Functional connectivity as a conservation tool in the landscapes of the north of Chingaza National Natural Park

dc.contributor.advisorRudas Lleras, Agustín
dc.contributor.authorRincon Ortega, Nathalia
dc.contributor.researchgroupGrupo en investigación y manejo de vida silvestrespa
dc.coverage.regionCundinamarca
dc.coverage.temporalMeta
dc.date.accessioned2022-08-31T14:10:56Z
dc.date.available2022-08-31T14:10:56Z
dc.date.issued2022-08-25
dc.descriptionilustraciones, fotografías, mapasspa
dc.description.abstractThe central-northern buffer zone of Chingaza National Natural Park (Chingaza NNP) is important due to it connects the eastern and western of the park and is one of the priority areas for conservation because of its ecosystem services, water reservoirs, and high endemism. However, this area was not explored due to the complicated access and public order problems, but prioritization is important. This study aimed determine the structural connectivity of the landscape followed to explore the functional connectivity using as a model four plant species with a differently dispersed syndrome. We characterize the climate, topography, and covers, and land use. We used WorldClim data to determine the climate and used Sentinel 2B imagery for topography and cover and land use classification. Then we utiliced Fragstats and FragScape to determine the composition and configuration of the landscape. Following this, we used Circuitscape and Least-Cost path to propose the functional connectivity for Tibouchina sp., Hedyosmum sp., Clusia ducu, and Weinmannia sp. Our results showed that climate, topography, and land cover varies and change according to elevation, humidity, temperature. The structural connectivity showed that zones closer to the north are in a higher state of fragmentation, while the zones closer to the park are less fragmented. The functional connectivity indicated a possible connection between eastern and western for the four plant species with different dispersal syndrome.eng
dc.description.abstractLa zona de amortiguamiento centro-norte del Parque Nacional Natural Chingaza (PNN Chingaza) es importante debido a que conecta el este y el oeste del parque y es una de las áreas prioritarias para la conservación debido a sus servicios ecosistémicos, reservorios de agua y alto endemismo. Sin embargo, esta área no fue explorada debido a los complicados accesos y problemas de orden público, pero la priorización es importante. Este estudio tuvo como objetivo determinar la conectividad estructural del paisaje para explorar la conectividad funcional utilizando como modelo cuatro especies de plantas con un síndrome de dispersión diferente. Caracterizamos el clima, la topografía, las coberturas y usos del suelo. Usamos datos de WorldClim para determinar el clima y usamos imágenes de Sentinel 2B para topografía y clasificación de cobertura y uso del suelo. Luego utilizamos Fragstats y FragScape para determinar la composición y configuración del paisaje. Después de esto, usamos Circuitscape y Least-Cost path para proponer la conectividad funcional para Tibouchina sp., Hedyosmum sp., Clusia ducu y Weinmannia sp. Los resultados mostraron que el clima, la topografía y la cobertura terrestre varían y cambian según la elevación, la humedad y la temperatura. La conectividad estructural mostró que las zonas más cercanas al norte se encuentran en mayor estado de fragmentación, mientras que las zonas más cercanas al parque están menos fragmentadas. La conectividad funcional indicó una posible conexión entre el este y el oeste para las cuatro especies de plantas con diferentes síndromes de dispersión. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaVegetaciónspa
dc.format.extent115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82208
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAavik, T., R. Holderegger & J. Bolliger. 2014. The structural and functional connectivity of the grassland plant Lychnis flos-cuculi. Heredity 112: 471–478.spa
dc.relation.referencesAguirre-Gutiérrez, J. 2014. Are Plant Species’ Richness and Diversity Influenced by Fragmentation at a Microscale? Int. J. Biodivers. 2014: 1–9.spa
dc.relation.referencesAparicio, A., R.G. Albaladejo, M.Á. Olalla-Tárraga, L.F. Carrillo & M.Á. Rodríguez. 2008. Dispersal potentials determine responses of woody plant species richness to environmental factors in fragmented Mediterranean landscapes. For. Ecol. Manag. 255: 2894–2906.spa
dc.relation.referencesArbeláez-Cortés, E. 2013. Knowledge of Colombian biodiversity: published and indexed. Biodivers. Conserv. 22: 2875–2906.spa
dc.relation.referencesArmenteras, D., F. Gast & H. Villareal. 2003. Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biol. Conserv. 113: 245–256.spa
dc.relation.referencesArmenteras, D., N. Rodríguez, J. Retana & M. Morales. 2010. Understanding deforestation in montane and lowland forests of the Colombian Andes. Reg Env. Change 11: 693–705.spa
dc.relation.referencesArnillas, C.A., C. Tovar, M.W. Cadotte & W. Buytaert. 2017. From patches to richness: assessing the potential impact of landscape transformation on biodiversity. Ecosphere 8: e02004.spa
dc.relation.referencesAuffret, A.G., Y. Rico, J.M. Bullock, D.A.P. Hooftman, R.J. Pakeman, M.B. Soons, A. Suárez‐Esteban, A. Traveset, H.H. Wagner & S.A.O. Cousins. 2017. Plant functional connectivity – integrating landscape structure and effective dispersal. J. Ecol. 105: 1648–1656.spa
dc.relation.referencesBaguette, M., D. Legrand, S. Blanchet & V.M. Stevens. 2012. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. https://www.researchgate.net/publication/233766786_Individual_dispersal_landscape_connectivity_and_ecological_networks.spa
dc.relation.referencesBaudry & G.R. Merriam. 1988. Connectivity and connectedness: Functional versus structural patterns in landscapes.spa
dc.relation.referencesBenz, R.A., M.S. Boyce, H. Thurfjell, D.G. Paton, M. Musiani, C.F. Dormann & S. Ciuti. 2016. Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors. PLOS ONE 11: e0162989.spa
dc.relation.referencesCollinge, S.K. 2010. Spatial Ecology and Conservation. Nature 3: 7.spa
dc.relation.referencesDe Souza, C.A.M., S.L.C. Daza, J.A. de Lima Filho, P.R.A. Campos & V.M. de Oliveira. 2020. Effect of dynamic fragmentation on biodiversity in a heterogeneous environment. Phys. Lett. A 384: 126542.spa
dc.relation.referencesDebinski, D.M. & R.D. Holt. 2000. A Survey and Overview of Habitat Fragmentation Experiments. Conserv. Biol. 14: 342–355.spa
dc.relation.referencesEtter, A., A. Andrade, P. Amaya & P. Arévalo. 2015. Estado de los ecosistemas colombianos-2014.spa
dc.relation.referencesEtter, A., C. McAlpine & H.P. Possingham. 2008. A historical analysis of the spatial and temporal drivers of landscape change in Colombia since 1500. Ann. Am. Assoc. Geogr. 98.spa
dc.relation.referencesEtter, A. & L.A. Villa. 2000. Andean Forests and Farming Systems in part of the Eastern Cordillera (Colombia). Mt. Res. Dev. 20: 236–245.spa
dc.relation.referencesFahrig, L. 2003a. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst.spa
dc.relation.referencesFahrig, L. 2003b. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 34: 487–515.spa
dc.relation.referencesFahrig, L. 2003c. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 3: 487–515.spa
dc.relation.referencesFahrig, L., V. Arroyo-Rodríguez, J.R. Bennett, V. Boucher-Lalonde, E. Cazetta, D.J. Currie, F. Eigenbrod, A.T. Ford, S.P. Harrison, J.A.G. Jaeger, N. Koper, A.E. Martin, J.-L. Martin, J.P. Metzger, P. Morrison, J.R. Rhodes, D.A. Saunders, D. Simberloff, A.C. Smith, L. Tischendorf, M. Vellend & J.I. Watling. 2019. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230: 179–186.spa
dc.relation.referencesFAO. 2010. Estado actual de la informacion sobre recursos forestales y cambio en el uso de la tierra (Instituto de hidrología, metereología y estudios ambientales (IDEAM), consultores fao). [WWW Document]. URL http://www.fao.org/3/ad392s/ad392s10.htmspa
dc.relation.referencesFlores-Rentería, D., A. Rincón, T. Morán-López, A.-M. Hereş, L. Pérez-Izquierdo, F. Valladares & J. Curiel Yuste. 2018. Habitat fragmentation is linked to cascading effects on soil functioning and CO2 emissions in Mediterranean holm-oak-forests. PeerJ 6.spa
dc.relation.referencesHaddad, N.M., L.A. Brudvig, J. Clobert, K.F. Davies, A. Gonzalez, R.D. Holt, T.E. Lovejoy, J.O. Sexton, M.P. Austin, C.D. Collins, W.M. Cook, E.I. Damschen, R.M. Ewers, B.L. Foster, C.N. Jenkins, A.J. King, W.F. Laurance, D.J. Levey, C.R. Margules, B.A. Melbourne, A.O. Nicholls, J.L. Orrock, D.-X. Song & J.R. Townshend. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1: e1500052.spa
dc.relation.referencesHillel, D. 2008. 12. - Soil biodiversity, p. 163–174. In D. Hillel (ed.). Soil in the Environment. Academic Press, San Diego.spa
dc.relation.referencesIUCN. 2017. Tapping into the potential of Colombia’s degraded landscapes [WWW Document]. Int. Union Conserv. Nat. URL https://www.iucn.org/news/forests/201703/tapping-potential-colombias-degraded-landscapesspa
dc.relation.referencesJaeger, J.A.G. 2000. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc. Ecol. 15: 115–130.spa
dc.relation.referencesKindlmann, P. & F. Burel. 2008. Connectivity measures: a review. Landsc. Ecol. s10980-008-9245–4.spa
dc.relation.referencesLiu, C., G. Newell, M. White & A.F. Bennett. 2018. Identifying wildlife corridors for the restoration of regional habitat connectivity: A multispecies approach and comparison of resistance surfaces. PLOS ONE 13: e0206071.spa
dc.relation.referencesLora, C. 1999. El Parque Nacional Natural Chingaza. s.p. En: I Simposio taller de investigación para la región del PNN Chingaza. (25 al 27 de Octubre de 1999: PNN Chingaza). Ministerio del Medio Ambiente – Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales, Fundación Natura, Wildlife Conservation Society, Bogotá.spa
dc.relation.referencesMcRae, B.H. 2006. Isolation by resistance. Evolution 60: 1551–1561.spa
dc.relation.referencesMcRae, B.H., B.G. Dickson, T.H. Keitt & V.B. Shah. 2008. Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation. Ecology 89: 2712–2724.spa
dc.relation.referencesMerriam, G.R. 1984. Connectivity: a fundamental ecological characteristic of landscape pattern. Brandt J Agger P Eds Proc. First Int. Semin. Methodol. Landsc. Ecol. Res. Plan. Rosk. Univ. GeoRue Rosk. Den. Vol I: 5–15.spa
dc.relation.referencesMitchell, M.G.E., A.F. Suarez-Castro, M. Martinez-Harms, M. Maron, C. McAlpine, K.J. Gaston, K. Johansen & J.R. Rhodes. 2015. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 30: 190–198.spa
dc.relation.referencesMoreno, M.I., L.E. Hólguin, C. Angulo & A. Rodríguez. 2012. Informe sobre el estado de la biodiversidad en la jurisdicción de la Corporación Autónoma Regional de Cundinamarca CAR CONVENIO DE COOPERACIÓN No 000322 de 2011.spa
dc.relation.referencesMoser, B., J.A.G. Jaeger, U. Tappeiner, E. Tasser & B. Eiselt. 2007. Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landsc. Ecol. 22: 447–459.spa
dc.relation.referencesPNN Chingaza. 2017. Reformulación participativa del plan de manejo Parque Nacional Natural Chingaza.spa
dc.relation.referencesPNN, Universidad Nacional de Colombia & Conservation Society. 2019. Informe Técnico: Expedición Chingaza.spa
dc.relation.referencesRicotta, C., A. Stanisci, G.C. Avena & C. Blasi. 2000. Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecol. 1: 89–94.spa
dc.relation.referencesRodríguez, D., A. Reyes & K. Garcia-Benjarano. 2014. Plan de acción para la conservación del Oso Andino en la Región del Guavio. Corp. Autónoma Reg. Guavio Gachalá Cundinamarca 71.spa
dc.relation.referencesRogan, J.E. & T.E. Lacher. 2018. Impacts of Habitat Loss and Fragmentation on Terrestrial Biodiversity, p. B9780124095489110000. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.spa
dc.relation.referencesRudnick, D.A., S.J. Ryan, P. Beier, S.A. Cushman, F. Dieffenbach, C.W. Epps, L.R. Gerber, J. Hartter, J.S. Jenness, J. Kintsch, A.M. Merenlender, R.M. Perkl, D.V. Preziosi & S.C. Trombulak. 2012. The role of landscape connectivity in planning and implementing conservation and restoration priorities 21.spa
dc.relation.referencesSánchez-Cuervo, A.M., Aide T.M., M. Clark & A. Etter. 2012. Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS One 7.spa
dc.relation.referencesSanderson, J., K. Alger, G. a B. Fonseca, C. Galindo-leal, V.H. Inchausty & K. Morrison. 2003. Biodiversity Conservation Corridors : Planning, Implementing, and Monitorins Sustainable Landscapes 41.spa
dc.relation.referencesTaylor, P.D., L. Fahrig, K. Henein & G. Merriam. 1993. Connectivity Is a Vital Element of Landscape Structure. Oikos 68: 571.spa
dc.relation.referencesTaylor, P.D., L. Fahrig & K.A. With. 2006. Landscape connectivity: a return to the basics, p. 29–43. In K.R. Crooks & M. Sanjayan (eds.). Connectivity Conservation. Cambridge University Press, Cambridge.spa
dc.relation.referencesThiele, J., S. Buchholz & J. Schirmel. 2018. Using resistance distance from circuit theory to model dispersal through habitat corridors. J. Plant Ecol. 11: 385–393.spa
dc.relation.referencesTischendorf, L. & L. Fahrig. 2000. On the usage and measurement of landscape connectivity. Oikos 90: 7–19.spa
dc.relation.referencesUroy, L., C. Mony & A. Ernoult. 2019b. Additive effects of connectivity provided by different habitat types drive plant assembly. Sci. Rep. 9: 13952.spa
dc.relation.referencesVargas, O. & P. Pedraza. 2004. El Parque Nacional Natural Chingaza 228.spa
dc.relation.referencesWilcove, D.S., C.H. McLellan & A.P. Dobson. 1986. Habitat Fragmentation in the temperate zone. Conserv. Biol. Sci. Scarcity Divers.spa
dc.relation.referencesAcuña-Caro, C.A.A. 2010. Identificación de áreas prioritarias de conservación enfocadas hacia la conectividad estructural del corredor encenillo (municipios de La Calera, Guasca, Sopo, Sesquilé, Guatavita), Cundinamarca. Trabajo de grado, Pontificia Universidad Javeriana, Bogotá, Colombia.spa
dc.relation.referencesAguilar, M. & J.O. Rangel-Ch. 1996. Clima de alta montaña en Colombia, El páramo ecosistema a proteger. ECOAN. Bogotá, Colombia.spa
dc.relation.referencesAtalay, I., R. Efe & M. Öztürk. 2014. Effects of Topography and Climate on the Ecology of Taurus Mountains in the Mediterranean Region of Turkey. Procedia - Soc. Behav. Sci., 3rd International Geography Symposium, GEOMED2013, 10-13 June 2013, Antalya, Turkey 120: 142-156.spa
dc.relation.referencesBeltrán Morales, J.C. 2018. Composición floristica asociada a frailejones Espeletia spp afectados por Oidaematophorus espeletiae en el PNN chingaza. Universidad Jorge Tadeo Lozano, Bogotá, Colombia.spa
dc.relation.referencesBourgeron, P.S., H.C. Humphries & M.E. Jensen. 1994. Landscape Characterization: A Framework for Ecological Assessment at Regional and Local Scales. J. Sustain. For. 2: 267 281.spa
dc.relation.referencesBurrows, C.J. 1990. Processes of vegetation change. London: Unwin Hyman.spa
dc.relation.referencesCarlier, J., M. Doyle, J. Finn, D. Huallacháin & J. Moran. 2021. A landscape classification map of Ireland and its potential use in national land use monitoring. J. Environ. Manage. 289: 112498.spa
dc.relation.referencesCarrero, A. 2020. Caracterización de la vegetación en un sector del corredor de conectividad de la cuenca alta del Río Negro (Gachalá, Cundinamarca).spa
dc.relation.referencesClark Labs. 1987. IDRISI GIS Analysis in TerrSet 2020 [WWW Document]. Clark Labs. URL https://clarklabs.org/terrset/idrisi-gis/spa
dc.relation.referencesClerici, N., D. Armenteras, P. Kareiva, R. Botero, J.P. Ramírez-Delgado, G. Forero-Medina, J. Ochoa, C. Pedraza, L. Schneider, C. Lora, C. Gómez, M. Linares, C. Hirashiki & D. Biggs. 2020. Deforestation in Colombian protected areas increased during post-conflict periods. Sci. Rep. 10: 4971.spa
dc.relation.referencesColorado, G.J., J.L. Vásquez & I.N. Mazo. 2017. Modelo de conectividad ecológica de fragmentos de bosque andino en santa elena (Medellín, Colombia) 15.spa
dc.relation.referencesCopernicus Emergency Management Service. 2016. Homepage | Copernicus [WWW Document]. URL https://www.copernicus.eu/enspa
dc.relation.referencesCórdoba, S., M.Á. Echeverry, A.M. Umaña, I. Quintero, M. Iguera, A. Prieto, H. Mendoza, H. Villareal & J.M. Rengifo. 2007. Caracterización de la Biodiversidad de Cuatro Áreas del Parque Nacional Natural Chingaza, Cundinamarca, Colombia.spa
dc.relation.referencesEiden, G. 2002. Land-Cover and Land-Use Mapping. Land Use Land Cover Soil Sci. 9.spa
dc.relation.referencesEiten, G. 1992. How names are used for vegetation. J. Veg. Sci. 3: 419-424.spa
dc.relation.referencesEslava, J.A. 1993. Climatología y Diversidad Climática de Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 18: 32.spa
dc.relation.referencesEslava, J.A., V.A. Lóepz & G. Olaya. 1986. Los climas de Colombia (Sistema de C.W. Thornthwaite). Atmosfera 6: 33-76.spa
dc.relation.referencesFaber-Langendoen, D., T. Keeler-Wolf, D. Meidinger, D. Tart, B. Hoagland, C. Josse, G. Navarro, S. Ponomarenko, J.-P. Saucier, A. Weakley & P. Comer. 2014. EcoVeg: a new approach to vegetation description and classification. Ecol. Monogr. 84: 533-561.spa
dc.relation.referencesFagerholm, N., N. Käyhkö & V. Van Eetvelde. 2013. Landscape Characterization Integrating Expert and Local Spatial Knowledge of Land and Forest Resources. Environ. Manage. 52: 660-682.spa
dc.relation.referencesFAO. 2010. Estado actual de la informacion sobre recursos forestales y cambio en el uso de la tierra (Instituto de hidrología, metereología y estudios ambientales (IDEAM), consultores fao). [WWW Document]. URL http://www.fao.org/3/ad392s/ad392s10.htmspa
dc.relation.referencesFick, S.E. & R.J. Hijmans. 2017. WorldClim Version2 | WorldClim - Global Climate Data [WWW Document]. Fick. URL http://www.worldclim.com/version2spa
dc.relation.referencesGómez, D., J. Navarro, A. Rivera & R.M.M. Agular. 2018. Iniciativa de conservación privada en zona de amortiguación del Parque Nacional Natural Chingaza. Univ. Dist. Francisco José Caldas 78.spa
dc.relation.referencesGonzález Delgado, M., R. Foroughbakhch Pournavab, L. Rocha Domínguez, M.A. Guzmán Lucio & H. González Rodríguez. 2017. Floristic composition and y structural characterization of the microphyllic desert scrub in Galeana, Nuevo León State. Rev. Mex. Cienc. For. 8: 83-98.spa
dc.relation.referencesGroom, G., C.A. Mücher, M. Ihse & T. Wrbka. 2006. Remote Sensing in Landscape Ecology: Experiences and Perspectives in a European Context. Landsc. Ecol. 21: 391-408.spa
dc.relation.referencesHerrmann, S.M., M. Brandt, K. Rasmussen & R. Fensholt. 2020. Accelerating land cover change in West Africa over four decades as population pressure increased. Commun. Earth Environ. 1: 1-10.spa
dc.relation.referencesIDEAM. 2015. Clasificación de los climas. Inst. Hidrol. Meteorol. Estud. Ambient. 18.spa
dc.relation.referencesIDEAM. 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Monitoreo y seguimiento de suelos y tierras. [WWW Document]. URLhttp://www.ideam.gov.co/spa
dc.relation.referencesLangebaek, C.H. 1987. Tres formas de acceso a recursos en territorio de la Confederación del Cocuy, siglo XVI. Bol. Mus. Oro 29-45.spa
dc.relation.referencesMeyer, W.B. & B.L. Turner. 1992. Human Population Growth and Global Land-Use/CoverChange. Annu. Rev. Ecol. Syst. 23: 39-61.spa
dc.relation.referencesNagenda, H., D.K. Munroe & J. Southworth. 2004. From pattern to process: landscape fragmentation and the analysis of land use/land cover change. Elsevier.spa
dc.relation.referencesNajafifar, A., J. Hosseinzadeh & A. Karamshahi. 2019. The Role of Hillshade, Aspect, and Toposhape in the Woodland Dieback of Arid and Semi-Arid Ecosystems: A Case Study in Zagros Woodlands of Ilam Province, Iran. J. Landsc. Ecol. 12: 79-91.spa
dc.relation.referencesNaturalista Colombia. 2021. Chusque (Chusquea scandens) [WWW Document]. NaturaListaCO. URL https://colombia.inaturalist.org/taxa/545653-Chusquea-scandensspa
dc.relation.referencesPedraza, S., A. Sánchez, N. Clerici, L. Ospina, A. Quintero & F.J. Escobedo. 2020. Perception of conservation strategies and nature’s contributions to people around Chingaza National Natural Park, Colombia | Environmental Conservation | Cambridge Core [WWW Document]. URL https://www.cambridge.org/core/journals/environmentalconservation/article/abs/perception-of-conservation-strategies-and-naturescontributions- to-people-around-chingaza-national-natural-parkcolombia/ 1A2FFA529F840ABEB2A8A00B01B9BF8Aspa
dc.relation.referencesPNN Chingaza. 2017. Reformulación participativa del plan de manejo Parque Nacional Natural Chingaza.spa
dc.relation.referencesQGIS development team. 2021. Geographic Information System Developers Manual. QGIS Association.spa
dc.relation.referencesQuijano Hoyos, M. & M.Á. Echeverry. 2018. Estrategias de conservación en el Parque Nacional Natural Chingaza a través de las coberturas vegetales y los planes de manejo. Trabajo de grado, Pontificia Universidad Javeriana, Bogotá.spa
dc.relation.referencesRangel-Ch., J.O. 2000. Clima de la región paramuna en Colombia. Editorial Unibiblos, Bogotá, Colombia.spa
dc.relation.referencesRodríguez Molina, P.M. & M. Velásquez Herrera. 2020. Actores armados ilegales y Parques Nacionales Naturales (PNN) en Colombia - una mirada posacuerdo de Paz de la Habana / 2016. Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesRudas, A. 2009. Unidades ecogeográficas y su relación con la diversidad vegetal de la Amazonia Colombiana. Tesis Doctoral, Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesRudas, A. 2020. Guía Raster. Curso de cartografía y SIG aplicado a estudios de biodiversidad. Instituto de CienciaS Naturales, Universidad Nacional de Colombia.spa
dc.relation.referencesSchweiger, B.R., J.K. Frey & J.W. Cain. 2021. A case for multiscale habitat selection studies of small mammals. J. Mammal. 102: 1249-1265.spa
dc.relation.referencesSingh, S. 2018. Understanding the role of slope aspect in shaping the vegetation attributes and soil properties in Montane ecosystems. Trop. Ecol. 59: 417-430.spa
dc.relation.referencesThornthwaite, C.W. 1948. An Approach toward a Rational Classification of Climate. JSTOR 38: 55-94.spa
dc.relation.referencesTisma, A., R. van der Velde, S. Nijhuis & M. Pouderoijen. 2014. A method for metropolitan landscape characterization; case study Rotterdam. SPOOL 1: 201-223.spa
dc.relation.referencesU.S.G.S. 2020. U.S. Geological Survey EarthExplorer [WWW Document]. URL https://earthexplorer.usgs.gov/spa
dc.relation.referencesVargas, O. & P. Pedraza. 2004. El Parque Nacional Natural Chingaza. Facultad de Ciencias, Universidad Nacional de Colombiaspa
dc.relation.referencesVásquez, T. 2002. Análisis del conflicto armado en Cundinamarca y Bogotá 1995-2001.spa
dc.relation.referencesWang, B., G. Zhang & J. Duan. 2015. Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. Int. Soil Water Conserv. Res. 3: 291-304.spa
dc.relation.referencesWarnock, S. & G. Griffiths. 2014. Landscape Characterisation: The Living Landscapes Approach in the UK. Landsc. Res. 40: 1-18.spa
dc.relation.referencesWei, H., L. Xiong, G. Tang, J. Strobl & K. Xue. 2020. Impact of human intervention and climate change on the land cover change in the glacial affected area of the Tianshan Mountains 2138.spa
dc.relation.referencesAlonso-F., A.M., B. Finegan, C. Brenes, S. Günter & X. Palomeque. 2017. Evaluación de la conectividad estructural y funcional en el corredor de conservación Podocarpus-Yacuambi, Ecuador. Caldasia 39: 143.spa
dc.relation.referencesArnillas, C.A., C. Tovar, M.W. Cadotte & W. Buytaert. 2017. From patches to richness: assessing the potential impact of landscape transformation on biodiversity. Ecosphere 8: e02004.spa
dc.relation.referencesBreevoort, A., G.A. Carosso & M.A. Mostajo-Radji. 2020. High-altitude populations need special considerations for COVID-19. Nat. Commun. 11: 3280.spa
dc.relation.referencesChailloux, M., J. Amsallem & J.-P. Chéry. 2020. FragScape v2.03 User Guide. Python.spa
dc.relation.referencesClegg, E.J., G.A. Harrison & P.T. Baker. 1970. The impact of High Altitudes on Human Population. Hum. Biol. 42: 486–518.spa
dc.relation.referencesCollinge, S.K. 2010. Spatial Ecology and Conservation. Nature 3: 7.spa
dc.relation.referencesCozzi, G., F. Broekhuis, J.W. McNutt & B. Schmid. 2013. Comparison of the effects of artificial and natural barriers on large African carnivores: implications for interspecific relationships and connectivity. J. Anim. Ecol. 82: 707–715.spa
dc.relation.referencesDe Souza, C.A.M., S.L.C. Daza, J.A. de Lima Filho, P.R.A. Campos & V.M. de Oliveira. 2020. Effect of dynamic fragmentation on biodiversity in a heterogeneous environment. Phys. Lett. A 384: 126542.spa
dc.relation.referencesForman, R.T., R.T.T. Forman & R.T.T. Forman. 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press.spa
dc.relation.referencesGirvetz, E.H., J.H. Thorne & J.A.G. Jaeger. 2007. Integrating Habitat Fragmentation Analysis into Transportation Planning Using the Effective Mesh Size Landscape Metric. https://escholarship.org/uc/item/6cj9g88f.spa
dc.relation.referencesGodinho, M.B. de C. & F.R. da Silva. 2018. The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Sci. Rep. 8: 3427.spa
dc.relation.referencesHasa, E., A. Hysa & Z. Teqja. 2021. Quantifying landscape fragmentation via effective mesh size landscape metric: Case of Albania. J. Agric. For. 67.spa
dc.relation.referencesIngenieros sin Fronteras. 2015. Diagnóstico Productivo Agroambiental.spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi. 2020. Geoportal IGAC-Datos abiertos [WWW Document]. URL https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografiaspa
dc.relation.referencesKopuchian, C., L. Campagna, D.A. Lijtmaer, G.S. Cabanne, N.C. García, P.D. Lavinia, P.L. Tubaro, I. Lovette & A.S. Di Giacomo. 2020. A test of the riverine barrier hypothesis in the largest subtropical river basin in the Neotropics. Mol. Ecol. 29: 2137–2149.spa
dc.relation.referencesMcDonald, W.R. & C.C. St. Clair. 2004. The Effects of Artificial and Natural Barriers on the Movement of Small Mammals in Banff National Park, Canada. Oikos 105: 397–407.spa
dc.relation.referencesMcGarigal, K., S.A. Cushman & E. Ene. 2012. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps [WWW Document]. URL http://www.umass.edu/landeco/research/fragstats/fragstats.htmlspa
dc.relation.referencesMitchell, M.G.E., A.F. Suarez-Castro, M. Martinez-Harms, M. Maron, C. McAlpine, K.J. Gaston, K. Johansen & J.R. Rhodes. 2015. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 30: 190–198.spa
dc.relation.referencesMoser, B., J.A.G. Jaeger, U. Tappeiner, E. Tasser & B. Eiselt. 2007. Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landsc. Ecol. 22: 447–459.spa
dc.relation.referencesMullu, D. 2016. A Review on the Effect of Habitat Fragmentation on Ecosystem. J. Nat. Sci. Res. 6: 15.spa
dc.relation.referencesOlaya-Angarita, J.A., C.N. Díaz-Pérez, M.E. Morales-Puentes, J.A. Olaya-Angarita, C.N. Díaz-Pérez & M.E. Morales-Puentes. 2019. Composición y estructura de la transición bosque-páramo en el corredor Guantiva-La Rusia (Colombia). Rev. Biol. Trop. 67: 755–768.spa
dc.relation.referencesPNN Chingaza. 2017. Reformulación participativa del plan de manejo Parque Nacional Natural Chingaza.spa
dc.relation.referencesQuijano Hoyos, M. & M.Á. Echeverry. 2018. Estrategias de conservación en el Parque Nacional Natural Chingaza a través de las coberturas vegetales y los planes de manejo. Trabajo de grado, Pontificia Universidad Javeriana, Bogotá.spa
dc.relation.referencesRangel-Ch., J.O. 2000. Diversidad biótica III. La vida paramuna. Universidad Nacional de Colombia.spa
dc.relation.referencesRodríguez, D., A. Reyes & K. Garcia-Benjarano. 2014. Plan de acción para la conservación del Oso Andino en la Región del Guavio. Corp. Autónoma Reg. Guavio Gachalá Cundinamarca 71.spa
dc.relation.referencesRojas, J.E., A. Varela & K. Osher. 2018. Plan de Conservación y Manejo de las Especies de Frailejonales Presentes en el Territorio CAR. Pontificia Universidad Javeriana.spa
dc.relation.referencesTurner, M.G., R.V. O’Neill, R.H. Gardner & B.T. Milne. 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landsc. Ecol. 3: 153–162.spa
dc.relation.referencesU.S. Geological Survey. 2020. Earthquake Lists, Maps, and Statistics, [WWW Document].spa
dc.relation.referencesVasconcelos, T., M. Rodriguez & B. Hawkins. 2011. Biogeographic Distribution Patterns of South American Amphibians: A Regionalization Based on Cluster Analysis. Nat Conserv 9: 67–72.spa
dc.relation.referencesVelasco-Linares, P. & O. Vargas. 2007. 2. PROBLEMÁTICA DE LOS BOSQUES ALTOANDINOS, p. 54. In Estrategias para la restauración ecológica de los bosques altoandinos. Universidad Nacional de Colombia.spa
dc.relation.referencesWilcove, D.S., C.H. McLellan & A.P. Dobson. 1986. Habitat fragmentation in the temperate zone, p. 237–256. In Conservation Biology. The Science of Scarcity and Diversity. Sinauer, Sunderland, MA.spa
dc.relation.referencesWu, J., M. Fisher & U. Pascual. 2011. Urbanization and the Viability of Local Agricultural Economies. Land Econ. 87: 109–125.spa
dc.relation.referencesZuzolo, D., C. Guarino, C. Formato, M. Tartaglia, R. Sciarrillo, B. Paura & A. Prigioniero. 2021. Divide et Disperda: Thirty Years of Fragmentation and Impacts on the Eco-Mosaic in the Case Study of the Metropolitan City of Naples. Land 10: 485.spa
dc.relation.referencesAguilera, D.A. & J.C. Ríos. 2017. Plantas Nativas de la Universidad Nacional-Sede Bogotá. Universidad Nacional de Colombia.spa
dc.relation.referencesAlzate, F., Á. Idárraga, O. Díaz & W. Rodríguez. 2013. Flora de los bosques montanos de medellin by Herbario Universidad de Antioquia - Issuu. Universidad de Antioquia.spa
dc.relation.referencesArroyave, M. del P., M.I. Posada & M.E. Gutiérrez. 2014. Catálogo virtual de flora del Valle de Aburrá [WWW Document]. Univ. EIA. URL https://catalogofloravalleaburra.eia.edu.co/spa
dc.relation.referencesAuffret, A.G., Y. Rico, J.M. Bullock, D.A.P. Hooftman, R.J. Pakeman, M.B. Soons, A. Suárez‐Esteban, A. Traveset, H.H. Wagner & S.A.O. Cousins. 2017. Plant functional connectivity – integrating landscape structure and effective dispersal. J. Ecol. 105: 1648–1656.spa
dc.relation.referencesAvella M., A., S. Torres, W. Gomez Anaya & M. Pardo. 2014. Los páramos y bosques altoandinos del pantano de Monquentiva o pantano de Martos (Guatavita, Cundinamarca, Colombia): caracterización ecológica y estado de conservación. Biota 1: 3.spa
dc.relation.referencesBennett, A. 2003. Linkages in the Landscape; The Role of Corridors and Connectivity in Wildlife Conservation.spa
dc.relation.referencesBernal, R., S.R. Gradstein & M. Celis. 2019. Catálogo de plantas y líquenes de Colombia.spa
dc.relation.referencesCalderón-Sáenz, E. & H. Mendoza-Cifuentes. 2000. Melastomatáceas de los géneros Axinaea, Blakea, Castratella, Centronia, Killipia, Meriania, Monochaetum, Ossaea y Tibouchina en Colombia. Biota Colomb. 1.spa
dc.relation.referencesCantillo Higuera, E.E., V. Castiblanco Gutiérrez, D.F. Pinilla Mondragón & C.L. Alvarado. 2008. Caracterización y valoración del potencial de regeneración del banco de semillas germinable de la reserva forestal cárpatos (Guasca, Cundinamarca). Colomb. For. 11: 45–70.spa
dc.relation.referencesCAR, C.A.R. de C. 1984. Flora de los Andes: cien especies del altiplano Cundi-Boyacense.spa
dc.relation.referencesCastellanos-Castro, C. & M.A. Bonilla. 2011. Grupos funcionales de plantas con potencial uso para la restauración en bordes de avance de un bosque altoandino. Acta Biológica Colomb. 16: 175–184.spa
dc.relation.referencesCortés, L.A., S. Camacho-Ballesteros & M. Matoma-Cardona. 2020. Estudio de la composición y estructura del bosque andino localizado en Potrero Grande, Chipaque (Colombia). Rev. UDCA Actual. Divulg. Científica 23.spa
dc.relation.referencesCrooks, K.R. 2006. Connectivity Conservation. Cambridge University Press.spa
dc.relation.referencesDoria, M.G., N. Pabón-Mora & F. González. 2012. Reassessing Inflorescence and Floral Morphology and Development in Hedyosmum (Chloranthaceae). Int. J. Plant Sci. 173.spa
dc.relation.referencesForman, R.T. & L.E. Alexander. 1998. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29: 207 . 231.spa
dc.relation.referencesForman, R.T., R.T.T. Forman & R.T.T. Forman. 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press.spa
dc.relation.referencesGodinho, M.B. de C. & F.R. da Silva. 2018. The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Sci. Rep. 8: 3427.spa
dc.relation.referencesGreen, A.J., C. Baltzinger & Á. Lovas-Kiss. 2021. Plant dispersal syndromes are unreliable, especially for predicting zoochory and long-distance dispersal. Oikos n/a.spa
dc.relation.referencesGustafsson, M.H.G., K. Winter & V. Bittrich. 2007. Diversity, Phylogeny and Classification of Clusia, p. 95–116. In U. Lüttge (ed.). Clusia: A Woody Neotropical Genus of Remarkable Plasticity and Diversity, Ecological Studies. Springer, Berlin, Heidelberg.spa
dc.relation.referencesHerzog, I. 2014. Least-cost Paths – Some Methodological Issues. Internet Archaeol. 36.spa
dc.relation.referencesHilty, J., G.L. Worboys, A. Keeley, S. Woodley, B.J. Lausche, H. Locke, M. Carr, I. Pulsford, J. Pittock, J.W. White, D.M. Theobald, J. Levine, M. Reuling, J.E.M. Watson, R. Ament & G.M. Tabor. 2020. Guidelines for conserving connectivity through ecological networks and corridors. IUCN, International Union for Conservation of Nature.spa
dc.relation.referencesJaimes-Sánchez, V. & D. Rivera-Ospina. 1991. Banco de semillas y tendencias en la regeneración natural de un bosque altoandino en la región de Monserrate (Cundinamarca, Colombia). Pérez-Arbelaezia 2: 3–35.spa
dc.relation.referencesLozano, F.M. & M.O. de Amézquita. 1986. Propagación vegetativa del Sietecueros [Tibouchina lepidota (Bonpl.) Baill]. Caldasia 14: 491–501.spa
dc.relation.referencesMacArthur, R.H. & E.O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press.spa
dc.relation.referencesMcRae, B.H. 2006. Isolation by resistance. Evolution 60: 1551–1561.spa
dc.relation.referencesMcRae, B.H., B.G. Dickson, T.H. Keitt & V.B. Shah. 2008. Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation. Ecology 89: 2712–2724.spa
dc.relation.referencesMcRae, B.H. & D.M. Kavanagh. 2011. Linkage Mapper Connectivity Analysis Software. The Nature Conservancy.spa
dc.relation.referencesMcRae, B.H., V.B. Shah & T. Mohapatra. 2013. Circuitscape 4 User Guide [WWW Document]. Nat. Conserv. URL https://circuitscape.org/docs/spa
dc.relation.referencesMontes-Pulido, C. 2011. Estado del conocimiento en Weinmannia tomentosa L.f. (encenillo) y algunas propuestas de estudio sobre su regeneración. Rev. Investig. Agrar. Ambient. 2.spa
dc.relation.referencesPNN Chingaza. 2017. Reformulación participativa del plan de manejo Parque Nacional Natural Chingaza.spa
dc.relation.referencesPOWO. 2021. Plants of the World Online [WWW Document]. Plants World Online Facil. R. Bot. Gard. Kew. URL http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:427496-1spa
dc.relation.referencesRomero Mejía, A. 2005. Propuesta metodológica para seleccionar especies pioneras leñosas con fines de restauración ecológica dentro de la reserva biológica Cachalú (Encino Santander). Rev. Colomb. For. 9: 52–59.spa
dc.relation.referencesSaavedra, F., I. Hensen, A. Apaza Quevedo, E.L. Neuschulz & M. Schleuning. 2017. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia. Acta Oecologica 85: 85–92.spa
dc.relation.referencesSalamanca, B. & G. Camargo. 2000. PROTOCOLO DISTRITAL DE RESTAURACIÓN ECOLÓGICA . DAMA-Alcaldía de Bogotá.spa
dc.relation.referencesSchupp, E.W., P. Jordano & J.M. Gómez. 2010. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188: 333–353.spa
dc.relation.referencesSierra Escobar, J.A., D.M. Henao, D.S. Suaza, M.V.G. Garcés & M.A.Q. Abril. 2020. Especies Pioneras, Persistentes Y Ensayos De Germinación En Bosques Montanos De La Cordillera Central, Colombia. Cienc. En Desarro. 11: 7–24.spa
dc.relation.referencesThiele, J., S. Buchholz & J. Schirmel. 2018. Using resistance distance from circuit theory to model dispersal through habitat corridors. J. Plant Ecol. 11: 385–393.spa
dc.relation.referencesTischendorf, L. & L. Fahrig. 2000. On the usage and measurement of landscape connectivity. Oikos 90: 7–19.spa
dc.relation.referencesTodzia, C.A. 1988. Flora Neotropica on JSTOR. The New York Botanical Garden.spa
dc.relation.referencesWade, A.A., K.S. McKelvey & M.K. Schwartz. 2015. Resistance-surface-based wildlife conservation connectivity modeling: Summary of efforts in the United States and guide for practitioners. Gen Tech Rep RMRS-GTR-333 Fort Collins CO US Dep. Agric. For. Serv. Rocky Mt. Res. Stn. 93 P 333.spa
dc.relation.referencesBocco, G., M. Mendoza & A. Velázquez. 2001. Remote sensing and GIS-based regional geomorphological mapping a tool for land use planning in developing countries. Geomorphology 39: 211-219.spa
dc.relation.referencesJaeger, J.A.G., R. Bertiller & C. Schwick. 2007. Degree of Lanscape Fragmentation in Switzerland: Quantitative analysis 1885-2002 and implications for traffic planning and regional planning. Off. Fédéral Stat.spa
dc.relation.referencesRiley, S.J., S.D. DeGloria & R. Elliot. 1999. A Terrain Ruggedness Index that Quantifies Topographic Heterogeneity. Intermt. J. Sci. 15: 23�����27.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc350 - Administración pública y ciencia militar::354 - Administración pública de la economía y el medio ambientespa
dc.subject.proposalStructural and functional connectivityeng
dc.subject.proposalCharacterization of landscapeeng
dc.subject.proposalChingaza National Natural Parkeng
dc.subject.proposalConectividad estructural y funcionalspa
dc.subject.proposalCaracterización del paisajespa
dc.subject.proposalParque Nacional Natural Chingazaspa
dc.subject.unescoprotección forestalspa
dc.subject.unescoConectividad del hábitatspa
dc.subject.unescohabitat connectivityeng
dc.subject.unescoforest protectioneng
dc.titleFunctional connectivity as a conservation tool in the landscapes of the north of Chingaza National Natural Parkeng
dc.title.translatedConectividad Funcional como herramienta de conservación en paisajes al norte del Parque Nacional Natural Chingazaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_1018458412.2022.pdf
Tamaño:
4.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: