Comportamiento bajo carga cíclica de muros de madera plástica reciclada ensamblados mediante conexiones metálicas pernadas

dc.contributor.advisorBedoya Ruiz, Daniel Alveiro
dc.contributor.advisorHerrera Castaño, Juan Pablo
dc.contributor.authorJiménez Cerón, Karen Tatiana
dc.contributor.cvlacJiménez Cerón, Karen Tatiana [1010102802]
dc.contributor.researchgroupIngeniería Sísmica y Sismología
dc.date.accessioned2026-01-22T16:46:29Z
dc.date.available2026-01-22T16:46:29Z
dc.date.issued2025
dc.descriptionfotografías, graficas, tablasspa
dc.description.abstractEn los últimos años, los esfuerzos de investigación en la ingeniería estructural han estado orientados hacia prácticas más sostenibles, en línea con la protección del medio ambiente, la economía circular, la reutilización de los residuos agroindustriales y los Objetivos de Desarrollo Sostenible (ODS). En este contexto, el presente estudio muestra el comportamiento bajo cargas cíclicas de tres sistemas de muros fabricados con madera plástica reciclada (RPL, por sus siglas en inglés Recycled Plastic Lumber). Dos de los muros, denominados Muro Inicial (MI) y Muro Chevron (MC), fueron ensamblados sin conexiones metálicas pernadas, mientras que el tercero (MCP) incorporó este tipo de conexiones. En cada uno se evaluaron parámetros como la resistencia, comportamiento histerético, ductilidad, capacidad de disipación de energía, amortiguamiento viscoso equivalente y estados límite de daño. Los tres sistemas mostraron una alta capacidad de deformación, alcanzando derivas de hasta el 7 % en el estado límite de daño severo, siendo el MCP el que presenta el mejor desempeño sísmico con una deriva del 2 % en el estado límite de daño leve. Estos resultados indican que el uso de conexiones metálicas pernadas en este tipo de sistemas estructurales mejora su capacidad frente a cargas laterales, lo que lo posiciona como una alternativa más confiable para la construcción en viviendas de uno y dos pisos. La campaña experimental fue desarrollada en el Laboratorio de Estructuras de la Universidad Nacional de Colombia, Sede Manizales (Texto tomado de la fuente).spa
dc.description.abstractIn recent years, research efforts in structural engineering have been directed toward more sustainable practices, in alignment with environmental protection, circular economy principles, the reuse of agro-industrial waste, and Sustainable Development Goals (SDGs). Within this context, the present study presents the cyclic behavior of three full-scale wall systems constructed from recycled plastic lumber (RPL). Two of the walls, referred to as the Initial Wall (MI) and the Chevron Wall (MC) were assembled without bolted steel plate joints, whereas the third system (MCP) incorporated such connections into its structural configuration. For each system, parameters were evaluated, including strength, hysteretic behavior, ductility, energy dissipation capacity, equivalent viscous damping, and damage limit states. A large deformation capacity was shown by the three systems, with story drifts of up to 7 % being reached at the severe damage limit state, with the MCP system being the one that presents the best seismic performance, with a 2 % drift at the light damage limit state. These results indicate that the use of bolted steel plate joints in this type of structural system improves its capacity under lateral loads, positioning it as a more reliable alternative for construction in one- and two-story housing. The experimental campaign was carried out at the Structural Laboratory of the National University of Colombia, Manizales campus.eng
dc.description.curricularareaIngeniería Civil.Sede Manizales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Estructuras
dc.description.researchareaComportamiento sísmico de sistemas estructurales
dc.format.extentxi, 70 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89298
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras
dc.relation.referencesAdhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composites Part B: Engineering, 39(5), 807–815. https://doi.org/10.1016/J.COMPOSITESB.2007.10.005
dc.relation.referencesASTM D6108-13. (2013). Standard Test Method for Compressive Properties of Plastic Lumber and Shapes. Technical report, ASTM International.
dc.relation.referencesASTM D6109-13. (2013). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastic Lumber and Related Products.
dc.relation.referencesASTM D6111-13a. (2013). Standard Test Method for Bulk Density And Specific Gravity of Plastic Lumber and Shapes by Displacement.
dc.relation.referencesASTM D6112-13. (2013). Standard Test Methods for Compressive and Flexural Creep and CreepRupture of Plastic Lumber and Shapes
dc.relation.referencesASTM D6117-16. (2016). Standard Test Methods for Mechanical Fasteners in Plastic Lumber and Shapes.
dc.relation.referencesASTM Standard E2126-11. (2011). Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings. Tech. Rep.
dc.relation.referencesBay, C. O., & Palazzo, G. (2019). Amortiguamiento Viscoso Equivalente en el Diseño Basado en Desplazamientos. Revista Tecnología y Ciencia, 36, 115–129. https://doi.org/10.33414/rtyc.36.115-129.2019
dc.relation.referencesBora, M. P., Goswami, K., & Jain, A. (2022). REDUCTION OF GROUNDWATER CONTAMINATION BY CONVERTING PLASTIC WASTE TO PLASTIC LUMBER. https://www.researchgate.net/publication/360874193
dc.relation.referencesBreslin, V. T., Senturk, U., & Berndt, C. C. (1998). Long-term engineering properties of recycled plastic lumber used in pier construction. Resources, Conservation and Recycling, 23(4), 243– 258. https://doi.org/10.1016/S0921-3449(98)00024-X
dc.relation.referencesCarroll, D. R., Stone, R. B., Sirignano, A. M., Saindon, R. M., Gose, S. C., & Friedman, M. A. (2001). Structural properties of recycled plastic/sawdust lumber decking planks. Resources, Conservation and Recycling, 31(3), 241–251. https://doi.org/10.1016/S0921-3449(00)00081- 1
dc.relation.referencesChandra, V., & Kim, J. S. (2012). World’s First Recycled Plastic Bridges. ICSDC 2011: Integrating Sustainability Practices in the Construction Industry - Proceedings of the International Conference on Sustainable Design and Construction 2011, 585–593. https://doi.org/10.1061/41204(426)72
dc.relation.referencesChandran, M., Tamilkolundu, S., & Murugesan, C. (2020). Conversion of plastic waste to fuel. Plastic Waste and Recycling, 385–399. https://doi.org/10.1016/B978-0-12-817880-5.00014-1
dc.relation.referencesChopra, A. K. (2012). Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall Inc.
dc.relation.referencesCollings, T. A., & Beauchamp, M. J. (1984). Bearing deflection behaviour of a loaded hole in CFRP. Composites, 15(1), 33–38. https://doi.org/10.1016/0010-4361(84)90958-3
dc.relation.referencesCózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á. T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M. L., & Duarte, C. M. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10239–10244. https://doi.org/10.1073/PNAS.1314705111
dc.relation.referencesDe Jong, T. (1977). Stresses Around Pin-Loaded Holes in Elastically Orthotropic or Isotropic Plates. Journal of Composite Materials, 11(3), 313–331. https://doi.org/10.1177/002199837701100306
dc.relation.referencesDias, B. Z., & Alvarez, C. E. de. (2017). Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites. Ambiente Construído, 17(2), 201–219. https://doi.org/10.1590/S1678-86212017000200153
dc.relation.referencesDiaz-Alvarez, H., Picucci, J. R., McKenna, M. H., & Lampo, R. G. (2015). Structural response of a recycled thermoplastic lumber bridge under civilian and military loads. Journal of Thermoplastic Composite Materials, 28(4), 461–478. https://doi.org/10.1177/0892705713486127
dc.relation.referencesDintcheva, N. T., La Mantia, F. P., Trotta, F., Luda, M. P., Camino, G., Paci, M., Di Maio, L., & Acierno, D. (2001). Effects of filler type and processing apparatus on the properties of the recycled “ light fraction” from municipal post-consumer plastics. Polymers for Advanced Technologies, 12(9), 552–560. https://doi.org/10.1002/PAT.147
dc.relation.referencesEchavarría, C. (2013). BOLTED TIMBER JOINTS WITH SELF-TAPPING SCREWS. Revista EIA, 4(8), 37–47.
dc.relation.referencesEconciencia S.A.S. (2018). Econciencia - Construccion sostenible
dc.relation.referencesFEMA. (2009). Effects of Strength and Stiffness Degradation on Seismic Response. Technical report, FEMA P440A.
dc.relation.referencesForest Products Laboratory (Ed.). (1999). WOOD HANDBOOK: Wood as an engineering material
dc.relation.referencesGarcia Reyes, L. E. (1998). Dinámica estructural aplicada al diseño sismico. Universidad de Los Andes.
dc.relation.referencesGeyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/SCIADV.1700782/SUPPL_FILE/1700782_SM.PDF
dc.relation.referencesGulhane, S., & Gulhane, S. (2017). Analysis of Housing Structures Made From Recycled Plastic. IRA-International Journal of Technology & Engineering (ISSN 2455-4480), 7(2 (S)), 45. https://doi.org/10.21013/JTE.ICSESD201705
dc.relation.referencesHaider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie International Edition, 58(1), 50–62. https://doi.org/10.1002/ANIE.201805766
dc.relation.referencesHerrera, J. P., Bedoya-Ruiz, D., & Hurtado, J. E. (2018). Seismic behavior of recycled plastic lumber walls: An experimental and analytical research. Engineering Structures, 177, 566–578. https://doi.org/10.1016/J.ENGSTRUCT.2018.10.006
dc.relation.referencesHerrera, J. P., Bedoya-Ruiz, D., & Hurtado, J. E. (2023). Recycled Plastic Lumber walls for one and two-story housing: An assessment of their seismic performance. Journal of Building Engineering, 65, 105822. https://doi.org/10.1016/J.JOBE.2023.105822
dc.relation.referencesHoornweg, D., Bhada-Tata, P., & Kennedy, C. (2013). Environment: Waste production must peak this century. Nature 2013 502:7473, 502(7473), 615–617. https://doi.org/10.1038/502615a
dc.relation.referencesHorta, J. F., Simões, F. J., & Mateus, A. (2017). Study of Wood-Plastic Composites with Reused High Density Polyethylene and Wood Sawdust. Procedia Manufacturing, 12, 221–229. https://doi.org/10.1016/J.PROMFG.2017.08.026
dc.relation.referencesIkhouane, F., & Rodellar, J. (2007). Systems with Hysteresis. John Wiley & Sons, Ltd.
dc.relation.referencesJackson, L. M., & Nosker, T. J. (2009). Technology, Applicability, and Future of Thermoplastic Timber. In Department of Defence Corrosion Conference.
dc.relation.referencesJacobsen, L. (1930). Steady forced vibratios as influenced by damping. ASME Transactione, 52, 169–181.
dc.relation.referencesJacobsen, L. (1960). Damping in composite structures. Proceedings of the Second World Conference on Earthquake Engineering, 1029–1044.
dc.relation.referencesJadee, K. J., & Othman, A. R. (2011). Fiber Reinforced Composite Structure with Bolted Joint – A Review. Key Engineering Materials, 471–472, 939–944. https://doi.org/10.4028/www.scientific.net/KEM.471-472.939
dc.relation.referencesKedzierski, M., Frère, D., Le Maguer, G., & Bruzaud, S. (2020). Why is there plastic packaging in the natural environment? Understanding the roots of our individual plastic waste management behaviours. Science of The Total Environment, 740, 139985. https://doi.org/10.1016/J.SCITOTENV.2020.139985
dc.relation.referencesKhoaele, K. K., Gbadeyan, O. J., Chunilall, V., & Sithole, B. (2023). The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review. Sustainability 2023, Vol. 15, Page 5233, 15(6), 5233. https://doi.org/10.3390/SU15065233
dc.relation.referencesKlobbie, E. (1974). Patent 4,187,352 .
dc.relation.referencesKrishnaswamy, P., & Lampo, R. (2001). Recycled-Plastic Lumber Standards: From Waste Plastics to Markets for Plastic Lumber Bridges
dc.relation.referencesLampo, R., Nosker, T., & McLaren, M. (2003). Demonstration Installations Of Recycled-Plastic Lumber For Bridges, Marine Pilings, And Railroad Ties. https://www.environmentalexpert.com/articles/demonstration-installations-of-recycled-plastic-lumber-for-bridgesmarine-pilings-and-railroad-ties-2222
dc.relation.referencesLópez Fernández, M. del M., & Franco Mariscal, A. J. (2021). Indagación sobre la degradación de plásticos con estudiantes de secundaria. Educación Química, ISSN 0187-893X, Vol. 32, No. 2, 2021, Págs. 21-36, 32(2), 21–36. https://dialnet.unirioja.es/servlet/articulo?codigo=8340887&info=resumen&idioma=ENG
dc.relation.referencesMacBain, K., & Saadeghvaziri, M. A. (1999). Analytical Modeling of the Mechanical Properties of Recycled Plastics. Journal of Materials Engineering and Performance, 8(3), 339–346. https://doi.org/10.1361/105994999770346891
dc.relation.referencesMarkarian, J. (2005). Wood-plastic composites: current trends in materials and processing. Plastics, Additives and Compounding, 7(5), 20–26. https://doi.org/10.1016/S1464-391X(05)70453-0
dc.relation.referencesMiranda, E., & Bertero, V. V. (1994). Evaluation of Strength Reduction Factors for EarthquakeResistant Design. Earthquake Spectra, 10(2), 357–379. https://doi.org/10.1193/1.1585778
dc.relation.referencesNayanathara Thathsarani Pilapitiya, P. G. C., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/J.CLEMA.2024.100220
dc.relation.referencesNosker, T. J., & Renfree, R. W. (2000). RECYCLED PLASTIC LUMBER: FROM PARK BENCHES TO BRIDGES.
dc.relation.referencesNosker, T., Renfree, R., Lynch, J., Lutz -Conrail, M., & Barry Gillespie -Norfolk Southern Kenneth Van Ness, P. E. (1998). A Performance-Based Approach to the Development of a Recycled Plastic/Composite Crosstie.
dc.relation.referencesParker, L. (2024). Plastic pollution facts and information. National Geographic Society. https://www.nationalgeographic.com/environment/article/plastic-pollution
dc.relation.referencesPlatt, B., Lent, T., & Walsh, B. (2005). Guide to Plastic Lumber hbn healthy building network About the Institute for Local Self-Reliance About the Healthy Building Network. www.healthybuilding.net
dc.relation.referencesPriestley, M. J. N. (1993). Myths and fallacies in earthquake engineering. Bulletin of the New Zealand Society for Earthquake Engineering, 26(3), 329–341. https://doi.org/10.5459/bnzsee.26.3.329-341
dc.relation.referencesPrograma de las Naciones Unidas para el medio ambiente. (2023). Todo lo que necesitas saber sobre la contaminación por plásticos. https://www.unep.org/es/noticias-y-reportajes/reportajes/todolo-que-necesitas-saber-sobre-la-contaminacion-por-plasticos
dc.relation.referencesSantos, F. A. dos, Canto, L. B., Silva, A. L. N. da, Visconte, L. L. Y., Pacheco, E. B. A. V., Santos, F. A. dos, Canto, L. B., Silva, A. L. N. da, Visconte, L. L. Y., & Pacheco, E. B. A. V. (2018). Processing and Properties of Plastic Lumber. Thermosoftening Plastics. https://doi.org/10.5772/INTECHOPEN.82819
dc.relation.referencesShah, M., Rajhans, S., Pandya, H. A., Mankad, A. U., Shah, M., Rajhans, S., Pandya, H. A., & Mankad, A. U. (2021). Bioplastic for future: A review then and now. Https://Wjarr.Com/Sites/Default/Files/WJARR-2021-0054.Pdf, 9(2), 056–067. https://doi.org/10.30574/WJARR.2021.9.2.0054
dc.relation.referencesSingh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B: Engineering, 115, 409–422. https://doi.org/10.1016/J.COMPOSITESB.2016.09.013
dc.relation.referencesSmith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports, 5(3), 375. https://doi.org/10.1007/S40572-018-0206-Z
dc.relation.referencesTakada, T., Hwang, H. H. M., & Shinozuka, M. (1988). Response modification factor for multipledegree-of-freedom system. Proceedings of the 9th World Conference on Earthquake Engineering, 5, 129–134.
dc.relation.referencesThushari, G. G. N., & Senevirathna, J. D. M. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), e04709. https://doi.org/10.1016/J.HELIYON.2020.E04709
dc.relation.referencesTorres-Agullo, A., Karanasiou, A., Moreno, T., & Lacorte, S. (2021). Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. Science of The Total Environment, 800, 149555. https://doi.org/10.1016/J.SCITOTENV.2021.149555
dc.relation.referencesUN-Habitat. (2020). World Cities Report 2020: The Value of Sustainable Urbanization. https://unhabitat.org/sites/default/files/2020/10/wcr_2020_report.pdf
dc.relation.referencesWambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4
dc.relation.referencesWang, Y., Huang, J., Zhu, F., & Zhou, S. (2021). Airborne Microplastics: A Review on the Occurrence, Migration and Risks to Humans. Bulletin of Environmental Contamination and Toxicology, 107(4), 657–664. https://doi.org/10.1007/S00128-021-03180-0
dc.relation.referencesWichai-utcha, N., & Chavalparit, O. (2019). 3Rs Policy and plastic waste management in Thailand. Journal of Material Cycles and Waste Management, 21(1), 10–22. https://doi.org/10.1007/S10163-018-0781-Y/METRICS
dc.relation.referencesZhang, K., & Ueng, C. E. S. (1985). Stresses around a pin-loaded hole in orthotropic plates with arbitrary loading direction. Composite Structures, 3(2), 119–143. https://doi.org/10.1016/0263-8223(85)90040-6
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.proposalMuro de madera plástica recicladaspa
dc.subject.proposalPruebas de carga cíclicaspa
dc.subject.proposalComportamiento sísmicospa
dc.subject.proposalConexiones metálicas pernadasspa
dc.subject.proposalRecycled plastic lumber wallseng
dc.subject.proposalCyclic load testseng
dc.subject.proposalSeismic performanceeng
dc.subject.proposalBolted steel plate jointseng
dc.subject.unescoMateriales de construcción
dc.subject.unescoBuilding materials
dc.subject.unescoVivienda
dc.subject.unescoHousing
dc.titleComportamiento bajo carga cíclica de muros de madera plástica reciclada ensamblados mediante conexiones metálicas pernadasspa
dc.title.translatedCyclic load behavior of recycled plastic lumber walls assembled with bolted steel plate jointseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDesarrollo y evaluación de sistemas de protección sísmica y sistemas estructurales a base de madera plástica para viviendas sostenibles, código Hermes 51214

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Estructuras.pdf
Tamaño:
4.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: