Diseño de un sistema que determine regiones de agarre de objetos cilíndricos en un entorno semi-estructurado basado en visión

dc.contributor.advisorCárdenas Herrera, Pedro Fabiánspa
dc.contributor.advisorGrisales Palacio, Victor Hugospa
dc.contributor.authorOchoa Morón, Daniel Franciscospa
dc.contributor.cvlacOchoa Morón, Daniel [1eHzLpAAAAAJ]spa
dc.contributor.orcidOchoa Morón, Daniel [0000-0003-1042-4379]spa
dc.date.accessioned2024-07-18T14:28:59Z
dc.date.available2024-07-18T14:28:59Z
dc.date.issued2024-01-31
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa presente tesis de maestría se focaliza en el desarrollo de un sistema destinado a determinar las regiones de agarre de objetos cilíndricos, específicamente botellas plásticas, en un entorno semi-estructurado utilizando visión por computadora. A pesar de la diversidad de formas, tamaños y colores que presentan las botellas, se asume un tamaño promedio de 500 ml para la investigación. El proyecto tiene como objetivo abordar desafíos en la manipulación robótica y la automatización, especialmente en aplicaciones industriales. Se inicia con la creación de un banco de imágenes que sirve como base para un sistema de procesamiento de imágenes, el cual, junto con herramientas de inteligencia artificial, permite entrenar una red neuronal específica para la tarea de agarre. La presente investigación profundiza en los métodos y tecnologías utilizados en la planificación de agarre y la manipulación robótica, destacando el uso de técnicas de aprendizaje profundo. El documento se encuentra organizado en capítulos que abarcan el contexto de la investigación, la motivación, el trabajo relacionado, los objetivos específicos y el desarrollo del sistema para la generación automática de regiones de agarre basadas en visión por computadora y aprendizaje automático. En el marco del desarrollo de la presente investigación, se centró en el análisis físico de un número determinado de objetos dispuestos en escena y las características físicas y funcionales de un gripper de dos dedos empleado para ejecutar una tarea de agarre específica. A partir de un sistema de percepción visual bidimensional ajustado y la extracción de características geométricas de los objetos, se diseñó e implementó un sistema algorítmico capaz de establecer regiones de agarre a lo largo de los objetos empleados. Posteriormente, se estableció un número de parámetros de evaluación heurísticos con el objetivo de determinar la viabilidad de cada una de las regiones encontradas sobre cada objeto en relación con su espacio circundante. (Texto tomado de la fuente).spa
dc.description.abstractThis master's thesis focuses on the development of a system aimed at determining the grasping regions of cylindrical objects, specifically plastic bottles, in a semi-structured environment using computer vision. Despite the diversity of shapes, sizes, and colors that bottles present, an average size of 500 ml is assumed for the research. The project aims to address challenges in robotic manipulation and automation, especially in industrial applications. It begins with the creation of an image bank that serves as the basis for an image processing system, which, along with artificial intelligence tools, allows the training of a specific neural network for the grasping task. This research delves into the methods and technologies used in grasp planning and robotic manipulation, highlighting the use of deep learning techniques. The document is organized into chapters that cover the context of the research, the motivation, related work, specific objectives, and the development of the system for the automatic generation of grasping regions based on computer vision and machine learning. In the framework of the development of this research, the focus was on the physical analysis of a determined number of objects arranged in the scene and the physical and functional characteristics of a two-finger gripper used to perform a specific grasping task. Based on an adjusted two-dimensional visual perception system and the extraction of geometric characteristics of the objects, an algorithmic system was designed and implemented to establish grasping regions along the employed objects. Subsequently, a number of heuristic evaluation parameters were established to determine the feasibility of each of the regions found on each object in relation to its surrounding space.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaRobótica industrial y graspingspa
dc.format.extentviii, 89 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86555
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAdarsh, Pranav ; Rathi, Pratibha ; Kumar, Manoj: YOLO v3-Tiny: Object Detection and Recognition using one stage improved model. En: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (2020), 3, p. 687–694. ISBN 9781728151977spa
dc.relation.referencesAmend, John R. ; Brown, Eric ; Rodenberg, Nicholas ; Jaeger, Heinrich M. ; Lipson, Hod: A positive pressure universal gripper based on the jamming of granular material. En: IEEE Transactions on Robotics 28 (2012), 4, Nr. 2, p. 341–350. – ISSN 15523098spa
dc.relation.referencesBarequet, Gill ; Wolfers, Barbara: Optimizing a strip separating two polygons. En: Graphical Models and Image Processing 60 (1998), Nr. 3, p. 214–221. – ISSN 10773169spa
dc.relation.referencesBhattacharya, Binay ; Toussaint, Godfried: Computing shortest transversals. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 510 LNCS (1991), p. 649–660. – ISBN 9783540542339spa
dc.relation.referencesBhattacharya, Binay K. ; Toussaint, Godfried T.: Efficient algorithms for computing the maximum distance between two finite planar sets. En: Journal of Algorithms 4 (1983), 6, Nr. 2, p. 121–136. – ISSN 0196–6774spa
dc.relation.referencesBohg, J ; Morales, A ; Asfour, T: Data-driven grasp synthesis—a survey. En: IEEE Transactions on robotics 30 (2014), p. 289–309spa
dc.relation.referencesCebollada, S ; Payá L ; Flores, M ; . . . , A Peidró Expert Systems w. ; 2021, undefined: A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data. En: Expert Systems with Applications 167spa
dc.relation.referencesDai, Jifeng ; He, Kaiming ; Sun, Jian: Convolutional feature masking for joint object and stuff segmentation. En: Computer Vision and Pattern Recognition 07-12-June-2015 (2014), 10, p. 3992–4000. – ISBN 9781467369640spa
dc.relation.referencesDeimel, Raphael ; Brock, Oliver: A novel type of compliant and underactuated robotic hand for dexterous grasping. En: https://doi.org/10.1177/0278364915592961 35 (2015), 8, Nr. 1-3, p. 161–185. – ISSN 17413176spa
dc.relation.referencesDeng, Z ; Zheng, X ; Zhang, L ; Zhang, J: A learning framework for semantic reach-to-grasp tasks integrating machine learning and optimization. En: Robotics and Autonomous Systems 108 (2018), p. 140–152spa
dc.relation.referencesDetry, Renaud ; Ek, Carl H. ; Madry, Marianna ; Piater, Justus ; Kragic, Danica: Generalizing grasps across partly similar objects. En: 2012 IEEE International Conference on Robotics and Automation, IEEE, 5 2012. – ISBN 978–1–4673–1405–3, p. 3791–3797spa
dc.relation.referencesDomae, Yukiyasu ; Okuda, Haruhisa ; Taguchi, Yuichi ; Sumi, Kazuhiko ; Hirai, Takashi: Fast graspability evaluation on single depth maps for bin picking with general grippers. En: 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 5 2014. – ISBN 978–1–4799–3685–4, p. 1997–2004spa
dc.relation.referencesEberly, David: Minimum-Area Rectangle Containing a Set of Points. En: Geometric Tools, LLC (2015)spa
dc.relation.referencesEizicovits, D ; Berman, S: Automatic graspability map generation based on shape-primitives for unknown and familiar objects. En: Robotics and Autonomous Systems (2018)spa
dc.relation.referencesErhan, Dumitru ; Szegedy, Christian ; Toshev, Alexander ; Anguelov, Dragomir: Scalable Object Detection using Deep Neural Networks. En: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2013), 12, p. 2155–2162. – ISBN 9781479951178spa
dc.relation.referencesFarabet, Clement ; Couprie, Camille ; Najman, Laurent ; Lecun, Yann: Learning hierarchical features for scene labeling. En: IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013), Nr. 8, p. 1915–1929. – ISSN 01628828spa
dc.relation.referencesFogel, I ; Sagi, D: Biological Cybernetics Gabor Filters as Texture Discriminator. En: Biol. Cybern 61 (1989), p. 113spa
dc.relation.referencesGirshick, Ross ; Donahue, Jeff ; Darrell, Trevor ; Malik, Jitendra: Region-based Convolutional Networks for Accurate Object Detection and Segmentation. En: IEEE transactions on pattern analysis and machine intelligence 38 (2015), p. 142–158spa
dc.relation.referencesGoldfeder, C ; Ciocarlie, M ; Dang, H ; Allen, PK: The columbia grasp database. En: IEEE international conference on robotics and automation (2009), p. 1710–1716spa
dc.relation.referencesGouda, Anas ; Ghanem, Abraham ; Kaiser, Pascal ; Hompel, Michael T.: Object class-agnostic segmentation for practical CNN utilization in industry. En: 2021 6th International Conference on Mechanical Engineering and Robotics Research, ICMERR 2021 (2021), p. 97–105. ISBN 9781665406420spa
dc.relation.referencesGouda, Anas ; Roidl, Moritz: DoUnseen: Tuning-Free Class-Adaptive Object Detection of Unseen Objects for Robotic Grasping. En: arXiv preprint arXiv:2404.06277 (2023)spa
dc.relation.referencesHoule, Michael E. ; Toussaint, Godfried T.: Computing the Width of a Set. En: IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (1988), Nr. 5, p. 761–765. – ISSN 01628828spa
dc.relation.referencesHu, Xiao d. ; Wang, Xin q. ; Meng, Fan j. ; Hua, Xia ; Yan, Yu j. ; Li, Yu y. ; Huang, Jing ; Jiang, Xun l.: Gabor-CNN for object detection based on small samples. En: Defence Technology 16 (2020), 12, Nr. 6, p. 1116–1129. – ISSN 22149147spa
dc.relation.referencesHu, Zhongxu ; Tan, Runjia ; Zhou, Yanxin ; Woon, Junyang ; Lv, Chen: Template-Based Category-Agnostic Instance Detection for Robotic Manipulation. En: IEEE Robotics and Automation Letters 7 (2022), 10, Nr. 4, p. 12451–12458. – ISSN 23773766spa
dc.relation.referencesHughes, Josie ; Culha, Utku ; Giardina, Fabio ; Guenther, Fabian ; Rosendo, Andre; Iida, Fumiya: Soft manipulators and grippers: A review. En: Frontiers Robotics AI 3 (2016), 11, Nr. NOV, p. 223168. – ISSN 22969144spa
dc.relation.referencesIto, Seiji ; Yoshioka, Michifumi ; Omatu, Sigeru ; Kita, Kouji ; Kugo, Kouichi: An image segmentation method using histograms and the human characteristics of HSI color space for a scene image. En: Artificial Life and Robotics 2006 10:1 10 (2006), 7, Nr. 1, p. 6–10. – ISSN 1614–7456spa
dc.relation.referencesKasper, Alexander ; Xue, Zhixing ; Dillmann, R ̈udiger: The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics. En: The International Journal of Robotics Research 31 (2012), 7, Nr. 8, p. 927–934. – ISSN 0278–3649spa
dc.relation.referencesKumra, Sulabh ; Kanan, Christopher: Robotic grasp detection using deep convolutional neural networks. En: IEEE International Conference on Intelligent Robots and Systems 2017 (2017), 12, p. 769 – 776. – ISBN 9781538626825spa
dc.relation.referencesLenz, Ian ; Lee, Honglak ; Saxena, Ashutosh: Deep learning for detecting robotic grasps. En: The International Journal of Robotics Research 34 (2015), 4, Nr. 4-5, p. 705–724. – ISSN 0278–3649spa
dc.relation.referencesLi, Miao ; Hang, Kaiyu ; Kragic, Danica ; Billard, Aude: Dexterous grasping under shape uncertainty. En: Robotics and Autonomous Systems 75 (2016), 1, p. 352–364. – ISSN 0921–8890spa
dc.relation.referencesLiao, Ping-Sung ; Chen, Tse-Sheng ; Chung, Pau-Choo: A Fast Algorithm for Multilevel Thresholding. En: JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 17 (2001), p. 713–727spa
dc.relation.referencesLiu, Chunfang ; Sun, Fuchun ; Ban, Xiaojuan: An effective method for grasp planning on objects with complex geometry combining human experience and analytical approach. En: Science China Information Sciences 59 (2016), 11, Nr. 11, p. 112212. – ISSN 1674–733Xspa
dc.relation.referencesLozano-P ́erez, Tom ́as: Spatial Planning: A Configuration Space Approach. En: IEEE Transactions on Computers C-32 (1983), Nr. 2, p. 108–120. – ISSN 00189340spa
dc.relation.referencesMcGlone, J. C. ; Mikhail, Edward M. ; Bethel, James S. Manual of Photogrammetry, 5th Edition - Dialnet. 1 2004spa
dc.relation.referencesMebatsion, H.K. ; Paliwal, J.: Machine vision based automatic separation of touching convex shaped objects. En: Computers in Industry 63 (2012), 9, Nr. 7, p. 723–730. – ISSN 0166–3615spa
dc.relation.referencesMercier, Jean P. ; Garon, Mathieu ; Giguere, Philippe ; Lalonde, Jean F.: Deep Template-based Object Instance Detection. En: Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 (2019), 11, p. 1506–1515. ISBN 9780738142661spa
dc.relation.referencesMizushima, Kaori ; Oku, Takumi ; Suzuki, Yosuke ; Tsuji, Tokuo ; Watanabe, Tetsuyou: Multi-fingered robotic hand based on hybrid mechanism of tendon-driven and jamming transition. En: 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018 (2018), 7, p. 376–381. ISBN 9781538645161spa
dc.relation.referencesOtsu, Nobuyuki: THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. En: IEEE Trans Syst Man Cybern SMC-9 (1979), Nr. 1, p. 62–66. – ISSN 00189472spa
dc.relation.referencesPark, Kiru ; Patten, Timothy ; Prankl, Johann ; Vincze, Markus: Multi-task template matching for object detection, segmentation and pose estimation using depth images. En: Proceedings - IEEE International Conference on Robotics and Automation 2019-May (2019), 5, p. 7207–7213. – ISBN 9781538660263spa
dc.relation.referencesPatil, Rajesh V. ; Reddy, Y. P.: An Autonomous Technique for Multi Class Weld Imperfections Detection and Classification by Support Vector Machine. En: Journal of Nondestructive Evaluation 40 (2021), 9, Nr. 3. – ISSN 15734862spa
dc.relation.referencesPfeifer, Rolf ; Lungarella, Max ; Iida, Fumiya: The challenges ahead for bio-inspired ’soft’ robotics. En: Communications of the ACM 55 (2012), 11, Nr. 11, p. 76–87. – ISSN 00010782spa
dc.relation.referencesPirzadeh, Hormoz. ; Toussaint, Godfried T.: Computational geometry with the rotating calipers, McGill University, Tesis de Grado, 1999spa
dc.relation.referencesPrattichizzo, Domenico ; Malvezzi, Monica ; Gabiccini, Marco ; Bicchi, Antonio: On the manipulability ellipsoids of underactuated robotic hands with compliance. En: Robotics and Autonomous Systems 60 (2012), 3, Nr. 3, p. 337–346. – ISSN 0921–8890spa
dc.relation.referencesRamli, S ; Mustafa, M M. ; Wahab, D A. ; Hussain, A: Plastic bottle shape classification using partial erosion-based approach. En: 2010 6th International Colloquium on Signal Processing & its Applications, IEEE, 5 2010. – ISBN 978–1–4244–7121–8, p. 1–4spa
dc.relation.referencesRedmon, Joseph ; Angelova, Anelia: Real-time grasp detection using convolutional neural networks. En: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 5 2015. – ISBN 978–1–4799–6923–4, p. 1316–1322spa
dc.relation.referencesRedmon, Joseph ; Farhadi, Ali: YOLO9000: Better, Faster, Stronger. En: Computer Vision and Pattern Recognition 2017-January (2016), 11, p. 6517–6525. ISBN 9781538604571spa
dc.relation.referencesRich, Steven I. ; Wood, Robert J. ; Majidi, Carmel: Untethered soft robotics. En: Nature Electronics 2018 1:2 1 (2018), 2, Nr. 2, p. 102–112. – ISSN 2520–1131spa
dc.relation.referencesRoa, Máximo A. ; Suárez, Raúl: Grasp quality measures: review and performance. En: Autonomous Robots 38 (2015), 1, Nr. 1, p. 65–88. – ISSN 0929–5593spa
dc.relation.referencesRobert, Jean M. ; Toussaint, Godfried T.: Linear approximation of simple objects. En: Computational Geometry: Theory and Applications 4 (1994), Nr. 1, p. 27–52. – ISSN 0925–7721spa
dc.relation.referencesSahbani, A ; El-Khoury, S ; Bidaud, P: An overview of 3D object grasp synthesis algorithms. En: Robotics and Autonomous Systems 60 (2012)spa
dc.relation.referencesSankur, Bulent: Survey over image thresholding techniques and quantitative performance evaluation. En: Journal of Electronic Imaging 13 (2004), 1, Nr. 1, p. 146. – ISSN 1017–9909spa
dc.relation.referencesSaxena, A ; Driemeyer, J ; Ng, AY: Robotic grasping of novel objects using vision. En: The International Journal of Robotics Research 2 (2008), p. 157–163spa
dc.relation.referencesScavino, Edgar ; Wahab, Dzuraidah A. ; Hussain, Aini ; Basri, Hassan ; Mustafa, Mohd M.: Application of automated image analysis to the identification and extraction of recyclable plastic bottles. En: Journal of Zhejiang University-SCIENCE A 10 (2009), 6, Nr. 6, p. 794–799. – ISSN 1673–565Xspa
dc.relation.referencesSui, Dongbao ; Zhu, Yanhe ; Zhao, Sikai ; Wang, Tianshuo ; Agrawal, Sunil K. ; Zhang, He ; Zhao, Jie: A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping. En: Soft Robotics 9 (2022), 2, Nr. 1, p. 36–56. – ISSN 21695180spa
dc.relation.referencesTochon, G: Compression of color images.spa
dc.relation.referencesToussaint, Godfried T. ; Toussaint, Godfried T.: A Simple Linear Algorithm for Intersecting Convex Polygons. En: THE VISUAL COMPUTER 1 (1985), p. 118–123spa
dc.relation.referencesVahrenkamp, N ; Westkamp, L: Part-based grasp planning for familiar objects. En: 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids) (2016), p. 919–925spa
dc.relation.referencesWang, Yong ; Liu, Zhi ; Zhang, Yun: Image based adaptive coordinated control for cooperative manipulators. En: 2016 Chinese Control and Decision Conference (CCDC), IEEE, 5 2016. – ISBN 978–1–4673–9714–8, p. 5383–5388spa
dc.relation.referencesWang, Zhaokun ; Peng, Binbin ; Huang, Yanjun ; Sun, Guanqun: Classification for plastic bottles recycling based on image recognition. En: Waste Management 88 (2019), 4, p. 170–181. – ISSN 0956–053Xspa
dc.relation.referencesZhao, Gang ; Zou, Shuilong ; Wu, Huijie: Improved Algorithm for Face Mask Detection Based on YOLO-v4. En: International Journal of Computational Intelligence Systems 16 (2023), Nr. 3, p. 104. ISBN 0123456789spa
dc.relation.referencesZhu, Jie ; Yu, Jian ; Wang, Chaomurilige ; Li, Fan-Zhang: Object recognition via contextual color attention. En: Journal of Visual Communication and Image Representation 27 (2015), 2, p. 44–56. – ISSN 10473203spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalAgarrespa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalManipuladorspa
dc.subject.proposalVisión de máquinaspa
dc.subject.proposalGraspingeng
dc.subject.proposalDeep learningeng
dc.subject.proposalManipulatoreng
dc.subject.proposalMachine visioneng
dc.subject.unescoInteligencia artificialspa
dc.subject.unescoArtificial intelligenceeng
dc.subject.unescoPropiedad físicaspa
dc.subject.unescoPhysical propertieseng
dc.subject.wikidatavisión artificialspa
dc.subject.wikidatacomputer visioneng
dc.titleDiseño de un sistema que determine regiones de agarre de objetos cilíndricos en un entorno semi-estructurado basado en visiónspa
dc.title.translatedDesign of a system that determines grasping regions of cylindrical objects in a semi-structured vision-based environmenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1065604452.2024.pdf
Tamaño:
48.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: