En 19 día(s), 18 hora(s) y 47 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación de tamices moleculares en base zeolita X para la separación de un efluente del proceso de Acoplamiento Oxidativo de Metano (OCM)

dc.contributor.advisorRodriguez Niño, Gerardo
dc.contributor.advisorOrjuela Londoño, Alvaro
dc.contributor.authorDiaz Ortiz, Hector Dario
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2022-09-15T21:17:10Z
dc.date.available2022-09-15T21:17:10Z
dc.date.issued2021
dc.descriptionilustraciones, graficasspa
dc.description.abstractLos procesos industriales actuales para la obtención de olefinas de alta pureza generalmente involucran el uso de destilación criogénica a alta presión en la separación de olefinas y parafinas. Sin embargo, este proceso consume una gran cantidad energía y requiere grandes costos de capital y operativos. Para reducir el consumo de energía y mejorar el potencial económico del proceso, se requieren nuevas técnicas de separación. Entre las diferentes alternativas con potencial para implementar en la industria se destaca la adsorción selectiva con variación de presión, la cual permite la remoción selectiva de etileno de la mezcla de gases. A pesar de que el proceso es bien conocido, es necesario el desarrollo de materiales cada vez más selectivos y adecuados para la operación industrial. La mayoría de los esfuerzos de investigación en este tema se han centrado en el uso de carbones activados y silicatos cristalinos (zeolitas). Teniendo en cuenta lo anterior, se sintetizó una zeolita tipo Na-X mediante tratamiento hidrotermal. La síntesis se llevó a cabo en reactores discontinuos a diferentes composiciones de gel, temperaturas y tiempos de cristalización. El diseño experimental siguió un método Box Behnken utilizando como meta la cristalinidad del material adsorbente (caracterizado por XRD). Posteriormente, el material sintetizado se sometió a un proceso de intercambio iónico con calcio, con el fin de mejorar el rendimiento y la selectividad para la adsorción de etileno. Una vez obtenida, la zeolita Ca-X, se sometió a un proceso de aglomeración para obtener tamices moleculares granulados (aprox. 3 mm de diámetro). Las partículas obtenidas se caracterizaron midiendo el área superficial, distribución de poros, capacidad de adsorción e isotermas de adsorción con gases OCM. Los resultados indican que el material es adecuado para ser utilizado como adsorbente en sistemas de separación por oscilación de presión para gases OCM. (Texto tomado de la fuente)spa
dc.description.abstractCurrent industrial processes for the isolation of high purity olefins generally involve high pressure cryogenic distillation of olefins and paraffins. This process consumes a large amount of energy and requires large capital and operating costs. To reduce energy consumption and improve the economic potential of the process, new separation techniques are required. Among the different alternatives, selective adsorption and pressure variation can be used for the selective removal of ethylene from the gas mixture. Although the process is well known, it is necessary to develop more selective materials suitable for industrial operation. Most research efforts on this topic have focused on the use of activated carbons and crystalline silicates (zeolites). Considering the above, a Na-X type zeolite was synthesized by hydrothermal treatment. The synthesis was carried out in batch reactors at different gel compositions, temperatures, and crystallization times. The experimental design followed a Box Behnken method using the crystallinity of the adsorbent material (characterized by XRD) as a goal. Subsequently, the synthesized material was subjected to an ion exchange process with calcium, to improve the performance and selectivity for the adsorption of ethylene. Once obtained, the Ca-X zeolite was subjected to an agglomeration process to obtain granulated molecular sieves (approx. 3 mm in diameter). The particles obtained were characterized by measuring the surface area, pore distribution, adsorption capacity and adsorption isotherms with OCM gases. The results indicate that the material is suitable for use as an adsorbent in pressure swing separation systems for OCM gases.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaMateriales y tecnologías de separaciónspa
dc.format.extentxxi, 94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82293
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBritish Petroleum Co, “Statistical Review of World Energy 2017,” bp.com. 2017, Accessed: Feb. 26, 2018. [Online]. Available: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.spa
dc.relation.referencesH. K. Abdel-Aal, M. A. Aggour, and M. A. Fahim, Petroleum and Gas Field Processing, Segunda ed. CRC Press, 2015.spa
dc.relation.referencesK. M. Sundaram, M. M. Shreehan, and E. F. Olszewski, “Ethylene,” in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., 2000.spa
dc.relation.referencesX. S. Nghiem, “Ethylene Production by Oxidative Coupling of Methane : New Process Flow Diagram Based on Adsorptive Separation.” p. 142, 2014.spa
dc.relation.referencesP. Magnussen, “Ethylene-Keystone to the Petrochemical Industry.,” Chemie Ing. Tech., vol. 53, no. 2, pp. 116–116, Jan. 1981, doi: 10.1002/cite.330530212.spa
dc.relation.referencesICIS, Ethylene Production and Manufacturing Process. 2007.spa
dc.relation.referencesH. Zimmermann, R. Walzl, H. Zimmermann, and R. Walzl, “Ethylene,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009.spa
dc.relation.referencesW. L. Leffler, in Nontechnical Language Fourth Edition. PennWell Corp, 2010.spa
dc.relation.referencesD. Salerno, H. Arellano-Garcia, and G. Wozny, “Ethylene separation by feed-splitting from light gases,” Energy, vol. 36, no. 7, pp. 4518–4523, 2011, doi: 10.1016/j.energy.2011.03.064.spa
dc.relation.referencesY. Gambo, A. A. Jalil, S. Triwahyono, and A. A. Abdulrasheed, “Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review,” J. Ind. Eng. Chem., vol. 59, pp. 218–229, Mar. 2018, doi: 10.1016/J.JIEC.2017.10.027spa
dc.relation.referencesH. R. Godini, A. Gili, O. Görke, U. Simon, K. Hou, and G. Wozny, “Performance Analysis of a Porous Packed Bed Membrane Reactor for Oxidative Coupling of Methane: Structural and Operational Characteristics,” Energy & Fuels, vol. 28, no. 2, pp. 877–890, Feb. 2014, doi: 10.1021/ef402041b.spa
dc.relation.referencesH. R. Godini et al., “Concurrent reactor engineering, separation enhancement and process intensification; comprehensive UniCat approach for Oxidative Coupling of Methane (OCM),” Czas. Tech. Mech., vol. R. 109, z., 2012, Accessed: Mar. 02, 2018. [Online]. Available: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-6174cdc6-59d6-45c1-a3af-f802183e8f83.spa
dc.relation.referencesC. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, no. US2944627 A. 1960.spa
dc.relation.referencesD. M. Ruthven, Principles of Adsorption and Adsorption Processes, First. New York: Wiley-Interscience, 1984.spa
dc.relation.referencesA. Garcia, “Síntesis , Caracterización y Evaluación de un Tamiz Molecular para la Deshidratación de Etanol Azeotrópico,” Universidad Nacional de Colombia, Bogotá, 2012.spa
dc.relation.referencesR. T. Yang, Adsorbents: Fundamentals and Applications, Segunda ed. Michigan: Wiley, 2003.spa
dc.relation.referencesR. W. W. Triebe, F. H. H. Tezel, and K. C. C. Khulbe, “Adsorption of methane, ethane and ethylene on molecular sieve zeolites,” Gas Sep. Purif., vol. 10, no. 1, pp. 81–84, Jan. 1996, doi: 10.1016/0950-4214(95)00016-X.spa
dc.relation.referencesJ. M. Gomez Martin, “Síntesis, Caracterización Y Aplicaciones Catalíticas De Zeolitas Básicas,” Tesis Doctoral, UNIVERSIDAD COMPLUTENSE DE MADRID, Madrid, 2001.spa
dc.relation.references“Gas Separation by Zeolites,” in handbook of zeolite science and technology, Michigan: CRC Press, 2003, p. 1204.spa
dc.relation.referencesF. Jendoubi, A. Mgaidi, and M. El Maaoui, “Kinetics of the dissolution of silica in aqueous sodium hydroxide solutions at high pressure and temperature,” Can. J. Chem. Eng., vol. 75, no. 4, pp. 721–727, Aug. 1997, doi: 10.1002/cjce.5450750409.spa
dc.relation.referencesH. Lechert and H. Kacirek, “Investigations on the crystallization of X-type zeolites,” Zeolites, vol. 11, no. 7, pp. 720–728, Sep. 1991, doi: 10.1016/S0144-2449(05)80178-2.spa
dc.relation.referencesD. Breck, E. F.-M. sieves, and undefined 1968, “Synthesis and properties of Union Carbide zeolites L, X and Y,” Soc. Chem. Ind. London.spa
dc.relation.referencesG. H. Kühl, “Crystallization of low-silica faujasite ( SiO2 Al2O3∼2.0),” Zeolites, vol. 7, no. 5, pp. 451–457, Sep. 1987, doi: 10.1016/0144-2449(87)90014-5.spa
dc.relation.referencesH. Lechert, “The mechanism of faujasite growth studied by crystallization kinetics,” Zeolites, vol. 17, no. 5–6, pp. 473–482, Nov. 1996, doi: 10.1016/S0144-2449(96)00041-3.spa
dc.relation.referencesP. Recovery, C. Size, and G. H. Kiihl, “Low-silica Type X ( LSX ),” vol. 7, no. 1987, pp. 3–5, 2001.spa
dc.relation.referencesASTM, “ASTM D3906-03. Standard Test Method for Determination of Relative X-ray Diffraction Intensities of Faujasite-Type Zeolite-Containing Materials,” vol. i, no. Reapproved 2008. pp. 1–7, 2008, doi: 10.1520/D3906-03R08.2spa
dc.relation.referencesK. Jansen, H. E. Robson, and K. P. C. N.-R. Lillerud, “Characterization of zeolites by SEM,” Verif. Synth. Zeolitic Mater., vol. 2nd Revise, pp. 55-57 ST-Characterization of zeolites by SEM, 2001, doi: http://dx.doi.org/10.1016/B978-044450703-7/50109-5.spa
dc.relation.references“Chapter 44 - FAU Linde Type X Si(55), Al (45),” in Verified Syntheses of Zeolitic Materials, Amsterdam: Elsevier Science, 2001, pp. 150–152.spa
dc.relation.referencesA. Van Miltenburg, W. Zhu, F. Kapteijn, and J. A. Moulijn, “Adsorptive Separation of Light Olefin/Paraffin Mixtures,” Chem. Eng. Res. Des., vol. 84, no. 5, pp. 350–354, May 2006, Accessed: Jul. 18, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263876206729045?via%3Dihubspa
dc.relation.referencesD. M. Ruthven and S. C. Reyes, “Adsorptive separation of light olefins from paraffins,” Microporous Mesoporous Mater., vol. 104, no. 1–3, pp. 59–66, Aug. 2007, doi: 10.1016/j.micromeso.2007.01.005.spa
dc.relation.referencesH. Ramírez et al., “Synthesis of coal fly ash zeolite for the catalytic wet peroxide oxidation of Orange II,” Environ. Sci. Pollut. Res., vol. 26, no. 5, pp. 4277–4287, Feb. 2019, doi: 10.1007/s11356-018-3315-1.spa
dc.relation.referencesH. de la Hoz, Evaluacion Hidraulica de torres empacadas, 1st ed. Universidad Nacional de Colombia, 2008.spa
dc.relation.referencesS. Liu, N. Liu, and J. Li, “Silicosis caused by rice husk ashes,” J. Occup. Health, vol. 38, no. 2, pp. 57–62, Apr. 1996, doi: 10.1539/joh.38.57.spa
dc.relation.referencesA. M. Yusof, N. A. Nizam, and N. A. A. Rashid, “Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites,” J. Porous Mater., vol. 17, no. 1, pp. 39–47, Feb. 2010, doi: 10.1007/s10934-009-9262-y.spa
dc.relation.referencesC. A. Arcos, D. Macíaz Pinto, and J. E. Rodríguez Páez, “La cascarilla de arroz como fuente de SiO2,” Rev. Fac. Ing. Univ. Antioquia, no. 47, pp. 7–20, 2007.spa
dc.relation.referencesP. R. dos Santos de Castroa, A. Á. B. Maia, and R. S. Angélica, “Study of the thermal stability of faujasite zeolite synthesized from kaolin waste from the Amazon,” Mater. Res., vol. 22, no. 5, p. 20190321, Mar. 2019, doi: 10.1590/1980-5373-mr-2019-0321.spa
dc.relation.referencesN. M. Musyoka, L. F. Petrik, E. Hums, A. Kuhnt, and W. Schwieger, “Thermal stability studies of zeolites A and X synthesized from South African coal fly ash,” Res. Chem. Intermed., vol. 41, no. 2, pp. 575–582, May 2015, doi: 10.1007/s11164-013-1211-3.spa
dc.relation.referencesL. Garcı́a et al., “Synthesis and Granulation of a 5A Zeolite-Based Molecular Sieve and Adsorption Equilibrium of the Oxidative Coupling of Methane Gases,” J. Chem. Eng. Data, vol. 62, no. 4, pp. 1550–1557, Apr. 2017, doi: 10.1021/acs.jced.7b00061.spa
dc.relation.referencesJ. A. C. Silva, A. F. Cunha, K. Schumann, and A. E. Rodrigues, “Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite,” Microporous Mesoporous Mater., vol. 187, pp. 100–107, Mar. 2014, doi: 10.1016/j.micromeso.2013.12.017.spa
dc.relation.referencesC. W. Purnomo, C. Salim, and H. Hinode, “Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash,” Microporous Mesoporous Mater., vol. 162, pp. 6–13, 2012, doi: 10.1016/j.micromeso.2012.06.007.spa
dc.relation.referencesV. P. Mulgundmath, F. H. Tezel, T. Saatcioglu, and T. C. Golden, “Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite,” Can. J. Chem. Eng., vol. 90, no. 3, pp. 730–738, Jun. 2012, doi: 10.1002/cjce.20592.spa
dc.relation.referencesY. Li and R. T. Yang, “Hydrogen storage in low silica type X zeolites,” J. Phys. Chem. B, vol. 110, no. 34, pp. 17175–17181, 2006, doi: 10.1021/jp0634508.spa
dc.relation.referencesS. Hosseinpour, S. Fatemi, Y. Mortazavi, M. Gholamhoseini, and M. T. Ravanchi, “Performance of CaX Zeolite for Separation of C2H6 , C2H4, and CH4 by Adsorption Process; Capacity, Selectivity, and Dynamic Adsorption Measurements,” Sep. Sci. Technol., vol. 46, no. 2, pp. 349–355, Dec. 2010, doi: 10.1080/01496395.2010.508478.spa
dc.relation.referencesG. Narin et al., “Light olefins/paraffins separation with 13X zeolite binderless beads,” Sep. Purif. Technol., vol. 133, pp. 452–475, Sep. 2014, doi: 10.1016/j.seppur.2014.06.060.spa
dc.relation.referencesP. A. P. Mendes, A. M. Ribeiro, K. Gleichmann, A. F. P. Ferreira, and A. E. Rodrigues, “Separation of CO 2 /N 2 on binderless 5A zeolite,” J. CO2 Util., vol. 20, pp. 224–233, Jul. 2017, doi: 10.1016/j.jcou.2017.05.003.spa
dc.relation.referencesD. D. Do, Adsorption Analysis: Equilibria and Kinetics, vol. 2. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1998.spa
dc.relation.referencesT. Montanari et al., “CO2 separation and landfill biogas upgrading: A comparison of 4A and 13X zeolite adsorbents,” Energy, vol. 36, no. 1, pp. 314–319, Jan. 2011, doi: 10.1016/j.energy.2010.10.038.spa
dc.relation.referencesR. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. Losch, “Adsorption of CO 2 on Zeolites at Moderate Temperatures,” Energy & Fuels, vol. 19, no. 3, pp. 1153–1159, May 2005, doi: 10.1021/ef040059h.spa
dc.relation.referencesS. Oddy, J. Poupore, and F. H. Tezel, “Separation of CO2 and CH4 on CaX zeolite for use in Landfill gas separation,” Can. J. Chem. Eng., vol. 91, no. 6, pp. 1031–1039, Jun. 2013, doi: 10.1002/cjce.21756.spa
dc.relation.referencesH. Ahn, J.-H. Moon, S.-H. Hyun, and C.-H. Lee, “Diffusion Mechanism of Carbon Dioxide in Zeolite 4A and CaX Pellets,” Adsorption, vol. 10, no. 2, pp. 111–128, Jun. 2004, doi: 10.1023/B:ADSO.0000039867.14756.ac.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembINDUSTRIA DE LA ZEOLITAspa
dc.subject.lembZeolite industryeng
dc.subject.proposalZeolitasspa
dc.subject.proposalAdsorciónspa
dc.subject.proposalProcesos de Separaciónspa
dc.subject.proposalZeoliteseng
dc.subject.proposalAdsorptioneng
dc.subject.proposalSeparation Processeseng
dc.titleEvaluación de tamices moleculares en base zeolita X para la separación de un efluente del proceso de Acoplamiento Oxidativo de Metano (OCM)spa
dc.title.translatedEvaluation of molecular sieves based on zeolite X for the separation of an effluent from the Oxidative Coupling of Methane (OCM) processeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033759776.2021.pdf
Tamaño:
2.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: