ; Nkansah-Gyekye, Y.: Sensitivity Analysis of Parameters in a Competition Model. En: Complexity. 4 (2015), p. 363–368spa
dc.relation.referencesPaul, S. ; Venkateswaran, J.: Designing robust policies under deep uncertainty for mitigating epidemics. En: Computers Industrial Engineering. 140 (2020)spa
dc.relation.referencesPéni, T. ; Csutak, B. ; Szederkényi, G.: Nonlinear model predictive control with logic constraints for COVID-19 management. En: Nonlinear Dyn. 102 (2020), p. 1965–1986spa
dc.relation.referencesDe Salud y Protección Social, Ministerio. Sistema Integrado de Información de la Protección Social. 2022spa
dc.relation.referencesReluga, T.C. ; Smith, R.A. ; Hughes, D.P.: Dynamic and game theory of infectious disease stigmas. En: Journal of Theoretical Biology. 476 (2019)spa
dc.relation.referencesShirazi, H. ; Kia, R. ; Ghasemi, P.: A stochastic bi-objective simulation optimization model for plasma supply chain in case of COVID-19 outbreak. En: Applied Soft Computing. 112 (2021)spa
dc.relation.referencesSiddique, N.: Intelligent Control A Hybrid Approach Based On Fuzzy Logic, Neural Networks and Genetic Algorithms. Poland : Springer International Publishing Switzerland, 2014spa
dc.relation.referencesTakagi, T. ; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. En: IEEE Trans Syst Man Cybern. 15 (1985), p. 116–132spa
dc.relation.referencesTang, X. ; Zhao, S. ; Chiu, A.P.Y. ; Ma, H. ; Xie, X. ; Mei, S. ; Kong, D. ; Qin, Y. ; Chen, Z. ; Wang, X. ; He, D.: Modelling the transmission and control strategies of varicella among school children in Shenzhen, China. En: PLOS. 12 (2017)spa
dc.relation.referencesToro-Zapata, H. D. ; Mesa-Mazo, M. J. ; Prieto-Medellín, D.A.: Modelo de simulación para la transmisión del VIH y estrategias de control basadas en diagnóstico. En: Revista de Salud Pública. 16 (2014), p. 139–152spa
dc.relation.referencesZadeh, L.A.: Fuzzy Sets. En: Information Control. 8 (1965), p. 338–353spa
dc.relation.referencesZadeh, L.A.: Fuzzy algorithms. En: Information Control. 12 (1968), p. 94–102spa
dc.relation.referencesZha, W. ; Pang, F. ; Zhou, N. ; Wu, B. ; Liu, Y. ; Du, Y. ; Hong, X ; Lv, Y.: Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: Based on an SEIR dynamic model. En: Epidemiology Infection. 148 (2020)spa
dc.relation.referencesZhang, F. ; Liu, X. ; Zhang, J. ; Wu, R. ; Ma, Q. ; Chen, Y.: Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China. En: Ecological Modelling. 349 (2017)spa
dc.relation.referencesZhang, L. ; Ullah, S. ; Al Alwan, B. ; Alshehri, A. ; Sumelka, W.: Mathematical assessment of constant and time-dependent control measures on the dynamics of the novel coronavirus: An application of optimal control theory. En: Results in Physics 25 (2021)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsVaricela/epidemiologíaspa
dc.subject.decsChickenpox/epidemiologyeng
dc.subject.decsEstudios Poblacionales en Salud Públicaspa
dc.subject.decsPopulation Studies in Public Healtheng
dc.subject.proposalModelos matemáticos en epidemiologíaspa
dc.subject.proposalVaricelaspa
dc.subject.proposalEstrategias de intervenciónspa
dc.subject.proposalControl inteligentespa
dc.subject.proposalMathematical models in epidemiologyeng
dc.subject.proposalVaricellaeng
dc.subject.proposalChickenpoxeng
dc.subject.proposalIntervention strategieseng
dc.subject.proposalIntelligent controleng
dc.subject.unescoModelo matemáticospa
dc.subject.unescoMathematical modelseng
dc.titleModelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligentespa
dc.title.translatedSimulation model of chickenpox infection behavior in the city of Bogota based on dynamic systems and intelligent controleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80108311.2024.pdf
Tamaño:
3.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: