Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
dc.contributor.advisor | Rosero Garcia, Javier Alveiro | spa |
dc.contributor.advisor | Oscar German, Duarte Velasco | spa |
dc.contributor.author | Duarte Aunta, Javier Eduardo | spa |
dc.date.accessioned | 2024-05-10T12:43:50Z | |
dc.date.available | 2024-05-10T12:43:50Z | |
dc.date.issued | 2023-12 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Este estudio introduce una metodología para el análisis de la variabilidad en la demanda eléctrica, con el objetivo de estimar la flexibilidad del consumo energético en Colombia. Esta evaluación es clave para la posible implementación de esquemas tarifarios diferenciados, en particular tarifas Time-of-use (ToU). La metodología comienza con un pre-procesamiento de datos, centrado en la organización y limpieza de registros individuales de consumo. Seguidamente, se realiza un procesamiento y clasificación de los datos mediante técnicas de análisis de variabilidad y clustering. Los clusters representativos son seleccionados para identificar intervalos de tiempo con alta variabilidad en el consumo de energía eléctrica. El paso final consiste en analizar el potencial de flexibilidad energética en estos intervalos, tanto para usuarios con alta variabilidad como para el conjunto total de usuarios estudiados. Esta metodología fue aplicada utilizando datos reales de medidores inteligentes del sistema eléctrico colombiano, logrando identificar con éxito las franjas horarias con potencial para establecer tarifas de ToU. Este trabajo, surge como una iniciativa del grupo de investigación Electrical Machines and Drives de la Universidad Nacional – Sede Bogotá, que aspira a fomentar la implementación de estrategias de respuesta de la demanda que promuevan la sostenibilidad y faciliten la transición hacia un panorama energético resiliente a nivel nacional e internacional. Se espera que los hallazgos aquí presentados contribuyan significativamente en la formulación de esquemas tarifarios que incentiven una modificación consciente en los patrones de consumo de energía eléctrica. (Texto tomado de la fuente). | spa |
dc.description.abstract | This study introduces a methodology for analyzing the variability in electrical demand, aimed at estimating the flexibility of energy consumption in Colombia. This assessment is crucial for the potential implementation of differentiated tariff schemes, particularly Time-of-Use (ToU) rates. The methodology begins with data preprocessing, focusing on the organization and cleaning of individual consumption records. Subsequently, data processing and classification are carried out using variability analysis techniques and clustering. Representative clusters are selected to identify time intervals with high variability in electrical energy consumption. The final step involves analyzing the potential for energy flexibility in these intervals, for both users with high variability and the entire cohort of studied users. This methodology was applied using real data from smart meters in the Colombian electrical system, successfully identifying time slots with potential for establishing ToU tariffs. This work, initiated by the Electrical Machines and Drives research group at the Universidad Nacional - Bogotá Campus, aims to promote the implementation of demand response strategies that encourage sustainability and facilitate the transition to a resilient energy landscape at both national and international levels. The findings presented here are expected to contribute significantly to the development of tariff schemes that encourage a conscious modification in the patterns of electricity consumption. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.description.researcharea | Computación aplicada | spa |
dc.format.extent | xiii, 70 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86066 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.relation.references | Alquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., and Rasheed, M. B. (2022). A performance comparison of machine learning algorithms for load forecasting in smart grid. IEEE Access, 10:48419–48433 | spa |
dc.relation.references | Anamika and Kumar, N. (2016). Market clearing price prediction using ann in indian electricity markets. pages 454–458. Institute of Electrical and Electronics Engineers Inc. | spa |
dc.relation.references | Anderson, O. and Yu, N. (2022). Learning to steal electricity in power distribution systems with deep reinforcement learning. Institute of Electrical and Electronics Engineers Inc. | spa |
dc.relation.references | Aro, M., Piira, K., and M aki, K. (2021). Business model for household flexibility- a case study. pages 20–23 | spa |
dc.relation.references | Awan, M.B.andMa, Z.(2023). Building energy flexibility: definitions, sources, indicators, and quantification methods, pages 17–40. Elsevier. | spa |
dc.relation.references | Axpo, Energy, B., en microeconomia, D. R. D. C., Pool, E., iet energy, Energy, K., Energy, S., Sympower, Voltalis, and Cuerva (2022). Manifiesto para el desarrollo de la flexibilidad de la demanda en españa. Publicado por Energy Pool. El manifiesto aboga por el desarrollo de un marco legislativo y procedimental para la flexibilidad de la demanda en España, en linea con la Directiva (UE) 944/2019 | spa |
dc.relation.references | Azam, M. F. and Younis, M. S. (2021). Multihorizon electricity load and price forecasting using an interpretable multihead self-attention and eemd-based framework. IEEE Access, 9:85918–85932. | spa |
dc.relation.references | Barai, G. R., Krishnan, S., and Venkatesh, B. (2015). Smart metering and functionalities of smart meters in smart grid- a review. pages 138–145 | spa |
dc.relation.references | Barragan, D. E. C., Archilli, G. B., and Silva, L. C. P. D. (2020). Data-driven indicators applied to power distribution systems | spa |
dc.relation.references | Bebic, J. Z., Berry, I. M., James, A. N., and Lee, D. O. (2019). Quantifying electric load flexibility using smart meter data | spa |
dc.relation.references | Belton, C. A. and Lunn, P. D. (2020). Smart choices? an experimental study of smart meters and time-of-use tariffs in ireland. Energy Policy, 140:111243 | spa |
dc.relation.references | Canizes, B., Mota, B., Ribeiro, P., and Vale, Z. (2022). Demand response driven by distribution network voltage limit violation: A genetic algorithm approach for load shifting. IEEE Access, 10:62183–62193 | spa |
dc.relation.references | Carmon, D., Navon, A., Machlev, R., Belikov, J., and Levron, Y. (2020). Readiness of small energy markets and electric power grids to global health crises: Lessons from the covid-19 pandemic. IEEE Access, 8:127234–127243 | spa |
dc.relation.references | (CASIO), C. I. S. O. (2016). What the duck curve tells us about managing a green grid | spa |
dc.relation.references | CEPAL, N. (2019). La agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para america latina y el caribe. objetivos, metas e indicadores mundiales. Publicacion de la CEPAL que aborda la Agenda 2030 para el Desarrollo Sostenible y su relevancia para America Latina y el Caribe, incluyendo objetivos, metas e indicadores mundiales | spa |
dc.relation.references | Chebbo, L., Bazzi, A. M., Yassine, A., Karaki, S. H., and Ghaddar, N.(2021). Tou tariff system using data from smart meters. In 2021 IEEE Power and Energy Conference at Illinois (PECI), pages 1–5 | spa |
dc.relation.references | Chen, Z., Amani, A. M., Yu, X., and Jalili, M. (2023). Control and optimisation of power grids using smart meter data: A review. Sensors, 23 | spa |
dc.relation.references | Comision de Regulacion de Energia y Gas (2022). Respuesta de la demanda en el sistema interconectado nacional- hoja de ruta documento de consulta publica | spa |
dc.relation.references | Comision Europea (2022). Una transicion hacia una energia limpia | spa |
dc.relation.references | Deng, H., Yan, F., Wang, H., Fang, L., Zhou, Z., Zhang, F., Xu, C., and Jiang, H. (2021). Electricity price prediction based on lstm and lightgbm. pages 286–290. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Departamento Nacional de Planeacion, Ministerio del Trabajo and Ministerio de Minas y Energia, Ministerio de Comercio Industria y Turismo and Ministerio de Ambiente y Desarrollo Sostenible, and Ministerio de Transporte and Ministerio de Ciencia Tecnologia e Innovacion (2022). Documento conpes 4075- politica de transicion energetica | spa |
dc.relation.references | Approximating nash equilibrium in day-ahead electricity market bidding with multi-agent deep reinforcement learning. Journal of Modern Power Systems and Clean Energy, 9:534–544 | spa |
dc.relation.references | Duan, N., Huang, C., Sun, C. C., and Min, L. (2022). Smart meters enabling voltage monitoring and control: The last mile voltage stability issue. IEEE Transactions on Industrial Informatics, 18:677–687 | spa |
dc.relation.references | ENELX (2023). ¿como funciona la respuesta a la demanda y por que es importante? | spa |
dc.relation.references | Facultad de Ciencias Fisicas y Matematicas Universidad de Chile, de la Energia, C., Nacional, S. E., Palma, R., Matus, M., Torres, ., Benavides, C., Sierra, E., Sepulveda, R., and Riquelme, F. (2019). Concepto de flexibilidad en el sistema electrico nacional | spa |
dc.relation.references | Fraija, A., Agbossou, K., Henao, N., Kelouwani, S., Fournier, M., and Hosseini, S. S. (2022). A discount-based time-of-use electricity pricing strategy for demand response with minimum information using reinforcement learning. IEEE Access, 10:5401854028 | spa |
dc.relation.references | Fu, Y., Zhang, Z., and Li, T. (2021). Electricity market price prediction based on differential evolutionary algorithm and neural network. pages 999–1004. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Gao, H. X., Kuenzel, S., and Zhang, X. Y. (2022). A hybrid convlstm based anomaly detection approach for combating energy theft. IEEE Transactions on Instrumentation and Measurement, 71 | spa |
dc.relation.references | Gao, S., Song, T. E., Liu, S., Zhou, C., Xu, C., Guo, H., Li, X., Li, Z., Liu, Y., Jiang, W., Wang, J., and Wang, S. (2021). Joint optimization of planning and operation in multi-region integrated energy systems considering flexible demand response. IEEE Access, 9:75840–75863 | spa |
dc.relation.references | Guerrero-Prado, J. S., Alfonso-Morales, W., and Caicedo Bravo, E. F. (2021). A data analytics/big data framework for advanced metering in frastructure data. Sensors, 21 | spa |
dc.relation.references | Gyamfi, S., Krumdieck, S., and Urmee, T. (2013). Residential peakelectricity demand response—highlights of some behavioural issues. Renewable and Sustainable Energy Reviews, 25:71–77 | spa |
dc.relation.references | Heghedus, C., Segarra, S., Chakravorty, A., and Chunming, R. (2019). Neural network architectures for electricity consumption forecasting | spa |
dc.relation.references | Honarmand, M. E., Hosseinnezhad, V., Hayes, B., Shafie-Khah, M., and Siano, P. (2021). An overview of demand response: From its origins to the smart energy community. IEEE Access, 9:96851–9687 | spa |
dc.relation.references | Imani, M. H., Bompard, E., Colella, P., and Huang, T. Predictive methods of electricity price: an application to the italian electricity market | spa |
dc.relation.references | Kitchenham, B. and Brereton, P. (2013). A systematic review of systematic review process research in software engineering | spa |
dc.relation.references | Kumar, R., Ranjan, R., and Verma, M. C. (2021). A new approach for long term electricity load forecasting for uttarakhand state power utilities using artificial neural network. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Lepolesa, L. J., Achari, S., and Cheng, L. (2022). Electricity theft detection in smart grids based on deep neural network. IEEE Access, 10:39638–39655 | spa |
dc.relation.references | Li, Y., Li, J., Shang, Y., and Qian, H. (2020). Risk forecast to electricity retail market based multiple risk factors of electricity retail companies. pages 95–100. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Li, Z., Wanwei, L., and Dehghaion, P. (2023). Auto-encoder neural network based monthly electricity consumption forecasting method using hourly data | spa |
dc.relation.references | Liu, L., Li, F., Cheng, Z., Zhou, Y., Shen, J., Li, R., and Xiong, S. (2022). Non-intrusive load monitoring method considering the time-segmented state probability. IEEE Access, 10:39627–39637 | spa |
dc.relation.references | Malbasic, B. and Pandzic, H. (2022). Requirements, challenges and experiences of practical demand response in households. pages 81–86. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Mamun, A. A., Sohel, M., Mohammad, N., Sunny, M. S. H., Dipta, D. R., and Hossain, E. (2020). A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access, 8:134911–134939 | spa |
dc.relation.references | Ministerio de Minas y Energia, U. (2022). Plan de accion indicativo (pai)– para el desarrollo del programa de uso de racional y eficiente de la energia – proure 2022-2030 | spa |
dc.relation.references | Mittal, D. A., Liu, S., and Xu, G. (2020). Electricity price forecasting using convolution and lstm models. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Mortensen, L. K., Shaker, H. R., Santos, A. Q., and Veje, C. T. (2021). Fault area location in electrical distribution system using smart meter data. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Munem, M., Bashar, T. M. R., Roni, M. H., Shahriar, M., Shawkat, T. B., and Rahaman, H. (2020). Electric power load forecasting based on multivariate lstm neural network using bayesian optimization. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Naciones Unidas (1997). Protocolo de kioto de la convencion marco de las naciones unidas sobre el cambio climatico | spa |
dc.relation.references | Naciones Unidas (2015). Acuerdo de paris. Convencion Marco de las Naciones Unidas sobre el Cambio Climatico | spa |
dc.relation.references | Nawaz, A., Hafeez, G., Khan, I., Jan, K. U., Li, H., Khan, S. A., and Wadud, Z. (2020). An intelligent integrated approach for efficient demand side management with forecaster and advanced metering infrastructure frameworks in smart grid. IEEE Access, 8:132551–132581 | spa |
dc.relation.references | Naz, A., Javaid, N., Asif, M., Javed, M. U., Ahmed, A., Gulfam, S. M., Shafiq, M., and Choi, J. G. (2021). Electricity consumption forecasting using gated-fcn with ensemble strategy. IEEE Access, 9:131365–131381 | spa |
dc.relation.references | Nicolson, M. L., Fell, M. J., and Huebner, G. M. (2018). Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence. Renewable and Sustainable Energy Reviews, 97:276–289 | spa |
dc.relation.references | Othman, M. S. M., Johari, D., Musirin, I., Rahman, T. K. A., and Ismail, N. F. N. (2010). Artificial neural network-based forecast for electricity consumption in malaysia. pages 24–28 | spa |
dc.relation.references | Ott, R. L. and Longnecker, M. (2016). An Introduction to Statistical Methods and Data Analysis. Cengage Learning, Australia; Brazil; Mexico; Singapore; United Kingdom; United States, 7 edition | spa |
dc.relation.references | Parizad, A. and Hatziadoniu, C. J. (2021). Using prophet algorithm for pattern recognition and short term forecasting of load demand based on seasonality and exogenous features. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Parkash, B., Lie, T. T., Li, W., and Tito, S. R. (2022). Hierarchical structure based energy consumption forecasting in top-down approach. pages 1732–1737. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Pawar, S. and Momin, B. F. (2017). Smart electricity meter data analytics: A brief review. In 2017 IEEE Region 10 Symposium (TENSYMP), pages 1–5, Cochin, India. IEEE | spa |
dc.relation.references | Pinto, T., Sousa, T. M., and Vale, Z. (2012). Dynamic artificial neural network for electricity market prices forecast. pages 311–316 | spa |
dc.relation.references | Programa de las Naciones Unidas para el Desarrollo (2015). Objetivo 13- acci´on por el clima, objetivos de desarrollo sostenible | spa |
dc.relation.references | Rajabi, A., Eskandari, M., Ghadi, M. J., Li, L., Zhang, J., and Siano, P. (2020). A comparative study of clustering techniques for electrical load pattern segmentation. Renewable and Sustainable Energy Reviews, 120:109628 | spa |
dc.relation.references | Restrepo, J. A., Sierra, S. E., and Rosero, J. A. (2018). Load curve characterization based on real time measurements: Case of study in colombia. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America(T&D-LA), Lima, Peru | spa |
dc.relation.references | Rosero Garcia, J., Zambrano P, A. A., and Duarte, O. (2018).Implementation of an energy demand forecasting model under a smart grids environment. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America (T&D-LA), Lima, Peru. IEEE | spa |
dc.relation.references | Ruensukon, R., Tephiruk, N., Hongesombut, K., and Romphochai, S. (2021). Effects of covid-19 on electrical energy demand based on spatial analysis a case study of phetchaburi, thailand. In 2021 9th International Electrical Engineering Congress (iEECON), pages 137–140, Pattaya, Thailand | spa |
dc.relation.references | Safhi, H. M., Frikh, B., and Ouhbi, B. (2020). Energy load forecasting in big data context | spa |
dc.relation.references | Sajjad, I. A., Chicco, G., Aziz, M., and Rasool, A. (2014). Potential of residential demand flexibility- italian scenario. IEEE Computer Society | spa |
dc.relation.references | Salamanca, W. M., Alvarez, D. L., Garcia, J. A., Marin, J. S., and Gomez-Luna, E. (2019). State estimator assessment platform in distribution systems with advanced metering infrastructure and distributed generation using real time simulations. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Schirmer, P. A. and Mporas, I. (2023). Non-intrusive load monitoring: A review. IEEE Transactions on Smart Grid, 14:769–784 | spa |
dc.relation.references | Shafiei, M., Golestaneh, F., Ledwich, G., Nourbakhsh, G., Gooi, H. B., and Arefi, A. (2020). Fault detection for low-voltage residential distribution systems with low-frequency measured data. IEEE Systems Journal, 14:5265–5273 | spa |
dc.relation.references | Souibgui, M., Atigui, F., Zammali, S., Cherfi, S., and Ben Yahia, S. (2019). Data quality in etl process: A preliminary study. Procedia Computer Science, 159:676–687. Presented at the 23rd International Conference on Knowledge-Based and Intelligent Information and Engineering Systems | spa |
dc.relation.references | Tan, M., Yuan, S., Li, S., Su, Y., Li, H., and He, F. H. (2020). Ultra-short term industrial power demand forecasting using lstm based hybrid ensemble learning. IEEE Transactions on Power Systems, 35:2937–2948 | spa |
dc.relation.references | Tao, Y., Qiu, J., Lai, S., Wang, Y., and Sun, X. (2023). Reserve evaluation and energy management of micro-grids in joint electricity markets based on non-intrusive load monitoring. IEEE Transactions on Industry Applications, 59:207–219 | spa |
dc.relation.references | U.S. Energy Information Administration (2022). How many smart meters are installed in the united states, and who has them? Frequently Asked Questions (FAQs). [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?id=108&t=3 | spa |
dc.relation.references | Vassiliadis, P. and Simitsis, A. (2002). Conceptual modeling for etl processes. In Proceedings of the 2002 ACM CIKM International Conference on Information and Knowledge Management, pages 14–21, McLean, Virginia, USA. ACM. DOLAP’02 | spa |
dc.relation.references | Vitiello, S., Andreadou, N., Ardelean, M., and Fulli, G. (2022). Smart metering roll-out in europe: Where do we stand? cost benefit analyses in the clean energy package and research trends in the green deal. Energies, 15(7) | spa |
dc.relation.references | Wang, F., Li, K., Dui´ c, N., Mi, Z., Hodge, B.-M., Shafie-khah, M., and Catalao, J. P. (2018). Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns. Energy Conversion and Management, 171:839–854 | spa |
dc.relation.references | Wang, S., Duan, J., Shi, D., Xu, C., Li, H., Diao, R., and Wang, Z. (2020). A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning. IEEE Transactions on Power Systems, 35:4644–4654 | spa |
dc.relation.references | Welikala, S., Dinesh, C., Ekanayake, M. P. B., Godaliyadda, R. I., and Ekanayake, J. (2019). Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting. IEEE Transactions on Smart Grid, 10:448–461 | spa |
dc.relation.references | Historicos de demanda, curva de demanda promedio en Colombia. Consumo– historico. [Online]. Available: https://www.xm.com.co/consumo/historicos-de-demanda | spa |
dc.relation.references | Xue, L., Cheng, L., Li, Y., and Mao, Y. (2021). Quantum machine learning for electricity theft detection: an initial investigation. pages 204–208. IEEE | spa |
dc.relation.references | Zheng, Z., Yang, Y., Niu, X., Dai, H. N., and Zhou, Y. (2018). Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial Informatics, 14:1606–1615 | spa |
dc.relation.references | Zhou, Y., Zhang, X., Tang, Y., Mu, Z., Shao, X., Li, Y., and Cai, Q.(2021). Convolutional neural network and data augmentation method for electricity theft detection. pages 1525–1530. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Zhu, C., Zhu, L., and Liu, B. (2022). A prediction method of anti electricity stealing based on big data of electric power. pages 939–945. Institute of Electrical and Electronics Engineers Inc | spa |
dc.relation.references | Zor, K., Timur, O., and Teke, A. (2017). A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting. Institute of Electrical and Electronics Engineers Inc | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.proposal | Flexibilidad de la demanda | spa |
dc.subject.proposal | Variabilidad de la demanda | spa |
dc.subject.proposal | Energía eléctrica | spa |
dc.subject.proposal | Respuesta de la demanda | spa |
dc.subject.proposal | Análisis de datos | spa |
dc.subject.proposal | Esquema tarifario diferencial | spa |
dc.subject.proposal | Time-of-use (ToU) | eng |
dc.subject.proposal | Infraestructura de medición avanzada (AMI) | spa |
dc.subject.proposal | Medición inteligente | spa |
dc.subject.proposal | Medidores inteligentes | spa |
dc.subject.proposal | Demand flexibility | eng |
dc.subject.proposal | Demand variability | eng |
dc.subject.proposal | Electric power | eng |
dc.subject.proposal | Demand response (DR) | eng |
dc.subject.proposal | Data analysis | eng |
dc.subject.proposal | Differential tariff scheme | eng |
dc.subject.proposal | Advanced Metering Infrastructure (AMI) | eng |
dc.subject.proposal | Smart metering | eng |
dc.subject.proposal | Smart meters | eng |
dc.subject.unesco | Energía eléctrica | spa |
dc.subject.unesco | Electric power | eng |
dc.subject.unesco | Costes | spa |
dc.subject.unesco | Costs | eng |
dc.subject.wikidata | Demanda (economía) | spa |
dc.subject.wikidata | demand | eng |
dc.title | Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial | spa |
dc.title.translated | Determine the variability of electrical energy demand to evaluate the potential use of a differential tariff scheme | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015456255.2024.pdf
- Tamaño:
- 1.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: