Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes

dc.contributor.advisorCardona Alzate, Carlos Ariel
dc.contributor.authorRueda Duran, César Augusto
dc.contributor.researchgroupProcesos Químicos Cataliticos y Biotecnológicosspa
dc.date.accessioned2022-03-03T21:46:32Z
dc.date.available2022-03-03T21:46:32Z
dc.date.issued2021
dc.descriptiontablas.spa
dc.description.abstractProcess engineering design involves several stages: conceptual design, basic design, and detailed design. All the design stages are essential for developing a feasible design of a process; however, the time that every engineering stage can take to define a scope and the investment (CapEx), in conjunction with the cost of the engineering, could represent an obstacle or limitation for making quick investment decisions. In this thesis, the conceptual design stage is provided with elements of the detailed design in an early stage through the adaptation of a methodology for the economic assessment of processes in the conceptual design stage, emphasizing the potential impact in the CapEx. In this work, four industrial cases are presented and studied in which the adapted methodology for the detailed economic assessment of processes is utilized to refine the process calculations based on heuristics, engineering guidelines, best practices for sizing of equipment, engineering standards, constructibility, among other, to determine the level of investment based on the definition of the technical scope from a process engineering perspective. The level of uncertainty in the definition of the technical scope for an improvement or a new process is reduced with applying the proposed methodology into the conceptual design stage. The most important aspects are identified to be linked and included in the conceptual design stage are presented in the methodology, thus the advantages and limitations. (Texto tomado de la fuente)eng
dc.description.abstractEl diseño de ingeniería de procesos involucra diferentes etapas: diseño conceptual, diseño básico y diseño detallado. Todas las etapas de diseños son importantes para el desarrollo de un diseño de procesos viable, sin embargo, el tiempo que cada etapa de ingeniería puede tomar para definir un alcance y la inversión, junto con el costo de la ingeniería para su desarrollo, puede ser un obstáculo o una limitante para la toma rápida de decisiones de inversión. En la presente tesis, la etapa de diseño conceptual es provista de elementos propios del diseño detallado en etapa temprana, a través de la adaptación de una metodología para la evaluación económica de procesos en la etapa de diseño conceptual con énfasis en el impacto potencial sobre el CapEx. En este trabajo, se presentan y se estudian cuatro casos industriales en los cuales la metodología adaptada para la evaluación económica de procesos es usara para refinar los cálculos de procesos con base en heurísticas, guías de ingeniería, mejores prácticas para el diseño de equipos, estándares de ingeniería, constructibilidad, entre otros, para determinar así el nivel de inversión basado en la definición del alcance técnico desde una perspectiva de ingeniería de procesos. La aplicación de la metodología propuesta en la etapa de diseño conceptual permite reducir el nivel de incertidumbre en la definición del alcance técnico de una mejora o un nuevo proceso. La identificación de los aspectos más importantes que puede ver vinculados e incluidos en la etapa de diseño conceptual es presentada en la metodología, así como las ventajas y limitaciones.spa
dc.description.curricularareaQuímica Y Procesosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Automáticaspa
dc.description.researchareaIngeniería de Procesos Químicos y Biotecnológicosspa
dc.format.extentxxiii, 268 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81128
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Químicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesM. J. French, Conceptual Design for Engineers. 1985.eng
dc.relation.referencesG. Palh and W. Beitz, Engineering Design A Systematic Approach, no. 2a. Springer, 1996.eng
dc.relation.referencesW. Hsu and B. Liu, “Conceptual design: issues and challenges,” Comput. Des., vol. 32, no. 14, pp. 849–850, 2000, doi: 10.1016/S0010-4485(00)00074-9.eng
dc.relation.referencesB. Lotter, Manufacturing assembly handbook. Butterworths, 1989.eng
dc.relation.referencesL. Wang, W. Shen, H. Xie, J. Neelamkavil, and A. Pardasani, “Collaborative conceptual design—state of the art and future trends,” Comput. Des., vol. 34, no. 13, pp. 981–996, 2002, doi: 10.1016/S0010-4485(01)00157-9.eng
dc.relation.referencesG. Stephanopoulos and G. V. Reklaitis, “Process systems engineering: From Solvay to modern bio- and nanotechnology.,” Chem. Eng. Sci., vol. 66, no. 19, pp. 4272–4306, Oct. 2011, doi: 10.1016/j.ces.2011.05.049.eng
dc.relation.referencesI. E. Grossmann and A. W. Westerberg, “Research challenges in process systems engineering,” AIChE J., vol. 46, no. 9, pp. 1700–1703, Sep. 2000, doi: 10.1002/aic.690460902.eng
dc.relation.referencesA. D. Little, Chemical Engineering Research. In: KIRKPATRICH, S.D. ed. Twenty-five Years of Chemical Engineering Progress. New York: American Institute of Chemical Engineers, 1933.eng
dc.relation.referencesD. F. Rudd, “The synthesis of system designs: I. Elementary decomposition theory,” AIChE J., vol. 14, no. 2, pp. 343–349, Mar. 1968, doi: 10.1002/aic.690140223.eng
dc.relation.referencesT. A. Whitehead et al., “The importance and future of biochemical engineering,” Biotechnol. Bioeng., vol. 117, no. 8, pp. 2305–2318, Aug. 2020, doi: 10.1002/BIT.27364.eng
dc.relation.referencesF. G. Acién Fernández, B. J. M Fernández Sevilla, and B. E. Molina Grima, “Photobioreactors for the production of microalgae,” Rev Env. Sci Biotechnol, vol. 12, pp. 131–151, 2013, doi: 10.1007/s11157-012-9307-6.eng
dc.relation.referencesY. Chacón Perez, D. L. Restrepo Serna, C. A. Cardona Alzate, Y. Chacón Pérez, D. L. Restrerpo Serna, and C. A. Cardona Alzate, “Comparison of Cassava and Sugarcane Bagasse for Fuel Ethanol Production,” in Handbook on Cassava. Production, Potential Uses and Recent Advances, C. Klein, Ed. New York: nova, 2017, pp. 1–28.eng
dc.relation.referencesM. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, and A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products,” J. Anal. Appl. Pyrolysis, vol. 109, pp. 272–277, Sep. 2014, doi: 10.1016/j.jaap.2014.05.023.eng
dc.relation.referencesT. Ahmed et al., “Biodegradation of plastics: current scenario and future prospects for environmental safety,” Environ. Sci. Pollut. Res., vol. 25, no. 8, pp. 7287–7298, Mar. 2018, doi: 10.1007/s11356-018-1234-9.eng
dc.relation.referencesM. Gahleitner and C. Paulik, “Polypropylene and Other Polyolefins,” in Brydson’s Plastics Materials, Butterworth-Heinemann, 2017, pp. 279–309.eng
dc.relation.referencesO. Vogl, “POLYPROPYLENE: AN INTRODUCTION,” J. Macromol. Sci. Part A, vol. 36, no. 11, pp. 1547–1559, Nov. 1999, doi: 10.1081/MA-100101614.eng
dc.relation.referencesJ. M. Asua, Polymer Reaction Engineering. Blackweel Publishing, 2007.eng
dc.relation.referencesV. Dolle, E. C. Carrion, P.-R. Shöneborn, and H. Terwyen, “Method for deodorizing polyolefin granulates,” US6218504B1, Mar. 07, 1997.eng
dc.relation.referencesL. M. Fodor and kenneth W. Willcox, “Deodorizing odorous polyolefins with low concentrations of inorganic oxidizing agents,” US5066686A, Jul. 16, 1990.eng
dc.relation.referencesG. Towler and R. Sinnott, “Capital Cost Estimating,” in Chemical Engineering Design: Principles, Practice and Economics of Plant and Process design, Second., no. 1975, 2013, pp. 307–354.eng
dc.relation.referencesJ. A. S. Richard Turton, Richard C. Bailie, Wallace B. Whiting, “Estimation of Capital Costs,” in Analysis, Synthesis and Design of Chemical Processes, Third., 2008, pp. 182–221.eng
dc.relation.referencesJ. M. Douglas, Conceptual design of chemical processes. 1988.eng
dc.relation.referencesA. Niazi, J. S. Dai, S. Balabani, and L. Seneviratne, “Product Cost Estimation: Technique Classification and Methodology Review,” J. Manuf. Sci. Eng., vol. 128, no. 2, p. 563, 2006, doi: 10.1115/1.2137750eng
dc.relation.referencesS. Rehman and M. D. Guenov, “A methodology for modelling manufacturing costs at conceptual design,” Comput. Ind. Eng., vol. 35, no. 3–4, pp. 623–626, 1998, doi: 10.1016/S0360-8352(98)00174-0.eng
dc.relation.referencesS. P. Darla, “Product Life Cycle Cost Estimation at Early Design : A Review on Techniques and Applications,” Int. J. Eng. Dev. Res., vol. 5, no. 4, pp. 1558–1561, 2017.eng
dc.relation.referencesM. Ficko, I. Drstvenšek, M. Brezočnik, J. Balič, and B. Vaupotic, “Prediction of total manufacturing costs for stamping tool on the basis of CAD-model of finished product,” J. Mater. Process. Technol., vol. 164–165, pp. 1327–1335, 2005, doi: 10.1016/j.jmatprotec.2005.02.013.eng
dc.relation.referencesE. M. Shehab and H. S. Abdalla, “A design to cost system for innovative product development,” J. Eng. Manuf., vol. 216, no. 7, pp. 999–1019, 2002, doi: 10.1243/09544050260174201.eng
dc.relation.referencesA. Gayretli and H. S. Abdalla, “Object-oriented constraints-based system for concurrent product development,” Robot. Comput. Integr. Manuf., vol. 15, no. 2, pp. 133–144, 1999, doi: 10.1016/S0736-5845(99)00007-1.eng
dc.relation.referencesE. M. Shehab and H. S. Abdalla, “Manufacturing cost modelling for concurrent product development,” Robot. Comput. Integr. Manuf., vol. 17, no. 4, pp. 341–353, 2001, doi: 10.1016/S0736-5845(01)00009-6.eng
dc.relation.referencesA. R. Venkatachalam, J. M. Mellichamp, and D. M. Miller, “A knowledge-based approach to design for manufacturability,” J. Intell. Manuf., vol. 4, no. 5, pp. 355–366, 1993, doi: 10.1007/BF00123780.eng
dc.relation.referencesV. V. Aksenov, A. V. Walter, A. A. Gordeyev, and A. V. Kosovets, “Classification of geokhod units and systems based on product cost analysis and estimation for a prototype model production,” IOP Conf. Ser. Mater. Sci. Eng., vol. 91, no. 1, 2015, doi: 10.1088/1757-899X/91/1/012088.eng
dc.relation.referencesY. F. Zhang, J. Y. H. Fuh, and W. T. Chan, “Feature-based cost estimation for packaging products using neural networks,” Comput. Ind., vol. 32, no. 1, pp. 95–113, 1996, doi: 10.1016/S0166-3615(96)00059-0.eng
dc.relation.referencesS. Cavalieri, P. Maccarrone, and R. Pinto, “Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry,” Int. J. Prod. Econ., vol. 91, no. 2, pp. 165–177, 2004, doi: 10.1016/j.ijpe.2003.08.005.eng
dc.relation.referencesP. Dewhurst and G. Boothroyd, “Early cost estimating in product design,” J. Manuf. Syst., vol. 7, no. 3, pp. 183–191, 1988, doi: 10.1016/0278-6125(88)90003-9.eng
dc.relation.referencesG. Boothroyd and C. Reynolds, “Approximate cost estimates for typical turned parts,” J. Manuf. Syst., vol. 8, no. 3, pp. 185–193, 1989, doi: 10.1016/0278-6125(89)90040-X.eng
dc.relation.referencesY. Wei and P. J. Egbelu, “A framework for estimating manufacturing cost from geometric design data,” Int. J. Comput. Integr. Manuf., vol. 13, no. 1, pp. 50–63, 2000, doi: 10.1080/095119200130054.eng
dc.relation.referencesC. X. Feng, A. Kusiak, and C. C. Huang, “Cost evaluation in design with form features,” CAD Comput. Aided Des., vol. 28, no. 11, pp. 879–885, 1996, doi: 10.1016/0010-4485(96)00009-7.eng
dc.relation.referencesJ.-Y. Jung, “Manufacturing cost estimation for machined parts based on manufacturing features,” J. Intell. Manuf., vol. 13, no. 4, pp. 227–238, 2002, doi: 10.1023/A:1016092808320.eng
dc.relation.referencesY. K. Son, “A cost estimation model for advanced manufacturing systems,” Int. J. Prod. Res., vol. 29, no. 3, pp. 441–452, 1991, doi: 10.1080/00207549108930081.eng
dc.relation.referencesN. Bernet, M. D. Wakeman, P. E. Bourban, and J. A. Månson, “An integrated cost and consolidation model for commingled yarn based composites,” Compos. - Part A Appl. Sci. Manuf., vol. 33, no. 4, pp. 495–506, 2002, doi: 10.1016/S1359-835X(01)00140-3.eng
dc.relation.referencesM. M. Sfantsikopoulos, S. C. Diplaris, and P. N. Papazoglou, “Concurrent dimensioning for accuracy and cost,” Int. J. Adv. Manuf. Technol., vol. 10, no. 4, pp. 263–268, 1995, doi: 10.1007/BF01186877.eng
dc.relation.referencesS. H. Yeo, B. K. A. Ngoi, L. S. Poh, and C. Hang, “Cost-tolerance relationships for non-traditional machining processes,” Int. J. Adv. Manuf. Technol., vol. 13, no. 1, pp. 35–41, 1997, doi: 10.1007/BF01179228.eng
dc.relation.referencesN. Singh, “Integrated product and process design: A multi-objective modeling framework,” Robot. Comput. Integr. Manuf., vol. 18, no. 2, pp. 157–168, 2002, doi: 10.1016/S0736-5845(01)00030-8.eng
dc.relation.referencesL. S. Wierda, “Linking design, process planning and cost information by feature-based modelling,” J. Eng. Des., vol. 2, no. 1, pp. 3–19, 1991, doi: 10.1080/09544829108901667.eng
dc.relation.referencesC. Ou-Yang and T. S. Lin, “Developing and Integrated Framework for Feature-Based Early Manufacturing Cost Estimation,” J. Adv. Manuf. Technol., vol. 13, pp. 618–629, 1997, doi: 10.1007/BF01350820.eng
dc.relation.referencesD. Ben-Arieh and L. Qian, “Activity-based cost management for design and development stage,” Int. J. Prod. Econ., vol. 83, no. 2, pp. 169–183, 2003, doi: 10.1016/S0925-5273(02)00323-7.eng
dc.relation.referencesK. Tornberg, M. Jak Msen, and J. Paranko, “Activity-based costing and process modeling for cost-conscious product design: A case study in a manufacturing company,” Int. J. Prod. Econ., vol. 79, pp. 75–82, 2002, doi: 10.1016/S0925-5273(00)00179-1.eng
dc.relation.referencesE. Noreen, “Conditions under which activity-based cost systems provide relevant costs,” J. Manag. Account. Res., vol. 3, no. 3, pp. 159–168, 1991, [Online]. Available: http://libaccess.mcmaster.ca.libaccess.lib.mcmaster.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=9701273049&site=ehost-live&scope=site.eng
dc.relation.referencesR. Cooper and R. S. Kaplan, “How Cost Accounting Distorts Product Costs,” Manag. Account., vol. 69, no. 10, pp. 20–27, 1988.eng
dc.relation.referencesM. E. Tovar de Rivera, “ESTIMACION DE COSTO DE INVERSION DE PLANTAS QUIMICIAS,” Colombia, 2021.spa
dc.relation.referencesM. F. van Amsterdam, “Factorial Techniques applied in Chemical Plant Cost Estimation : A Comparative Study based on Literature and Cases,” Chem. Eng., p. 158, 2018.eng
dc.relation.referencesAACE International, “Skills and Knowledge of Cost Engineering Skills and Knowledge of Cost Engineering,” 2015.eng
dc.relation.referencesklemic Jhon, A Method for Presentation of Cost Estimates and Process Economics as. EEUU: UNIVERSIDAD DE ARIZONA, 1956.eng
dc.relation.referencesM. S. Peters and K. D. Timmerhaus, Plant design and economics for chemical engineers, Fourth Edition. McGRAW-HILL INTERNATIONAL EDITIONS, 1991.eng
dc.relation.referencesE. D Glandt, M. T Klein, and F. E. Thomas, Plant Design and Economics for Chemical Engineers, Kate Schei., vol. 4, no. 3. McGraw-Hill Chemical Engineering Series., 2002.eng
dc.relation.referencesK. C. Hansen, J. W. Miller, and C. L. Yaws, “PROCESS FEASIBILITY STUDY IN SUPPORT OF,” Texas, Jul. 1977.eng
dc.relation.referencesHarry Silla, CHEMICAL PROCESS ENGINEERING , 3rd ed. Ney York: MARCEL DEKKER, 2003.eng
dc.relation.referencesF. Goodridge and K. Scott, “Cost Estimation, Profit Appraisal, Process Modeling, and Optimization,” in Electrochemical Process Engineering, Springer US, 2008, pp. 245–293.eng
dc.relation.referencesJ. P. Cellucci, V. S. Koslosky, and J. P. Bush, “Cost Estimating.,” RCA Eng, vol. 54, no. 4, pp. 102–103, 1947, doi: 10.4324/9781315529097-3.eng
dc.relation.referencesW.D. Seider, J.D. Seader, D.R. Lewin, and S. Widagdo, Product and Process Design Principles: Synthesis, Analysis and Design. Chemical Engineering, 2009.eng
dc.relation.referencesR. D. Hill, “What petrochemical Plants Cost,” in Petroleum Refiner, vol. 59, 1956, pp. 106–110.eng
dc.relation.referencesV. T. Sinha, “Estimating capital costs from an equipment list: A case study,” Eng. Costs Prod. Econ., vol. 14, no. 4, pp. 259–266, Dec. 1988, doi: 10.1016/0167-188X(88)90030-4.eng
dc.relation.referencesO. P. Kharbanda and E. A. Stallworthy, “Planning for emergencies-lessons from the chemical industry,” Long Range Plann., vol. 22, no. 1, pp. 83–89, Feb. 1989, doi: 10.1016/0024-6301(89)90054-X.eng
dc.relation.referencesG.T. Wilson, Manual of Economic Analysis of Chemical Processes. 1971.eng
dc.relation.referencesTaylor and J. H., “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, 1977.eng
dc.relation.referencesD. E. Garrett, “Plant Cost Estimates,” in Chemical Engineering Economics, Springer Netherlands, 1989, pp. 22–43.eng
dc.relation.referencesR. D S and C. L H, “Estimate costs of scaled-up process plants,” in Chemical Engineering, 1990, pp. 138–175.eng
dc.relation.referencesG. A. Buchner, “Techno-Economic Assessment - Methodology Development and the Case of CO2-containing Polyurethane rubbers,” Berlin, 2020.eng
dc.relation.referencesK. C. Robson and J. Bidder, “Market research in process plant contracting,” Eng. Process Econ., vol. 2, no. 4, pp. 269–279, 1977, doi: 10.1016/0377-841X(77)90005-5.eng
dc.relation.referencesP. F. Navarrete and C. . William, Control of Chemical Construction Projects. 2001.eng
dc.relation.referencesJ. Mascareñas, “El coste del capital,” MADRID, Mar. 2001.spa
dc.relation.referencesR Williams Jr, “Process Equipment Cost Estimating by Ratio and Proportion,” Dec. 1947.eng
dc.relation.referencesD. S. Remer and L. H. Chai, “Design cost factors for scaling-up engineering equipment,” undefined, 1990.eng
dc.relation.referencesS. @ Claremont, D. S. Remer, L. H. Chai, D. S. Remer, and L. H. " Chai, “Process Equipment, Cost Scale-up,” Marcel Dekker, Inc, 1993.eng
dc.relation.referencesO. J. Symister, “An Analysis of Capital Cost Estimation Techniques for Chemical Processing,” institute of Technology of Florida, 2016.eng
dc.relation.referencesD. A. Huettner, “Shifts of long run average cost curves: Theoretical and managerial implications,” Omega, vol. 1, no. 4, pp. 421–450, Aug. 1973, doi: 10.1016/0305-0483(73)90065-0.eng
dc.relation.referencesC.H. Chilton, Cost Data Correlated, vol. 56. 1949.eng
dc.relation.referencesA. Pikulik and H.E. Diaz, “Costs of Individual Equipment,” in Chemical Process Equipment, Elsevier, 2005, pp. 719–728.eng
dc.relation.referencesR.S. Hall, J. Matley, and K.J. McNaughton, “Current Costs of Process Equipment,” Chemical Engineering, 1982. .eng
dc.relation.referencesV. W. M, “A potpourri of equipment prices.,” Chem. Eng., vol. 102, no. 8, pp. 68–73, 1995.eng
dc.relation.referencesD. R. Woods, Rules of thumb in engineering practice. 2007.eng
dc.relation.referencesR. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes Fourth Edition. Prentice Hall, 2009.eng
dc.relation.referencesJ.R. Couper, W.R. Penney, J.R. Fair, and S.M. Walas, chemical process equipment walas third edition, vol. 2. Chemical Process Equipment, 2009.eng
dc.relation.referencesD. S. Remer, L. Huynh, K. Agarwal, B. J. Auchard, and T. Heaps-Nelson, “A compilation of inflation and location indexes,” Int. J. Prod. Econ., vol. 54, no. 1, pp. 41–55, Jan. 1998, doi: 10.1016/S0925-5273(97)00121-7.eng
dc.relation.referencesP. KOHN and K. PM, “CE COST INDEXES MAINTAIN 13-YEAR ASCENT.,” CE COST INDEXES Maint. 13-YEAR ASCENT., pp. 189–190, 1978.eng
dc.relation.referencesJ. Matley, “CE cost indexes set slower pace,” in Chemical Engineering, vol. 92, Flexicon, 1985, pp. 75–76.eng
dc.relation.referencesG. A. Prochazka, G. Towler, and R. Sinnott, Chemical Engineering Design. Principles, practice and economics of plant and process design. 2008.eng
dc.relation.referencesR. Williams J, Standardizing Cost Data on Process Equipment, vol. 54. Chemical Engineering, 1947.eng
dc.relation.referencesE. News, “ESTIMACIÓN DEL COSTE DEL CAPITAL ‰ Distribución de Costes del Capital,” Chem. Eng., vol. 12, 2020.spa
dc.relation.referencesD. J. Brennan and K. A. Golonka, “New Factors for Capital Cost Estimation in Evolving Process Designs,” Chem. Eng. Res. Des., vol. 80, no. 6, pp. 579–586, Sep. 2002, doi: 10.1205/026387602760312773.eng
dc.relation.referencesP. Cheali, K. V. Gernaey, and G. Sin, “Uncertainties in Early-Stage Capital Cost Estimation of Process Design – A Case Study on Biorefinery Design,” Front. Energy Res., vol. 3, no. FEB, p. 3, Feb. 2015, doi: 10.3389/fenrg.2015.00003.eng
dc.relation.referencesC. H. Chilton, Cost data correlated Chilton, Chemical E. Chemical Engineering, 1949.eng
dc.relation.referencesJ. L. Sorrels and T. G. Walton, “Section 1 Introduction-2-Chapter 2 Cost Estimation: Concepts and Methodology,” 2017.eng
dc.relation.referencesF. Yin, G. X. Huang, and D. Q. Chen, “Finite iterative algorithms for solving generalized coupled Sylvester systems-Part II: Two-sided and generalized coupled Sylvester matrix equations over reflexive solutions,” Appl. Math. Model., vol. 36, no. 4, pp. 1604–1614, Apr. 2012, doi: 10.1016/j.apm.2011.09.025.eng
dc.relation.referencesRobert Sancier Aries and Robert D. Newton, Chemical Engineering Cost Estimation. 1955.eng
dc.relation.referencesH.C. Bauman, chemical engineering plant . London: Reinhold Publishing Corporation, 1964.eng
dc.relation.referencesH. J. S. Petersen, “Calculation of sales price considering dividend and interest payments, tax and inflation,” Eng. Process Econ., vol. 2, no. 2, pp. 139–142, Jun. 1977, doi: 10.1016/0377-841X(77)90027-4.eng
dc.relation.referencesK. Suaysompol and R. M. Wood, “Estimation of the installed cost of heat exchanger networks,” Int. J. Prod. Econ., vol. 29, no. 3, pp. 303–312, May 1993, doi: 10.1016/0925-5273(93)90035-J.eng
dc.relation.referencesRobert Sancier Aries and Robert D Newton, Chemical engineering cost estimation . New York, 1955.eng
dc.relation.referencesR. . Aries and R. . Newton, Chemical Engineering Cost Estimation . 1955.eng
dc.relation.referencesP. Max S and T. Klaus D, Plant Design & Economics for Chemical Engineers, 4th ed. New York: Chemical Engineering, 1991.eng
dc.relation.referencesEia, “Engineering Economic Analysis Guide: Liquid Fuels Technologies,” Dec. 2015.eng
dc.relation.referencesMahmoud M and EL-Halwagi, Sustainable Design Through Process Integration. ELSEVIER, 2017.eng
dc.relation.referencesBejan Adrian, Tsatsaronis George, and Moran Michael, Thermal Design and Optimization, 2nd ed. New York: Mechaical Engineering, 1996.eng
dc.relation.referencesA. Z. Marouli and Z. B. Maroulis, “Cost data analysis for the food industry,” J. Food Eng., vol. 67, no. 3, pp. 289–299, Apr. 2005, doi: 10.1016/j.jfoodeng.2004.04.031.eng
dc.relation.referencesZ. B. Maroulis and G. D. Saravacos, Food Plant Economics. CRC Press, 2007.eng
dc.relation.referencesZa. B. Maroulis and G. D. Saravacos, Food Process Design . 2003.eng
dc.relation.referencesA. Bartholomai, Food Factories: Processes, Equipment, Costs (9780895735546): Bartholomai, Alfred: Books. VCH, 1987.eng
dc.relation.referencesR. E. Westney, “The Engineer’s Cost Handbook Tools for Managing Project Costs,” 1997.eng
dc.relation.referencesI. Turunen, M. Järveläinen, and M. Dohnal, “Fuzzy approach to factorial cost estimation of chemical plants,” Eng. Costs Prod. Econ., vol. 7, no. 4, pp. 279–292, 1984, doi: 10.1016/0167-188X(84)90045-4.eng
dc.relation.referencesGuillermo Larcarnarqué, “ESTIMACION DE COSTOS DE INVERSION EN PLANTAS PETROQUIMICAS.” Educación en Ingeniería Química, 2017.spa
dc.relation.referencesJ. S. S. White and J. L. O’Donnell, “Indirect effects of a key ecosystem engineer alter survival and growth of foundation coral species,” Ecology, vol. 91, no. 12, pp. 3538–3548, Dec. 2010, doi: 10.1890/09-2322.1.eng
dc.relation.referencesT. K. Geberemariam, “Deterministic and Probabilistic Engineering Cost Estimating Approaches for Complex Urban Drainage Infrastructure Capital Improvement (CIP) Programs,” Nov. 2018, doi: 10.20944/preprints201811.0259.v1.eng
dc.relation.referencesJ. Happel and J. Donald G, “Chemical process economics,” Eng. Process Econ., vol. 2, no. 1, pp. 78–79, Mar. 1977, doi: 10.1016/0377-841x(77)90069-9.eng
dc.relation.referencesK. Khumphreys, “PROJECT AND COST ENGINEERS’ HANDBOOK, Fourth Edition,” 2005.eng
dc.relation.referencesD. E. Garrett, Chemical Engineering Economics. Springer Netherlands, 1989.eng
dc.relation.referencesT E Wolf and P E Land, “Lang Factor Cost Estimating,” Texas, 2021.eng
dc.relation.referencesJ. H. Taylor, “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, Nov. 1977, doi: 10.1016/0377-841X(77)90004-3.eng
dc.relation.referencesB. Amigun and H. Von Blottnitz, “Capital cost prediction for biogas installations in Africa: Lang factor approach,” Environ. Prog. Sustain. Energy, vol. 28, no. 1, pp. 134–142, Apr. 2009, doi: 10.1002/ep.10341.eng
dc.relation.referencesJ. Y. Kim, S. Salim, J. M. Cha, and S. Park, “Development of total capital investment estimation module for waste heat power plant,” Energies, vol. 12, no. 8, Apr. 2019, doi: 10.3390/en12081492.eng
dc.relation.referencesS. Lemmens, “Cost engineering techniques & their applicability for cost estimation of organic rankine cycle systems,” Energies, vol. 9, no. 7, 2016, doi: 10.3390/en9070485.eng
dc.relation.referencesJ. Clerk, “APPENDIX 1 EQUIPMENT COST ESTIMATES,” 1963.eng
dc.relation.referencesJ. Loh, “Process Equipment Cost Estimation Final Report,” United State, 2002.eng
dc.relation.referencesR. S. Aries, Chemical Engineering Cost Estimation . 1955.eng
dc.relation.referencesH. P. Loh, J. Lyons, and C. W. White, “Process Equipment Cost Estimation, Final Report,” Pittsburgh, PA, and Morgantown, WV (United States), Jan. 2002. doi: 10.2172/797810.eng
dc.relation.referencesR. E. Westney, “The Engineer’s Cost Handbook Tools for Managing Project Costs,” 1960.eng
dc.relation.referencesG. K M, Data and techniques for preliminary capital cost estimating., McGraw-Hil., vol. 76. Chemical Engineering, 1969.eng
dc.relation.referencesJ Cran, “Plant Cost Estimates,” in Chemical Engineering Economics, Springer Netherlands, 1989, pp. 22–43.eng
dc.relation.referencesJ. D. Yeakel et al., “Diverse interactions and ecosystem engineering can stabilize community assembly,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-17164-x.eng
dc.relation.referencesD. Nelson, “THE ANALYSIS AND VALUATION OF DISRUPTION,” 2013.eng
dc.relation.referencesG. D. Nichols, “Process Automation Technologies: Cost estimating for process analyzer projects,” 2007.eng
dc.relation.referencesD. R. Woods, Rules of Thumb in Engineering Practice, WILEY-VCH. WILEY-VCH, 2007.eng
dc.relation.referencesH. Markowitz, “Portfolio Selection,” 1952.eng
dc.relation.referencesD. Guillermo L, Finanzas Corporativas: un enfoque latinoamericano, Alfaomega. Colombia: Alfaomega, 2010.spa
dc.relation.referencesI. Cerón-Salazar and C. Cardona-Alzate, “Integral evaluation process for obtaining pectin and essential oil from orange peel,” Ing. y Cienc., vol. 7, no. 13, pp. 65–86, 2011, Accessed: Aug. 03, 2017. [Online]. Available: http://www.scielo.org.co/pdf/ince/v7n13/v7n13a04.pdf.eng
dc.relation.referencesR. J. Wooley and V. Putsche, “NREL/MP-425-20685 Development of an Aspen Pus property database for biofuels components,” National Renewable Energy Laboratory, 1996.eng
dc.relation.referencesY. Zhang, “Review of recent advances on energy efficiency of machine tools for sustainability,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 229, no. 12, pp. 2095–2108, 2015, doi: 10.1177/0954405414539490.eng
dc.relation.referencesJ. Paetzold, M. Kolouch, V. Wittstock, and M. Putz, “Methodology for Process-independent Energetic Assessment of Machine Tools,” Procedia Manuf., vol. 8, no. October 2016, pp. 254–261, 2017, doi: 10.1016/j.promfg.2017.02.032.eng
dc.relation.referencesC. A. García, J. Moncada, V. Aristizábal, and C. A. Cardona, “Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case,” Int. J. Hydrogen Energy, vol. 2, 2017, doi: 10.1016/j.ijhydene.2017.01.073.eng
dc.relation.referencesX. Meng, W. de Jong, N. Fu, and A. H. M. Verkooijen, “Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: Effects of operational conditions on product gas distribution and tar formation,” Biomass and Bioenergy, vol. 35, no. 7, pp. 2910–2924, Jul. 2011, doi: 10.1016/J.BIOMBIOE.2011.03.028.eng
dc.relation.referencesC. Sheng and J. L. T. Azevedo, “Estimating the higher heating value of biomass fuels from basic analysis data,” Biomass and Bioenergy, vol. 28, no. 5, pp. 499–507, 2005, doi: 10.1016/j.biombioe.2004.11.008.eng
dc.relation.referencesC. A. García, Á. Peña, R. Betancourt, and C. A. Cardona, “Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case,” J. Environ. Manage., Apr. 2017, Accessed: Aug. 10, 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0301479717303705.eng
dc.relation.referencesV. Aristizábal Marulanda, “Jet biofuel production from agroindustrial wastes through furfural platform,” Universidad Nacional de Colombia, 2015.eng
dc.relation.referencesG. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: I. Taxonomy,” Ind. Eng. Chem. Res., vol. 51, no. 5, pp. 2309–2328, 2012, doi: 10.1021/ie102116e.eng
dc.relation.referencesA. S. Erses Yay, “Application of life cycle assessment (LCA) for municipal solid waste management: A case study of Sakarya,” J. Clean. Prod., vol. 94, pp. 284–293, 2015, doi: 10.1016/j.jclepro.2015.01.089.eng
dc.relation.referencesS. H. Duque, C. A. Cardona, and J. Moncada, “Techno-Economic and Environmental Analysis of Ethanol Production from 10 Agroindustrial Residues in Colombia,” Energy Fuels, vol. 29, no. 2, pp. 775–783, 2015.eng
dc.relation.referencesC. A. C. Cardona, V. F. Marulanda, and D. Young, “Analysis of the environmental impact of butylacetate process through the WAR algorithm,” Chem. Eng. Sci., vol. 59, no. 24, pp. 5839–5845, Dec. 2004, doi: 10.1016/j.ces.2004.06.043.eng
dc.relation.referencesC. Flavin, W. D. (USA) eng Worldwatch Inst., O. Tunali, and J. A. (ed. . Peterson, “Climate of hope: new strategies for stabilizing the world’s atmosphere.” Washington, DC (USA) Worldwatch Inst., 1996, Accessed: Jul. 21, 2017. [Online]. Available: http://agris.fao.org/agris-search/search.do?recordID=XF2015030474.eng
dc.relation.referencesA. C. Wilkie, K. J. Riedesel, J. M. Owens, and A. C. Wilkie, “Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks,” Biomass and Bioenergy, vol. 19, no. 2, pp. 63–102, 2000, doi: 10.1016/S0961-9534(00)00017-9.eng
dc.relation.referencesB. Kim and S. Sarkar, “Impact of wildfires on some greenhouse gases over continental USA: A study based on satellite data,” Remote Sens. Environ., vol. 188, pp. 118–126, 2017, doi: 10.1016/j.rse.2016.10.047.eng
dc.relation.referencesD. Young, R. Scharp, and H. Cabezas, “The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics,” Waste Manag., vol. 20, no. 8, pp. 605–615, Dec. 2000, doi: 10.1016/S0956-053X(00)00047-7.eng
dc.relation.referencesD. M. Young and H. Cabezas, “Designing sustainable processes with simulation: The waste reduction (WAR) algorithm,” Comput. Chem. Eng., vol. 23, no. 10, pp. 1477–1491, 1999, doi: 10.1016/S0098-1354(99)00306-3.eng
dc.relation.referencesM. Fermeglia, G. Longo, and L. Toma, “A hierarchical approach for the estimation of environmental impact of a chemical process: from molecular modeling to process simulation,” Comput. Aided Chem. Eng., vol. 24, pp. 1199–1204, Jan. 2007, doi: 10.1016/S1570-7946(07)80224-0.eng
dc.relation.referencesQ. Chen and X. Feng, “Potential environmental impact (PEI) analysis of reaction processes,” Comput. Aided Chem. Eng., vol. 15, pp. 748–753, Jan. 2003, doi: 10.1016/S1570-7946(03)80396-6.eng
dc.relation.referencesJ. I. Chang and C.-C. Lin, “A study of storage tank accidents,” J. Loss Prev. Process Ind., vol. 19, no. 1, pp. 51–59, Jan. 2006, doi: 10.1016/j.jlp.2005.05.015.eng
dc.relation.referencesJ. F. Ross, “Equipment and Buildings,” in Handbook for Radio Engineering Managers, Elsevier, 1980, pp. 516–528.eng
dc.relation.referencesAPI 650, Welded Steel Tanks for Oil Storage, 12th ed., no. C65012. Washington, USA: API Publishing Services, 2013.eng
dc.relation.referencesG. Description, “Settling Ponds and Sedimentation,” in Pollution Control Handbook for Oil and Gas Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016, pp. 1043–1046.eng
dc.relation.referencesL. Stander and L. Theodore, “Pollution Prevention Act (PPA),” in Environmental Regulatory Calculations Handbook, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008, pp. 453–528.eng
dc.relation.referencesASME, “Boiler and Pressure Vessel Code Section VIII: Division 1 & 2,” Am. Soc. Mech. Eng., 2019.eng
dc.relation.referencesA. Toudehdehghan and T. W. Hong, “A critical review and analysis of pressure vessel structures,” in IOP Conference Series: Materials Science and Engineering, Jan. 2019, vol. 469, no. 1, doi: 10.1088/1757-899X/469/1/012009.eng
dc.relation.referencesS. Chattopadhyay, Pressure Vessels: Design and Practice. CRC Press, 2004.eng
dc.relation.referencesJ. J. Proczka, K. Muralidharan, D. Villela, J. H. Simmons, and G. Frantziskonis, “Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage,” Energy Convers. Manag., vol. 65, no. 2013, pp. 597–605, Jan. 2013, doi: 10.1016/j.enconman.2012.09.013.eng
dc.relation.referencesF. Lees, “Storage,” in Lees’ Loss Prevention in the Process Industries, 3rd ed., Texas, USA: Elsevier, 2012, pp. 1889–1985.eng
dc.relation.referencesS. Lee, Y. Park, and B. Kim, “Offshore Production Plant,” in Offshore Petroleum Drilling and Production, pp. 661–665.eng
dc.relation.references“MAJOR HAZARDS AND THEIR MANAGEMENT, Appendix 1 - safety assessment of an LPG storage site,” 1992. .eng
dc.relation.referencesM. D. Tusiani and G. Shearer, “LNG Import Terminals,” in LNG: Fuel for a Changing World—A Nontechnical Guide, 2nd ed., 2016, pp. 369–393.eng
dc.relation.references“Propylene-Storage and Handling,” Wiley Critical Content - Petroleum Technology, 2007. .eng
dc.relation.referencesS. Mokhatab, J. Y. Mak, J. V. Valappil, and D. A. Wood, “Natural Gas Liquefaction,” in Handbook of Liquefied Natural Gas, Elsevier, 2014, pp. 147–183.eng
dc.relation.referencesNFPA® 59, Utility LP-Gas Plant Code, 2012th ed. Quincy, Massachusetts: National Fire Protection Association ®, 2012.eng
dc.relation.referencesAPI 2510, Design and construction of LPG installations, Eight edit., no. 2510. American Petroleum Institute, 2001.eng
dc.relation.references“NFPA 58,” in Liquefied Petroleum Gas Code, 2017th ed., National Fire Protection Association ®, 2014, pp. 1–166.eng
dc.relation.referencesD. L. Burdick and W. L. Leffler, “Olefin plants, ethylene, and propylene,” in Petrochemicals in nontechnical language, 3rd ed., PennWell, 2001, pp. 65–85.eng
dc.relation.referencesS. Dubovski, “Gathering Systems and Processing Facilities Risk Analysis,” in Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering, IGI Global, 2014, pp. 218–246.eng
dc.relation.referencesĐ. Dobrota, B. Lalić, and I. Komar, “Problem of Boil - off in LNG Supply Chain,” Trans. Marit. Sci., vol. 2, no. 2, pp. 91–100, Oct. 2013, doi: 10.7225/toms.v02.n02.001.eng
dc.relation.referencesR. J. Falkiner and A. Pickard, “Chapter 6 | Liquefied Petroleum Gas,” in Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, 2nd Edition, 2nd ed., G. Totten, R. Shah, and D. Forester, Eds. West Conshohocken, PA: ASTM International, 2019, pp. 145–178.eng
dc.relation.referencesH. Belyadi, E. Fathi, and F. Belyadi, “Hydraulic Fracturing Chemical Selection and Design,” in Hydraulic Fracturing in Unconventional Reservoirs, Gulf Professional Publishing, 2017, pp. 107–120.eng
dc.relation.referencesB. Sharda and S. J. Bury, “Bottleneck analysis of a chemical plant using discrete event simulation,” in Proceedings of the 2010 Winter Simulation Conference, Dec. 2010, no. 2009, pp. 1547–1555, doi: 10.1109/WSC.2010.5678916.eng
dc.relation.referencesR. Botermans and P. Smith, “Relief Systems,” in Advanced Piping Design, Gulf Publishing Company, 2008, pp. 183–196.eng
dc.relation.referencesS. Moran, “How to do hydraulic calculations,” in An Applied Guide to Process and Plant Design, 2nd ed., Elsevier, 2019, pp. 153–166.eng
dc.relation.referencesA. A. Wordu and B. Peterside, “Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant,” Int. J. Eng. Technol., vol. 3, no. 1, pp. 44–49, 2013.eng
dc.relation.referencesW. Pridasawas and P. Lundqvist, “An exergy analysis of a solar-driven ejector refrigeration system,” Sol. Energy, vol. 76, no. 4, pp. 369–379, Apr. 2004, doi: 10.1016/j.solener.2003.11.004.eng
dc.relation.referencesD. Kern, “Evaporation,” in Process heat transfer, Internatio., McGraw-Hill, 2011, pp. 375–452.eng
dc.relation.referencesE. Edition, “API specification for oil and gas separators.,” no. October 2008, 1973.eng
dc.relation.referencesD. W. Green and R. H. Perry, “Perry’s Chemical Engineers’ Handbook,” in Perry’s Chemical Engineers’ Handbook, 8th editio., New York, pp. 2-446,502.eng
dc.relation.referencesAmerican Petroleum Institute, Pressure-relieving and depressuring Systems -API 521. Washington, USA, 2007.eng
dc.relation.referencesMarketsandMarketsTM, “Foam Glass Market by Type (open cell and Closed Cell), Process (Physical and Chemical), Application (Building & Industrial Insulation and Chemical Processing Systems), End-Use Industry (Building & Construction and Industrial) - Global Forecast to 2024,” Market reasearch report - CH 7217, 2019. .eng
dc.relation.referencesAmerican Petroleum Institute (API), “Sizing , Selection , and Installation of Pressure-Relieving Devices in Refineries Part I — Sizing and Selection,” vol. 1, no. August, p. 154, 2014.eng
dc.relation.referencesAmerican Petroleum Institute (API), “Sizing , Selection , and Installation of Pressure-Relieving Devices in Refineries Part I — Sizing and Selection,” vol. 1, p. 154, 2014.eng
dc.relation.referencesA. P. Institute, “Flanged Steel Pressure- relief Valves,” no. April 2009, 2015.eng
dc.relation.referencesAPI 521, Pressure-relieving and Depressuring Systems, no. CX52105. Washington, DC: American Petroleum Institute, 2007.eng
dc.relation.referencesK. I. M. Al-Malah, Aspen Plus®. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016.eng
dc.relation.referencesCentro de Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH) and the Dirección General Marítima (Dimar), “Boletín Meteomarino Mensual del Caribe Colombiano - No. 79/ Julio 2019,” 2019. .eng
dc.relation.referencesJ. L. Woodward, Estimating the Flammable Mass of a Vapor Cloud. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1999.eng
dc.relation.referencesK. V. Reddy, “Chemical process plants: Plan for revamps,” Chemical Engineering, vol. 122, no. 12. 2015, Accessed: Jul. 23, 2021. [Online]. Available: https://www.chemengonline.com/chemical-process-plants-plan-revamps/.eng
dc.relation.referencesN. Van Duc Long and M. Lee, “Debottlenecking the retrofitted thermally coupled distillation sequence,” Ind. Eng. Chem. Res., vol. 52, no. 35, pp. 12635–12645, Sep. 2013, doi: 10.1021/ie401140v.eng
dc.relation.referencesD. F. Schneider, C. Engineer, S. Engineering, S. Engineering, and L. City, “Debottlenecking Options and Optimization,” 1997. Accessed: Jul. 23, 2021. [Online]. Available: http://www.stratusengr.com/Articles/DebottleOptions.pdf.eng
dc.relation.referencesJ. Zhang, X. X. Zhu, and G. P. Towler, “A Level-by-Level Debottlenecking Approach in Refinery Operation,” Ind. Eng. Chem. Res., vol. 40, no. 6, pp. 1528–1540, Mar. 2001, doi: 10.1021/IE990854W.eng
dc.relation.referencesD. B. Litzen and J. L. Bravo, “Uncover Low-Cost Debottlenecking Opportunities,” Chem. Eng. Prog., vol. 95, no. 2–3, pp. 25–32, 1999.eng
dc.relation.referencesN. V. D. Long and M. Lee, “Improved energy efficiency in debottlenecking using a fully thermally coupled distillation column ,” ASIA-PACIFIC J. Chem. Eng. Asia-Pac. J. Chem. Eng, vol. 6, pp. 338–348, 2011, doi: 10.1002/apj.577.eng
dc.relation.referencesT. Sakai, “Screw extrusion technology — past, present and future,” Polimery, vol. T. 58, nr 11–12, 2013.eng
dc.relation.referencesG. T. TODHUNTER, “ROTARY VALVES.,” no. (MARCH, 1973), 1973, Accessed: Jul. 23, 2021. [Online]. Available: https://www.coperion.com/en/products-services/process-equipment/rotary-valves.eng
dc.relation.referencesZ. Systems, “CFH rotary feeder - Zeppelin Systems.” https://www.zeppelin.com/de-en/systems/p/zsd/cfh-rotary-feeder-Z_ZIMSER_P97993_00021/ (accessed Jul. 23, 2021).eng
dc.relation.referencesE. Com and / Finalcontrol, “KEYSTONE KNIFE GATE VALVES FIGURE 952 POLYURETHANE,” 2017. https://www.emerson.com/documents/automation/data-sheets-knife-gate-valves-figure-952-polyurethane-keystone-en-en-5193690.pdf (accessed Jul. 23, 2021).eng
dc.relation.referencesDeZURIK, “Knife gate valves brochure,” Seal. Technol., vol. 2000, no. 77, p. 6, 2000, doi: 10.1016/s1350-4789(00)90265-4.eng
dc.relation.references“MAAG | Centrifugal dryers Underwater pelletizing.” https://maag.com/products/pelletizing-systems/dryers/ (accessed Jul. 23, 2021).eng
dc.relation.referencesS. Ravi, M. Sudha, and P. A. Balakrishnan, “Design of Intelligent Self-Tuning GA ANFIS Temperature Controller for Plastic Extrusion System,” Model. Simul. Eng., vol. 2011, 2011, doi: 10.1155/2011/101437.eng
dc.relation.referencesC. Rauwendaal, Polymer Extrusion, 5th ed., vol. 65. 2014.eng
dc.relation.referencesC. Teixeira, R. Faria, J. A. Covas, and A. Gaspar-Cunha, “Solving the twin screw extrusion configuration problem: A plasticating modelling program,” Proc. 5th Int. Conf. Eng. Comput. Technol., 2006, doi: 10.4203/CCP.84.23.eng
dc.relation.referencesZ. Jiang, Y. Yang, S. Mo, K. Yao, and F. Gao, “Polymer extrusion: From control system design to product quality,” Ind. Eng. Chem. Res., vol. 51, no. 45, pp. 14759–14770, Nov. 2012, doi: 10.1021/IE301036C.eng
dc.relation.referencesB. Singh, C. Sharma, and S. Sharma, “Fundamentals of extrusion processing,” in Novel Food Processing Technologies, no. May, V. Nanda and S. Sharma, Eds. New Delhi: Novel Food Processing Technologies, 2017, pp. 1–46.eng
dc.relation.referencesJ. Albrecht, “Revamp and Upgrade Possibilities in Sulphuric Acid Plants,” Procedia Eng., vol. 138, pp. 184–198, 2016, doi: 10.1016/j.proeng.2016.02.076.eng
dc.relation.referencesHisham A. Maddah, “Polypropylene as a Promising Plastic: A Review,” Am. J. Polym. Sci., vol. 6, no. 1, pp. 1–11, 2016, doi: 10.5923/J.AJPS.20160601.01.eng
dc.relation.referencesR. J. O’Leary, A. L. Miller, J. Hasselbach, and M. W. Johnson, “Rotary valve for handling solid particulate material,” Dec. 16, 2005.eng
dc.relation.referencesD. Mills, “Pipeline feeding devices,” in Pneumatic Conveying Design Guide, Second., Elsevier, 2004.eng
dc.relation.referencesANTEC 2009 Plastics: Annual Technical Conference Proceedings, “Experimental Analysis of the Underwater Pelletizing system for Producing Pellets,” Soc. Plast. Eng., 2009. https://app.knovel.com/web/view/khtml/show.v/rcid:kpANTECPX1/cid:kt006PTZ4O/viewerType:khtml//root_slug:antec-2009-plastics-annual/url_slug:experimental-analysis?b-q=dryer pelletizer&sort_on=default&b-subscription=true&b-group-by=true&page=33&b-sort-on=de (accessed Mar. 03, 2021).eng
dc.relation.referencesJ. G. Drobny, “Processing Methods Applicable to Thermoplastic Elastomers,” Handb. Thermoplast. Elastomers, pp. 29–160, 2007, doi: 10.1016/B978-081551549-4.50005-0.eng
dc.relation.referencesJ. Dobbelaar, W. Hibinger, and P. Keller, “Removing residual volatiles from polymer dispersions,” Jun. 23, 1999.eng
dc.relation.referencesG. Mulgrew and G. L. Pitman, “Polymer treatment for separating volatile material.”eng
dc.relation.referencesM. K. Gupta, “Deodorization,” in Practical Guide to Vegetable Oil Processing, Elsevier, 2017, pp. 217–247.eng
dc.relation.referencesF. Shahidi, “Bailey’s Industrial Oil and Fat Products, Volumes 1-6 (6th Edition),” Bailey’s Ind. Oil Fat Prod., pp. 303–332, 2005, Accessed: Jul. 23, 2021. [Online]. Available: http://dx.doi.org/10.1002/047167849X.bio005.eng
dc.relation.referencesW. Hubinger, G. Staufer, and P. Keller, “STRIPPING TUBE WITH CONTRACORRENT OPERATION.,” Oct. 12, 1999.eng
dc.relation.referencesC. T. Zehnder, “Deodorization,” in Practical Handbook of Soybean Processing and Utilization, Elsevier, 1995, pp. 239–257.eng
dc.relation.referencesR. W. Bobst, B. J. Garner, and F. W. Jacob, “Degassing process for removing unpolymerized monomers from olefin polymers,” Aug. 11, 1981.eng
dc.relation.referencesG. Zeitler, R. Paatz, V. Gierth, D. Moorwessel, and W. Schoene, “Process for removing highly odorous components from particulate olefine polymers,” Mar. 22, 1979.eng
dc.relation.referencesA. De San Luis, C. C. Santini, Y. Chalamet, and V. Dufaud, “Removal of Volatile Organic Compounds from Bulk and Emulsion Polymers: A Comprehensive Survey of the Existing Techniques,” Ind. Eng. Chem. Res., vol. 58, no. 27, pp. 11601–11623, Jul. 2019, doi: 10.1021/ACS.IECR.9B00968.eng
dc.relation.referencesH. Kim‐Kang, “Volatiles in packaging materials,” http://dx.doi.org/10.1080/10408399009527527, vol. 29, no. 4, pp. 255–271, Jan. 2009, doi: 10.1080/10408399009527527.eng
dc.relation.referencesC. M. H. Grein and R. R. E. Bercx, “Method for preparing of polypropylene pellets,” Jul. 07, 2016.eng
dc.relation.referencesN. A. and R. A. Office of the Federal Register, “21 CFR 177.1520 - Olefin polymers.,” govinfo.gov, Apr. 2011, Accessed: Jul. 23, 2021. [Online]. Available: https%3A%2F%2Fwww.govinfo.gov%2Fapp%2Fdetails%2FCFR-2011-title21-vol3%2FCFR-2011-title21-vol3-sec177-1520%2Fcontext.eng
dc.relation.referencesQ. Xiang, M. Xanthos, S. H. Patel, and S. Mitra, “Comparison of volatile emissions and structural changes of melt reprocessed polypropylene resins,” Adv. Polym. Technol., vol. 21, no. 4, pp. 235–242, Dec. 2002, doi: 10.1002/ADV.10027.eng
dc.relation.referencesJ. G. M. S. Monteiro, O. De Queiroz Fernandes Araújo, and J. L. De Medeiros, “Sustainability metrics for eco-technologies assessment, part I: Preliminary screening,” Clean Technol. Environ. Policy, vol. 11, no. 2, pp. 209–214, 2009, doi: 10.1007/S10098-008-0189-9.eng
dc.relation.referencesS. I. Mussatto, L. M. Aguiar, M. I. Marinha, R. C. Jorge, and E. C. Ferreira, “Economic analysis and environmental impact assessment of three different fermentation processes for fructooligosaccharides production,” Bioresour. Technol., vol. 198, pp. 673–681, Dec. 2015, doi: 10.1016/J.BIORTECH.2015.09.060.eng
dc.relation.referencesS. Meramo-Hurtado, C. Alarcón-Suesca, and Á. D. González-Delgado, “Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia,” J. Clean. Prod., vol. 248, Mar. 2020, doi: 10.1016/J.JCLEPRO.2019.119285.eng
dc.relation.referencesA. Velásquez-Barrios et al., “Analysis of the environmental impact using the waste reduction algorithm in polypropylene production by applying grade transitions strategies in Colombia,” Environ. Sci. Pollut. Res., vol. 26, no. 35, pp. 35533–35542, Dec. 2019, doi: 10.1007/S11356-019-05493-4.eng
dc.relation.referencesD. Nissim, “EBITDA, EBITA, or EBIT?,” SSRN Electron. J., Aug. 2017, doi: 10.2139/SSRN.2999675.eng
dc.relation.referencesE. Topal, “Evaluation of a mining project using Discounted Cash Flow analysis, Decision Tree analysis, Monte Carlo Simulation and Real Options using an example,” Int. J. Min. Miner. Eng., vol. 1, no. 1, pp. 62–76, 2008, doi: 10.1504/IJMME.2008.020457.eng
dc.relation.referencesP. Fernández, “WACC: Definition, Misconceptions, and Errors,” Bus. Valuat. Rev., vol. 29, no. 4, pp. 138–144, 2010, doi: 10.5791/0897-1781-29.4.138.eng
dc.relation.referencesS. Stelling, T. Yanuar, R. Syah, R. Indrawati, and D. Dewanto, “Role of Payback Period, ROI, and NPV for Investment in Clinical Health Business,” Int. Adv. Res. J. Sci. Eng. Technol. ISO, vol. 3297, 2007, doi: 10.17148/IARJSET.2018.5714.eng
dc.relation.referencesB. C. Kim, E. Shim, and K. F. Reinschmidt, “Probability distribution of the project payback period using the equivalent cash flow decomposition,” Eng. Econ., vol. 58, no. 2, pp. 112–136, Apr. 2013, doi: 10.1080/0013791X.2012.760696.eng
dc.relation.references“Weighted Average Cost of Capital | EME 801: Energy Markets, Policy, and Regulation.” https://www.e-education.psu.edu/eme801/node/585 (accessed Jul. 23, 2021).eng
dc.relation.references“Environmental Optimization Using the Waste Reduction Algorithm (WAR),” EPA, Aug. 2011. https://nepis.epa.gov/Exe/tiff2png.exe/P100DZKT.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX DATA%5C11THRU15%5CTIFF%5C00000238%5CP100DZKT.TIF (accessed Jul. 23, 2021).eng
dc.relation.referencesL. Petrescu and C. C. Cormos, “Waste reduction algorithm applied for environmental impact assessment of coal gasification with carbon capture and storage,” J. Clean. Prod., vol. 104, pp. 220–235, Oct. 2015, doi: 10.1016/J.JCLEPRO.2014.08.064.eng
dc.relation.referencesP. Polyolefins Group, “Polypropylene (PP),” Environmental Product Declarations of the European Plastics Manufacturers.eng
dc.relation.referencesR. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic Acid Technology,” Adv. Mater., vol. 12, no. 23, pp. 1841–1846, Dec. 2000, doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E.eng
dc.relation.referencesO. Avinc and A. Khoddami, “Overview of Poly(lactic acid) (PLA) Fibre,” Fibre Chem., vol. 41, no. 6, pp. 391–401, Nov. 2009, doi: 10.1007/s10692-010-9213-z.eng
dc.relation.referencesT. W. Yoo, H. G. Yoon, S. J. Choi, M. S. Kim, Y. H. Kim, and W. N. Kim, “Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends,” Macromol. Res., vol. 18, no. 6, pp. 583–588, Jun. 2010, doi: 10.1007/s13233-010-0613-y.eng
dc.relation.referencesS. Lee and Y. Koo, “Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm,” Simulation, vol. 14, pp. 1163–1169, 2004.eng
dc.relation.referencesD.-J. Min, K. H. Choi, Y. K. Chang, and J.-H. Kim, “Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth,” Korean J. Chem. Eng., vol. 28, no. 10, pp. 1969–1974, Oct. 2011, doi: 10.1007/s11814-011-0082-9.eng
dc.relation.referencesS. Şahin, Ş. İsmail Kırbaşlar, and M. Bilgin, “(Liquid+liquid) equilibria of (water+lactic acid+alcohol) ternary systems,” J. Chem. Thermodyn., vol. 41, no. 1, pp. 97–102, Jan. 2009, doi: 10.1016/j.jct.2008.07.014.eng
dc.relation.referencesL. Domingues, P. A. Cussolin, J. L. da Silva, L. H. de Oliveira, and M. Aznar, “Liquid–liquid equilibrium data for ternary systems of water+lactic acid+C4–C7 alcohols at 298.2K and atmospheric pressure,” Fluid Phase Equilib., vol. 354, pp. 12–18, Sep. 2013, doi: 10.1016/j.fluid.2013.06.007.eng
dc.relation.referencesS. I. Mussatto, M. Fernandes, I. M. Mancilha, and I. C. Roberto, “Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain,” Biochem. Eng. J., vol. 40, no. 3, pp. 437–444, Jul. 2008, doi: 10.1016/J.BEJ.2008.01.013.eng
dc.relation.referencesE. T. H. Vink, K. R. Ra´bagora´bago, D. A. Glassner, and P. R. Gruber, “Applications of life cycle assessment to NatureWorks TM polylactide (PLA) production,” doi: 10.1016/S0141-3910(02)00372-5.eng
dc.relation.referencesS. Petrou and A. Gray, “Economic evaluation using decision analytical modelling: Design, conduct, analysis, and reporting,” Res. Methods Report., vol. 342, no. 7808, pp. 1–6, May 2011, doi: 10.1136/bmj.d1766.eng
dc.relation.referencesI. Reymen, H. Berends, R. Oudehand, and R. Stultiëns, “Decision making for business model development: a process study of effectuation and causation in new technology-based ventures,” R&D Manag., vol. 47, no. 4, pp. 595–606, Sep. 2017, doi: 10.1111/radm.12249.eng
dc.relation.referencesA. J. H. Nel, J. C. Vosloo, and M. J. Mathews, “Financial model for energy efficiency projects in the mining industry,” Energy, vol. 163, pp. 546–554, Nov. 2018, doi: 10.1016/j.energy.2018.08.154.eng
dc.relation.references“The Association for the Advancement of Cost Estimating International (AACE International).” .eng
dc.relation.referencesI. Horváth, “On some Crucial Issues of Computer Support of Conceptual Design,” in Product Engineering, Dordrecht: Kluwer Academic Publishers, 2004, pp. 123–142.eng
dc.relation.referencesM. P. Weiss, A. Hari, and A. Zonnenshain, “Design of the concept of a new system, using ICDM - Integrated, Customer Driven, Conceptual Design Method,” INCOSE Int. Symp., vol. 12, no. 1, pp. 980–988, 2002, doi: 10.1002/j.2334-5837.2002.tb02564.x.eng
dc.relation.referencesT. Keinonen and R. Takala, Product Concept Design A Review of the Conceptual Design of Products in Industry. Springer, 2006.eng
dc.relation.referencesF. G. Albrecht, D. H. König, N. Baucks, and R. U. Dietrich, “A standardized methodology for the techno-economic evaluation of alternative fuels – A case study,” Fuel, vol. 194, pp. 511–526, Apr. 2017, doi: 10.1016/j.fuel.2016.12.003.eng
dc.relation.referencesD. Manca, A. Fini, and M. Oliosi, Dynamic Conceptual Design under Market Uncertainty and Price Volatility, vol. 29. 2011.eng
dc.relation.referencesD. Manca, A. Conte, and R. Barzaghi, “How to account for market volatility in the conceptual design of chemical processes,” Chem. Eng. Trans., vol. 43, pp. 1333–1338, 2015, doi: 10.3303/CET1543223.eng
dc.relation.referencesD. Manca, “Price model of electrical energy for PSE applications,” Comput. Chem. Eng., vol. 84, pp. 208–216, Jan. 2016, doi: 10.1016/j.compchemeng.2015.08.013.eng
dc.relation.referencesD. Manca and R. Grana, “Dynamic conceptual design of industrial processes,” Comput. Chem. Eng., vol. 34, no. 5, pp. 656–667, May 2010, doi: 10.1016/j.compchemeng.2010.01.004.eng
dc.relation.referencesP. Sorknæs, H. Lund, and A. N. Andersen, “Future power market and sustainable energy solutions - The treatment of uncertainties in the daily operation of combined heat and power plants,” Appl. Energy, vol. 144, pp. 129–138, Apr. 2015, doi: 10.1016/j.apenergy.2015.02.041.eng
dc.relation.referencesC. Cardona, J. Moncada, and V. Aristizabal, “Design strategies for sustainable biorefineries,” Biochem. Eng. J., vol. 116, pp. 122–134, 2016, doi: 10.1016/j.bej.2016.06.009.eng
dc.relation.referencesAmerican Petroluem Institute (API), “API 660 - Shell-and-tube heat exchangers for general refinery services,” pp. 1–38, 2001.eng
dc.relation.referencesR. K. Shah and D. P. Sekuli, Selection of Heat Exchangers and Their Components. 2007.eng
dc.relation.referencesR. Mukherjee, “Effectively design hell-and-tube heat exchangers,” Chemical Engineering Progress, vol. 94, no. 2, pp. 21–37, 1998.eng
dc.relation.referencesTubular Exchanger Manufacturers Association Inc (TEMA), Standard of the Tubular Exchanger Manufacturers Association, Ninth. Tarrytown, New York 10591: TEMA, 2007.eng
dc.relation.referencesB. Nesbitt, Ed., “Pump theory,” in Handbook of Pumps and Pumping, Elsevier, 2006, pp. 145–148.eng
dc.relation.referencesB. Nesbitt, Ed., “Pumps and piping systems,” in Handbook of Pumps and Pumping, Elsevier, 2006, pp. 157–158.eng
dc.relation.referencesJ. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo, and C. A. Cardona, “Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case,” Energy, vol. 33, no. 3, pp. 385–399, 2008, doi: 10.1016/J.ENERGY.2007.10.001.eng
dc.relation.referencesR. Gomilšek, L. Čuček, M. Homšak, and Z. Kravanja, “Towards GHG emissions neutrality of aluminium slug production: An industrial study,” Chem. Eng. Trans., vol. 76, pp. 217–222, 2019, doi: 10.3303/CET1976037.eng
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembDiseño en ingenieríaspa
dc.subject.lembEngineering designeng
dc.subject.proposalDiseño básicospa
dc.subject.proposalDiseño detalladospa
dc.subject.proposalEvaluación económicaspa
dc.subject.proposalMetodologíaspa
dc.subject.proposalCapExspa
dc.subject.proposalEstimación de costosspa
dc.subject.proposalBasic designeng
dc.subject.proposalDetailed designeng
dc.subject.proposalEconomic assessmenteng
dc.subject.proposalMethodologyeng
dc.subject.proposalCost estimationeng
dc.titleDetailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processeseng
dc.title.translatedEvaluación económica detallada para mejorar los cálculos de diseño conceptual basados en experiencias de la industria en procesos químicos y bioquímicoseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1143238546.2021.pdf
Tamaño:
5.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: