Transición energética en el sector transporte terrestre automotor hacia tecnologías de cero y bajas emisiones
dc.contributor.advisor | Franco Cardona, Carlos Jaime | |
dc.contributor.advisor | Cárdenas Ardila, Laura Milena | |
dc.contributor.author | Garcia Collazos, Julieth Stefany | |
dc.contributor.orcid | Garcia Collazos, Julieth Stefany [0000-0002-2004-2596] | spa |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-07-10T16:20:48Z | |
dc.date.available | 2025-07-10T16:20:48Z | |
dc.date.issued | 2025 | |
dc.description.abstract | La transición energética en el sector transporte es un esfuerzo global orientado a la reducción de emisiones de gases de efecto invernadero (GEI) y al cumplimiento de los compromisos climáticos. Dado que el transporte representa el 24 % de las emisiones globales de CO₂, su descarbonización es una prioridad. Si bien existen políticas para promover la transición energética en este sector, su efectividad y la evaluación del impacto de las estrategias implementadas se favorecen de la disponibilidad de herramientas de evaluación que permitan medir de manera precisa y continua sus resultados. Contar con una herramienta adecuada facilitaría la identificación de las iniciativas más eficaces y posibilitaría realizar ajustes oportunos con base en la evidencia obtenida, lo que contribuiría a una toma de decisiones más informadas Esta investigación presenta una plataforma de simulación para la evaluación integrada de políticas de transición energética en el transporte terrestre a lo largo del tiempo, calibrada principalmente con datos de Bogotá-Colombia, sin embargo, también se hizo una aplicación para México en la categoría pickups. Esta herramienta permite analizar cuatro categorías de vehículos: buses, taxis, camiones (de hasta 10.5 toneladas) y vehículos livianos (incluyendo automóviles y SUVs, como pickups). Asimismo, se contemplaron diversas tecnologías, entre ellas motores de combustión interna (ICE), vehículos eléctricos a batería (BEV), vehículos híbridos eléctricos (HEV), vehículos híbridos enchufables (PHEV), gas natural vehicular (CNG) y vehículos impulsados por hidrógeno. Para la evaluación de políticas, se definieron cuatro indicadores clave: proyecciones de la flota por categoría y tecnología, demanda de energía, emisiones de CO₂ y costos de implementación. Los resultados muestran que la transición energética en el transporte en Colombia depende en gran medida de la aplicación de políticas específicas, ya que sin ellas el cambio no se materializará en el tiempo oportuno. Así mismo, en ausencia de medidas adecuadas, la renovación del parque vehicular se retrasa, prolongando la circulación de tecnologías contaminantes, sobre todo en un contexto donde la capacidad adquisitiva limita el reemplazo oportuno de vehículos de alta emisión. Además, la insuficiencia de infraestructura de recarga genera incertidumbre incluso entre aquellos con mayor poder adquisitivo. Esta transformación en el sector transporte tiene implicaciones directas en el sector energético, pues requiere una reconfiguración de la cadena de valor de la electricidad para responder a la nueva demanda la cual, al ser más eficiente, podría disminuir la demanda de energía total. Por otro lado, la adopción de tecnologías de cero y bajas emisiones resulta fundamental para cumplir los objetivos ambientales a nivel nacional e internacional. Así mismo, los resultados muestran que el diseño y la aplicación de políticas diferenciadas según la categoría y la tecnología vehicular, junto con incentivos sólidos para tecnologías de cero y bajas emisiones, favorecen la transición energética en términos de reducción de emisiones y demanda de energía. Sin embargo, los costos asociados a la implementación de estas políticas y a la promoción de la transición son elevados, por lo que deben ser analizados detalladamente por los responsables de la toma de decisiones. Finalmente, se prevé que la tecnología híbrida predomine en los vehículos livianos, aprovechando la infraestructura existente y su mayor accesibilidad económica; en los buses, se espera una incorporación notable de tecnologías eléctricas; en los taxis, la electromovilidad se adaptará de manera óptima; y en el sector de camiones se anticipa una diversificación en las fuentes energéticas, compitiéndose la demanda entre tecnologías basadas en diésel, gas natural vehicular y electricidad. (Tomado de la fuente) | spa |
dc.description.abstract | The energy transition in the transportation sector is a global effort aimed at reducing greenhouse gas (GHG) emissions and fulfilling climate commitments. Since transportation accounts for 24% of global CO₂ emissions, its decarbonization is a priority. Although policies exist to promote the energy transition in this sector, their effectiveness—and the evaluation of the impact of implemented strategies—would benefit from robust evaluation tools that enable precise and continuous measurement of outcomes. An adequate tool would facilitate the identification of the most effective initiatives and enable timely adjustments based on empirical evidence, thereby contributing to more informed decision-making. This research presents a simulation platform for the integrated evaluation of energy transition policies in land transportation over time. The platform was primarily calibrated using data from Bogotá, Colombia; however, an application was also carried out for the pickups category in Mexico. This tool enables the analysis of four vehicle categories: buses, taxis, trucks (up to 10.5 tons), and light vehicles (including cars and SUVs, such as pickups). Furthermore, the analysis considers various technologies, including internal combustion engines (ICE), battery electric vehicles (BEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), compressed natural gas vehicles (CNG), and hydrogen-powered vehicles. For policy evaluation, four key indicators were defined: fleet projections by category and technology, energy demand, CO₂ emissions, and implementation costs. The results indicate that the energy transition in transportation in Colombia largely depends on the implementation of specific policies; without such measures, the transition would not materialize in a timely manner. In the absence of adequate policies, the renewal of the vehicle fleet is delayed, thereby prolonging the circulation of polluting technologies—especially in contexts where limited purchasing power hinders the timely replacement of high-emission vehicles. Additionally, the lack of sufficient charging infrastructure creates uncertainty, even among consumers with higher purchasing power. This transformation in the transportation sector has direct implications for the energy sector, as it requires a reconfiguration of the electricity value chain to meet the new demand. Given the greater efficiency of electric technologies, overall energy demand could be reduced. Moreover, the adoption of zero- and low-emission technologies is fundamental for achieving environmental objectives at both national and international levels. The findings further suggest that the design and implementation of differentiated policies according to vehicle category and technology, coupled with robust incentives for zero- and low-emission technologies, support the energy transition by reducing both emissions and energy demand. However, the high costs associated with implementing these policies and promoting the transition must be thoroughly analyzed by decision-makers. Finally, it is anticipated that hybrid technology will predominate in light vehicles, capitalizing on existing infrastructure and its greater economic accessibility. In buses, a significant incorporation of electric technologies is expected; in taxis, electromobility is likely to be optimally adapted; and in the truck sector, a diversification of energy sources is anticipated, with demand competing among diesel-based, compressed natural gas, and electric technologies. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería Sistemas e Informática | spa |
dc.format.extent | 51 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88321 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Aracil y Gordillo, 1997. Dinamica de Sistemas | spa |
dc.relation.references | Barisa, A., Rosa, M., 2018. A system dynamics model for CO2 emission mitigation policy design in road transport sector, in: Energy Procedia. Elsevier Ltd, pp. 419–427. https://doi.org/10.1016/j.egypro.2018.07.112 | spa |
dc.relation.references | Bayer, S., 2004. Systems Thinking and Modeling for a Complex World, Interfaces. Irwin/McGraw-Hill | spa |
dc.relation.references | Bjerkan, K.Y., Nørbech, T.E., Nordtømme, M.E., 2016. Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway. Transp Res D Transp Environ 43, 169–180. https://doi.org/10.1016/j.trd.2015.12.002 | spa |
dc.relation.references | Bloomberg, 2024. Electric Vehicle Outlook 2024 | spa |
dc.relation.references | Brazil, W., Kallbekken, S., Sælen, H., Carroll, J., 2019. The role of fuel cost information in new car sales. Transp Res D Transp Environ 74, 93–103. https://doi.org/10.1016/j.trd.2019.07.022 | spa |
dc.relation.references | C40 Ctities, 2023. Annual Report C40 Cities 2023 | spa |
dc.relation.references | Chen, H., Liang, X., Liu, Y., Ai, X., Asefa, T., Zou, X., 2020. Active Site Engineering in Porous Electrocatalysts. Advanced Materials 32, 1–32. https://doi.org/10.1002/adma.202002435 | spa |
dc.relation.references | Congreso de la República de Colombia, 2019. Ley 1964 de 2019. Diario Oficial 50976 1–57 | spa |
dc.relation.references | Dong, X., Zhang, B., Wang, B., Wang, Z., 2020. Urban households’ purchase intentions for pure electric vehicles under subsidy contexts in China: Do cost factors matter? Transp Res Part A Policy Pract 135, 183–197. https://doi.org/10.1016/j.tra.2020.03.012 | spa |
dc.relation.references | European Commission, 2021. Make Transport Greener #EUGreenDeal TRANSPORT AND THE EMISSIONS TRADING SYSTEM ETSS: PUTTING A PRICE ON CARBON. https://doi.org/10.2775/63094 | spa |
dc.relation.references | Fishman, T., Myers, R.J., Rios, O., Graedel, T.E., 2018. Implications of emerging vehicle technologies on rare earth supply and demand in the United States. Resources 7, 1–15. https://doi.org/10.3390/resources7010009 | spa |
dc.relation.references | Garcia, J.S., Cárdenas, L.M., Morcillo, J.D., Franco, C.J., 2024. Policy Assessment for Energy Transition to Zero- and Low-Emission Technologies in Pickup Trucks: Evidence from Mexico. Energies 17. https://doi.org/10.3390/en17102386 | spa |
dc.relation.references | Gilbert, G.Nigel., Troitzsch, K.G., 2005. Simulation for the social scientist | spa |
dc.relation.references | Greim, P., Solomon, A.A., Breyer, C., 2020. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat Commun 11. https://doi.org/10.1038/s41467-020-18402-y | spa |
dc.relation.references | Haimes, Y.Y., 2009. On the definition of resilience in systems. Risk Analysis. https://doi.org/10.1111/j.1539-6924.2009.01216.x | spa |
dc.relation.references | Iniciativa Climática de México, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), 2021. Manual para la Planeación de la Transición Energética a Nivel Subnacional | spa |
dc.relation.references | Institute for Transportation and Development Policy, 2023. From Transmilenio to Cycle Networks-Lessons Learned from Bogotá’s Comprehensive Urban Mobility Planning Timeline of Bogotá’s Major Milestones: 1974 | spa |
dc.relation.references | International Energy Agency, 2023. Global EV Outlook 2023. Geo 9–10 | spa |
dc.relation.references | International Energy Agency, 2020. Sustainable Recovery: World Energy Outlook Special Report. World Energy Outlook 185 | spa |
dc.relation.references | Jiang, L., Chen, H., Paschalidis, E., 2023. Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study. Transp Policy (Oxf) 141, 274–290. https://doi.org/10.1016/j.tranpol.2023.07.029 | spa |
dc.relation.references | Jochem, P., Gómez Vilchez, J.J., Ensslen, A., Schäuble, J., Fichtner, W., 2018. Methods for forecasting the market penetration of electric drivetrains in the passenger car market. Transp Rev 38, 322–348. https://doi.org/10.1080/01441647.2017.1326538 | spa |
dc.relation.references | Kester, J., Noel, L., Zarazua de Rubens, G., Sovacool, B.K., 2018a. Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion. Energy Policy 116, 422–432. https://doi.org/10.1016/j.enpol.2018.02.024 | spa |
dc.relation.references | Kester, J., Noel, L., Zarazua de Rubens, G., Sovacool, B.K., 2018b. Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region. Renewable and Sustainable Energy Reviews 94, 719–731. https://doi.org/10.1016/j.rser.2018.05.067 | spa |
dc.relation.references | Kieckhäfer, K., Wachter, K., Spengler, T.S., 2017. Analyzing manufacturers’ impact on green products’ market diffusion – the case of electric vehicles. J Clean Prod 162, S11–S25. https://doi.org/10.1016/j.jclepro.2016.05.021 | spa |
dc.relation.references | Leroy, J., Bailly, G., Billard, G., 2022. Introducing carsharing schemes in low-density areas: The case of the outskirts of Le Mans (France). Regional Science Policy and Practice 1–17. https://doi.org/10.1111/rsp3.12523 | spa |
dc.relation.references | Lopez-Arboleda, E., Sarmiento, A.T., Cardenas, L.M., 2023. Policy assessment for electromobility promotion in Colombia: A system dynamics approach. Transp Res D Transp Environ 121. https://doi.org/10.1016/j.trd.2023.103799 | spa |
dc.relation.references | Mersky, A.C., Sprei, F., Samaras, C., Qian, Z.S., 2016. Effectiveness of incentives on electric vehicle adoption in Norway. Transp Res D Transp Environ 46, 56–68. https://doi.org/10.1016/j.trd.2016.03.011 | spa |
dc.relation.references | Ministerio de Transporte de Colombia, 2023. Transporte en Cifras [WWW Document]. Transporte en cifras | spa |
dc.relation.references | Nilsson, M., Nykvist, B., 2016. Governing the electric vehicle transition – Near term interventions to support a green energy economy. Appl Energy 179, 1360–1371. https://doi.org/10.1016/j.apenergy.2016.03.056 | spa |
dc.relation.references | Onat, N.C., Kucukvar, M., Tatari, O., Egilmez, G., 2016. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles. International Journal of Life Cycle Assessment 21, 1009–1034. https://doi.org/10.1007/s11367-016-1070-4 | spa |
dc.relation.references | Oshiro, K., Masui, T., 2015. Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan. Energy Policy 81, 215–225. https://doi.org/10.1016/j.enpol.2014.09.010 | spa |
dc.relation.references | Pignatta, G., Balazadeh, N., 2022. Hybrid Vehicles as a Transition for Full E-Mobility Achievement in Positive Energy Districts: A Comparative Assessment of Real-Driving Emissions. Energies (Basel) 15. https://doi.org/10.3390/en15082760 | spa |
dc.relation.references | Purnell, K., Bruce, A.G., MacGill, I., 2022. Impacts of electrifying public transit on the electricity grid, from regional to state level analysis. Appl Energy 307, 118272. https://doi.org/10.1016/j.apenergy.2021.118272 | spa |
dc.relation.references | Ramiro, J., Santamaría, A., 2023. Factores de Emisión de los Combustibles Colombianos (FECOC+) Fase 3: Determinación de los factores de emisión de vehículos livianos y motocicletas para Colombia. | spa |
dc.relation.references | Raymand, F., Ahmadi, P., Mashayekhi, S., 2021. Evaluating a light duty vehicle fleet against climate change mitigation targets under different scenarios up to 2050 on a national level. Energy Policy 149, 111942. https://doi.org/10.1016/j.enpol.2020.111942 | spa |
dc.relation.references | Sala, S., Farioli, F., Zamagni, A., 2013. Progress in sustainability science: Lessons learnt from current methodologies for sustainability assessment: Part 1. International Journal of Life Cycle Assessment 18, 1653–1672. https://doi.org/10.1007/s11367-012-0508-6 | spa |
dc.relation.references | Salvucci, R., Gargiulo, M., Karlsson, K., 2019. The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic. Appl Energy 253, 113593. https://doi.org/10.1016/j.apenergy.2019.113593 | spa |
dc.relation.references | Secretaría Distrital de Movilidad- Alcaldía Mayor de Bogotá, 2023. Política pública de movilidad motorizada de cero y bajas emisiones 2023-2040 | spa |
dc.relation.references | Shafiei, E., Davidsdottir, B., Leaver, J., Stefansson, H., Asgeirsson, E.I., 2015. Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system. Energy 83, 614–627. https://doi.org/10.1016/j.energy.2015.02.071 | spa |
dc.relation.references | Trencher, G., 2020. Strategies to accelerate the production and diffusion of fuel cell electric vehicles: Experiences from California. Energy Reports 6, 2503–2519. https://doi.org/10.1016/j.egyr.2020.09.008 | spa |
dc.relation.references | Unidad de Planeación Minero Energética, 2023. FACTOR DE EMISIONES DE LA RED DE ENERGÍA ELÉCTRICA EN COLOMBIA | spa |
dc.relation.references | UPME - Unidad de Planeación Minero Energética, 2017. Mapa de ruta para la transición hacia el uso de vehículos de bajas y cero emisiones | spa |
dc.relation.references | UPME - Unidad de Planeación Minero-Energética, 2021. Balance de Energía Colombiano | spa |
dc.relation.references | UPME - Unidad de Planeación Minero-Energética, 2020. Plan Energético Nacional 2020-2050 2015 | spa |
dc.relation.references | Wang, Z., Yu, J. (Gabe), Chen, A., Fu, X., 2024. Subsidy policies towards zero-emission bus fleets: A systematic technical-economic analysis. Transp Policy (Oxf) 150, 1–13. https://doi.org/10.1016/j.tranpol.2024.02.022 | spa |
dc.relation.references | Zhou, X., Kuosmanen, T., 2020. What drives decarbonization of new passenger cars? Eur J Oper Res 284, 1043–1057. https://doi.org/10.1016/j.ejor.2020.01.018 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 380 - Comercio , comunicaciones, transporte::388 - Transporte | spa |
dc.subject.ddc | 360 - Problemas y servicios sociales; asociaciones::363 - Otros problemas y servicios sociales | spa |
dc.subject.lemb | Transporte terrestre - Colombia | |
dc.subject.lemb | Gases de combustión - Mediciones - Colombia | |
dc.subject.lemb | Vehículos eléctricos - Colombia | |
dc.subject.lemb | Electricidad en el transporte - Colombia | |
dc.subject.lemb | Procesamiento de datos | |
dc.subject.lemb | Política energética - Colombia | |
dc.subject.proposal | transición energética | spa |
dc.subject.proposal | evaluación de políticas | spa |
dc.subject.proposal | emisiones | spa |
dc.subject.proposal | transporte | spa |
dc.subject.proposal | vehículos eléctricos | spa |
dc.subject.proposal | energy transition | eng |
dc.subject.proposal | policy evaluation | eng |
dc.subject.proposal | emissions | eng |
dc.subject.proposal | transport | eng |
dc.subject.proposal | electric vehicles | eng |
dc.title | Transición energética en el sector transporte terrestre automotor hacia tecnologías de cero y bajas emisiones | spa |
dc.title.translated | Energy transition in the road transport sector towards zero- and low-emission technologies | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022390760.2025.pdf
- Tamaño:
- 2.33 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Sistemas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: