Comportamiento bajo carga cíclica de muros de madera plástica reciclada ensamblados mediante conexiones metálicas pernadas
| dc.contributor.advisor | Bedoya Ruiz, Daniel Alveiro | |
| dc.contributor.advisor | Herrera Castaño, Juan Pablo | |
| dc.contributor.author | Jiménez Cerón, Karen Tatiana | |
| dc.contributor.cvlac | Jiménez Cerón, Karen Tatiana [1010102802] | |
| dc.contributor.researchgroup | Ingeniería Sísmica y Sismología | |
| dc.date.accessioned | 2026-01-22T16:46:29Z | |
| dc.date.available | 2026-01-22T16:46:29Z | |
| dc.date.issued | 2025 | |
| dc.description | fotografías, graficas, tablas | spa |
| dc.description.abstract | En los últimos años, los esfuerzos de investigación en la ingeniería estructural han estado orientados hacia prácticas más sostenibles, en línea con la protección del medio ambiente, la economía circular, la reutilización de los residuos agroindustriales y los Objetivos de Desarrollo Sostenible (ODS). En este contexto, el presente estudio muestra el comportamiento bajo cargas cíclicas de tres sistemas de muros fabricados con madera plástica reciclada (RPL, por sus siglas en inglés Recycled Plastic Lumber). Dos de los muros, denominados Muro Inicial (MI) y Muro Chevron (MC), fueron ensamblados sin conexiones metálicas pernadas, mientras que el tercero (MCP) incorporó este tipo de conexiones. En cada uno se evaluaron parámetros como la resistencia, comportamiento histerético, ductilidad, capacidad de disipación de energía, amortiguamiento viscoso equivalente y estados límite de daño. Los tres sistemas mostraron una alta capacidad de deformación, alcanzando derivas de hasta el 7 % en el estado límite de daño severo, siendo el MCP el que presenta el mejor desempeño sísmico con una deriva del 2 % en el estado límite de daño leve. Estos resultados indican que el uso de conexiones metálicas pernadas en este tipo de sistemas estructurales mejora su capacidad frente a cargas laterales, lo que lo posiciona como una alternativa más confiable para la construcción en viviendas de uno y dos pisos. La campaña experimental fue desarrollada en el Laboratorio de Estructuras de la Universidad Nacional de Colombia, Sede Manizales (Texto tomado de la fuente). | spa |
| dc.description.abstract | In recent years, research efforts in structural engineering have been directed toward more sustainable practices, in alignment with environmental protection, circular economy principles, the reuse of agro-industrial waste, and Sustainable Development Goals (SDGs). Within this context, the present study presents the cyclic behavior of three full-scale wall systems constructed from recycled plastic lumber (RPL). Two of the walls, referred to as the Initial Wall (MI) and the Chevron Wall (MC) were assembled without bolted steel plate joints, whereas the third system (MCP) incorporated such connections into its structural configuration. For each system, parameters were evaluated, including strength, hysteretic behavior, ductility, energy dissipation capacity, equivalent viscous damping, and damage limit states. A large deformation capacity was shown by the three systems, with story drifts of up to 7 % being reached at the severe damage limit state, with the MCP system being the one that presents the best seismic performance, with a 2 % drift at the light damage limit state. These results indicate that the use of bolted steel plate joints in this type of structural system improves its capacity under lateral loads, positioning it as a more reliable alternative for construction in one- and two-story housing. The experimental campaign was carried out at the Structural Laboratory of the National University of Colombia, Manizales campus. | eng |
| dc.description.curriculararea | Ingeniería Civil.Sede Manizales | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ingeniería - Estructuras | |
| dc.description.researcharea | Comportamiento sísmico de sistemas estructurales | |
| dc.format.extent | xi, 70 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89298 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | |
| dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | |
| dc.publisher.place | Manizales, Colombia | |
| dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras | |
| dc.relation.references | Adhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composites Part B: Engineering, 39(5), 807–815. https://doi.org/10.1016/J.COMPOSITESB.2007.10.005 | |
| dc.relation.references | ASTM D6108-13. (2013). Standard Test Method for Compressive Properties of Plastic Lumber and Shapes. Technical report, ASTM International. | |
| dc.relation.references | ASTM D6109-13. (2013). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastic Lumber and Related Products. | |
| dc.relation.references | ASTM D6111-13a. (2013). Standard Test Method for Bulk Density And Specific Gravity of Plastic Lumber and Shapes by Displacement. | |
| dc.relation.references | ASTM D6112-13. (2013). Standard Test Methods for Compressive and Flexural Creep and CreepRupture of Plastic Lumber and Shapes | |
| dc.relation.references | ASTM D6117-16. (2016). Standard Test Methods for Mechanical Fasteners in Plastic Lumber and Shapes. | |
| dc.relation.references | ASTM Standard E2126-11. (2011). Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings. Tech. Rep. | |
| dc.relation.references | Bay, C. O., & Palazzo, G. (2019). Amortiguamiento Viscoso Equivalente en el Diseño Basado en Desplazamientos. Revista Tecnología y Ciencia, 36, 115–129. https://doi.org/10.33414/rtyc.36.115-129.2019 | |
| dc.relation.references | Bora, M. P., Goswami, K., & Jain, A. (2022). REDUCTION OF GROUNDWATER CONTAMINATION BY CONVERTING PLASTIC WASTE TO PLASTIC LUMBER. https://www.researchgate.net/publication/360874193 | |
| dc.relation.references | Breslin, V. T., Senturk, U., & Berndt, C. C. (1998). Long-term engineering properties of recycled plastic lumber used in pier construction. Resources, Conservation and Recycling, 23(4), 243– 258. https://doi.org/10.1016/S0921-3449(98)00024-X | |
| dc.relation.references | Carroll, D. R., Stone, R. B., Sirignano, A. M., Saindon, R. M., Gose, S. C., & Friedman, M. A. (2001). Structural properties of recycled plastic/sawdust lumber decking planks. Resources, Conservation and Recycling, 31(3), 241–251. https://doi.org/10.1016/S0921-3449(00)00081- 1 | |
| dc.relation.references | Chandra, V., & Kim, J. S. (2012). World’s First Recycled Plastic Bridges. ICSDC 2011: Integrating Sustainability Practices in the Construction Industry - Proceedings of the International Conference on Sustainable Design and Construction 2011, 585–593. https://doi.org/10.1061/41204(426)72 | |
| dc.relation.references | Chandran, M., Tamilkolundu, S., & Murugesan, C. (2020). Conversion of plastic waste to fuel. Plastic Waste and Recycling, 385–399. https://doi.org/10.1016/B978-0-12-817880-5.00014-1 | |
| dc.relation.references | Chopra, A. K. (2012). Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall Inc. | |
| dc.relation.references | Collings, T. A., & Beauchamp, M. J. (1984). Bearing deflection behaviour of a loaded hole in CFRP. Composites, 15(1), 33–38. https://doi.org/10.1016/0010-4361(84)90958-3 | |
| dc.relation.references | Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10239–10244. https://doi.org/10.1073/PNAS.1314705111 | |
| dc.relation.references | De Jong, T. (1977). Stresses Around Pin-Loaded Holes in Elastically Orthotropic or Isotropic Plates. Journal of Composite Materials, 11(3), 313–331. https://doi.org/10.1177/002199837701100306 | |
| dc.relation.references | Dias, B. Z., & Alvarez, C. E. de. (2017). Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites. Ambiente Construído, 17(2), 201–219. https://doi.org/10.1590/S1678-86212017000200153 | |
| dc.relation.references | Diaz-Alvarez, H., Picucci, J. R., McKenna, M. H., & Lampo, R. G. (2015). Structural response of a recycled thermoplastic lumber bridge under civilian and military loads. Journal of Thermoplastic Composite Materials, 28(4), 461–478. https://doi.org/10.1177/0892705713486127 | |
| dc.relation.references | Dintcheva, N. T., La Mantia, F. P., Trotta, F., Luda, M. P., Camino, G., Paci, M., Di Maio, L., & Acierno, D. (2001). Effects of filler type and processing apparatus on the properties of the recycled “ light fraction” from municipal post-consumer plastics. Polymers for Advanced Technologies, 12(9), 552–560. https://doi.org/10.1002/PAT.147 | |
| dc.relation.references | Echavarría, C. (2013). BOLTED TIMBER JOINTS WITH SELF-TAPPING SCREWS. Revista EIA, 4(8), 37–47. | |
| dc.relation.references | Econciencia S.A.S. (2018). Econciencia - Construccion sostenible | |
| dc.relation.references | FEMA. (2009). Effects of Strength and Stiffness Degradation on Seismic Response. Technical report, FEMA P440A. | |
| dc.relation.references | Forest Products Laboratory (Ed.). (1999). WOOD HANDBOOK: Wood as an engineering material | |
| dc.relation.references | Garcia Reyes, L. E. (1998). Dinámica estructural aplicada al diseño sismico. Universidad de Los Andes. | |
| dc.relation.references | Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/SCIADV.1700782/SUPPL_FILE/1700782_SM.PDF | |
| dc.relation.references | Gulhane, S., & Gulhane, S. (2017). Analysis of Housing Structures Made From Recycled Plastic. IRA-International Journal of Technology & Engineering (ISSN 2455-4480), 7(2 (S)), 45. https://doi.org/10.21013/JTE.ICSESD201705 | |
| dc.relation.references | Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie International Edition, 58(1), 50–62. https://doi.org/10.1002/ANIE.201805766 | |
| dc.relation.references | Herrera, J. P., Bedoya-Ruiz, D., & Hurtado, J. E. (2018). Seismic behavior of recycled plastic lumber walls: An experimental and analytical research. Engineering Structures, 177, 566–578. https://doi.org/10.1016/J.ENGSTRUCT.2018.10.006 | |
| dc.relation.references | Herrera, J. P., Bedoya-Ruiz, D., & Hurtado, J. E. (2023). Recycled Plastic Lumber walls for one and two-story housing: An assessment of their seismic performance. Journal of Building Engineering, 65, 105822. https://doi.org/10.1016/J.JOBE.2023.105822 | |
| dc.relation.references | Hoornweg, D., Bhada-Tata, P., & Kennedy, C. (2013). Environment: Waste production must peak this century. Nature 2013 502:7473, 502(7473), 615–617. https://doi.org/10.1038/502615a | |
| dc.relation.references | Horta, J. F., Simões, F. J., & Mateus, A. (2017). Study of Wood-Plastic Composites with Reused High Density Polyethylene and Wood Sawdust. Procedia Manufacturing, 12, 221–229. https://doi.org/10.1016/J.PROMFG.2017.08.026 | |
| dc.relation.references | Ikhouane, F., & Rodellar, J. (2007). Systems with Hysteresis. John Wiley & Sons, Ltd. | |
| dc.relation.references | Jackson, L. M., & Nosker, T. J. (2009). Technology, Applicability, and Future of Thermoplastic Timber. In Department of Defence Corrosion Conference. | |
| dc.relation.references | Jacobsen, L. (1930). Steady forced vibratios as influenced by damping. ASME Transactione, 52, 169–181. | |
| dc.relation.references | Jacobsen, L. (1960). Damping in composite structures. Proceedings of the Second World Conference on Earthquake Engineering, 1029–1044. | |
| dc.relation.references | Jadee, K. J., & Othman, A. R. (2011). Fiber Reinforced Composite Structure with Bolted Joint – A Review. Key Engineering Materials, 471–472, 939–944. https://doi.org/10.4028/www.scientific.net/KEM.471-472.939 | |
| dc.relation.references | Kedzierski, M., Frère, D., Le Maguer, G., & Bruzaud, S. (2020). Why is there plastic packaging in the natural environment? Understanding the roots of our individual plastic waste management behaviours. Science of The Total Environment, 740, 139985. https://doi.org/10.1016/J.SCITOTENV.2020.139985 | |
| dc.relation.references | Khoaele, K. K., Gbadeyan, O. J., Chunilall, V., & Sithole, B. (2023). The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review. Sustainability 2023, Vol. 15, Page 5233, 15(6), 5233. https://doi.org/10.3390/SU15065233 | |
| dc.relation.references | Klobbie, E. (1974). Patent 4,187,352 . | |
| dc.relation.references | Krishnaswamy, P., & Lampo, R. (2001). Recycled-Plastic Lumber Standards: From Waste Plastics to Markets for Plastic Lumber Bridges | |
| dc.relation.references | Lampo, R., Nosker, T., & McLaren, M. (2003). Demonstration Installations Of Recycled-Plastic Lumber For Bridges, Marine Pilings, And Railroad Ties. https://www.environmentalexpert.com/articles/demonstration-installations-of-recycled-plastic-lumber-for-bridgesmarine-pilings-and-railroad-ties-2222 | |
| dc.relation.references | López Fernández, M. del M., & Franco Mariscal, A. J. (2021). Indagación sobre la degradación de plásticos con estudiantes de secundaria. Educación Química, ISSN 0187-893X, Vol. 32, No. 2, 2021, Págs. 21-36, 32(2), 21–36. https://dialnet.unirioja.es/servlet/articulo?codigo=8340887&info=resumen&idioma=ENG | |
| dc.relation.references | MacBain, K., & Saadeghvaziri, M. A. (1999). Analytical Modeling of the Mechanical Properties of Recycled Plastics. Journal of Materials Engineering and Performance, 8(3), 339–346. https://doi.org/10.1361/105994999770346891 | |
| dc.relation.references | Markarian, J. (2005). Wood-plastic composites: current trends in materials and processing. Plastics, Additives and Compounding, 7(5), 20–26. https://doi.org/10.1016/S1464-391X(05)70453-0 | |
| dc.relation.references | Miranda, E., & Bertero, V. V. (1994). Evaluation of Strength Reduction Factors for EarthquakeResistant Design. Earthquake Spectra, 10(2), 357–379. https://doi.org/10.1193/1.1585778 | |
| dc.relation.references | Nayanathara Thathsarani Pilapitiya, P. G. C., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/J.CLEMA.2024.100220 | |
| dc.relation.references | Nosker, T. J., & Renfree, R. W. (2000). RECYCLED PLASTIC LUMBER: FROM PARK BENCHES TO BRIDGES. | |
| dc.relation.references | Nosker, T., Renfree, R., Lynch, J., Lutz -Conrail, M., & Barry Gillespie -Norfolk Southern Kenneth Van Ness, P. E. (1998). A Performance-Based Approach to the Development of a Recycled Plastic/Composite Crosstie. | |
| dc.relation.references | Parker, L. (2024). Plastic pollution facts and information. National Geographic Society. https://www.nationalgeographic.com/environment/article/plastic-pollution | |
| dc.relation.references | Platt, B., Lent, T., & Walsh, B. (2005). Guide to Plastic Lumber hbn healthy building network About the Institute for Local Self-Reliance About the Healthy Building Network. www.healthybuilding.net | |
| dc.relation.references | Priestley, M. J. N. (1993). Myths and fallacies in earthquake engineering. Bulletin of the New Zealand Society for Earthquake Engineering, 26(3), 329–341. https://doi.org/10.5459/bnzsee.26.3.329-341 | |
| dc.relation.references | Programa de las Naciones Unidas para el medio ambiente. (2023). Todo lo que necesitas saber sobre la contaminación por plásticos. https://www.unep.org/es/noticias-y-reportajes/reportajes/todolo-que-necesitas-saber-sobre-la-contaminacion-por-plasticos | |
| dc.relation.references | Santos, F. A. dos, Canto, L. B., Silva, A. L. N. da, Visconte, L. L. Y., Pacheco, E. B. A. V., Santos, F. A. dos, Canto, L. B., Silva, A. L. N. da, Visconte, L. L. Y., & Pacheco, E. B. A. V. (2018). Processing and Properties of Plastic Lumber. Thermosoftening Plastics. https://doi.org/10.5772/INTECHOPEN.82819 | |
| dc.relation.references | Shah, M., Rajhans, S., Pandya, H. A., Mankad, A. U., Shah, M., Rajhans, S., Pandya, H. A., & Mankad, A. U. (2021). Bioplastic for future: A review then and now. Https://Wjarr.Com/Sites/Default/Files/WJARR-2021-0054.Pdf, 9(2), 056–067. https://doi.org/10.30574/WJARR.2021.9.2.0054 | |
| dc.relation.references | Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering, 115, 409–422. https://doi.org/10.1016/J.COMPOSITESB.2016.09.013 | |
| dc.relation.references | Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports, 5(3), 375. https://doi.org/10.1007/S40572-018-0206-Z | |
| dc.relation.references | Takada, T., Hwang, H. H. M., & Shinozuka, M. (1988). Response modification factor for multipledegree-of-freedom system. Proceedings of the 9th World Conference on Earthquake Engineering, 5, 129–134. | |
| dc.relation.references | Thushari, G. G. N., & Senevirathna, J. D. M. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/J.HELIYON.2020.E04709 | |
| dc.relation.references | Torres-Agullo, A., Karanasiou, A., Moreno, T., & Lacorte, S. (2021). Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. Science of The Total Environment, 800, 149555. https://doi.org/10.1016/J.SCITOTENV.2021.149555 | |
| dc.relation.references | UN-Habitat. (2020). World Cities Report 2020: The Value of Sustainable Urbanization. https://unhabitat.org/sites/default/files/2020/10/wcr_2020_report.pdf | |
| dc.relation.references | Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4 | |
| dc.relation.references | Wang, Y., Huang, J., Zhu, F., & Zhou, S. (2021). Airborne Microplastics: A Review on the Occurrence, Migration and Risks to Humans. Bulletin of Environmental Contamination and Toxicology, 107(4), 657–664. https://doi.org/10.1007/S00128-021-03180-0 | |
| dc.relation.references | Wichai-utcha, N., & Chavalparit, O. (2019). 3Rs Policy and plastic waste management in Thailand. Journal of Material Cycles and Waste Management, 21(1), 10–22. https://doi.org/10.1007/S10163-018-0781-Y/METRICS | |
| dc.relation.references | Zhang, K., & Ueng, C. E. S. (1985). Stresses around a pin-loaded hole in orthotropic plates with arbitrary loading direction. Composite Structures, 3(2), 119–143. https://doi.org/10.1016/0263-8223(85)90040-6 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | |
| dc.subject.proposal | Muro de madera plástica reciclada | spa |
| dc.subject.proposal | Pruebas de carga cíclica | spa |
| dc.subject.proposal | Comportamiento sísmico | spa |
| dc.subject.proposal | Conexiones metálicas pernadas | spa |
| dc.subject.proposal | Recycled plastic lumber walls | eng |
| dc.subject.proposal | Cyclic load tests | eng |
| dc.subject.proposal | Seismic performance | eng |
| dc.subject.proposal | Bolted steel plate joints | eng |
| dc.subject.unesco | Materiales de construcción | |
| dc.subject.unesco | Building materials | |
| dc.subject.unesco | Vivienda | |
| dc.subject.unesco | Housing | |
| dc.title | Comportamiento bajo carga cíclica de muros de madera plástica reciclada ensamblados mediante conexiones metálicas pernadas | spa |
| dc.title.translated | Cyclic load behavior of recycled plastic lumber walls assembled with bolted steel plate joints | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.awardtitle | Desarrollo y evaluación de sistemas de protección sísmica y sistemas estructurales a base de madera plástica para viviendas sostenibles, código Hermes 51214 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Estructuras.pdf
- Tamaño:
- 4.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Estructuras
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

