Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial

dc.contributor.advisorRosero Garcia, Javier Alveirospa
dc.contributor.advisorOscar German, Duarte Velascospa
dc.contributor.authorDuarte Aunta, Javier Eduardospa
dc.date.accessioned2024-05-10T12:43:50Z
dc.date.available2024-05-10T12:43:50Z
dc.date.issued2023-12
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste estudio introduce una metodología para el análisis de la variabilidad en la demanda eléctrica, con el objetivo de estimar la flexibilidad del consumo energético en Colombia. Esta evaluación es clave para la posible implementación de esquemas tarifarios diferenciados, en particular tarifas Time-of-use (ToU). La metodología comienza con un pre-procesamiento de datos, centrado en la organización y limpieza de registros individuales de consumo. Seguidamente, se realiza un procesamiento y clasificación de los datos mediante técnicas de análisis de variabilidad y clustering. Los clusters representativos son seleccionados para identificar intervalos de tiempo con alta variabilidad en el consumo de energía eléctrica. El paso final consiste en analizar el potencial de flexibilidad energética en estos intervalos, tanto para usuarios con alta variabilidad como para el conjunto total de usuarios estudiados. Esta metodología fue aplicada utilizando datos reales de medidores inteligentes del sistema eléctrico colombiano, logrando identificar con éxito las franjas horarias con potencial para establecer tarifas de ToU. Este trabajo, surge como una iniciativa del grupo de investigación Electrical Machines and Drives de la Universidad Nacional – Sede Bogotá, que aspira a fomentar la implementación de estrategias de respuesta de la demanda que promuevan la sostenibilidad y faciliten la transición hacia un panorama energético resiliente a nivel nacional e internacional. Se espera que los hallazgos aquí presentados contribuyan significativamente en la formulación de esquemas tarifarios que incentiven una modificación consciente en los patrones de consumo de energía eléctrica. (Texto tomado de la fuente).spa
dc.description.abstractThis study introduces a methodology for analyzing the variability in electrical demand, aimed at estimating the flexibility of energy consumption in Colombia. This assessment is crucial for the potential implementation of differentiated tariff schemes, particularly Time-of-Use (ToU) rates. The methodology begins with data preprocessing, focusing on the organization and cleaning of individual consumption records. Subsequently, data processing and classification are carried out using variability analysis techniques and clustering. Representative clusters are selected to identify time intervals with high variability in electrical energy consumption. The final step involves analyzing the potential for energy flexibility in these intervals, for both users with high variability and the entire cohort of studied users. This methodology was applied using real data from smart meters in the Colombian electrical system, successfully identifying time slots with potential for establishing ToU tariffs. This work, initiated by the Electrical Machines and Drives research group at the Universidad Nacional - Bogotá Campus, aims to promote the implementation of demand response strategies that encourage sustainability and facilitate the transition to a resilient energy landscape at both national and international levels. The findings presented here are expected to contribute significantly to the development of tariff schemes that encourage a conscious modification in the patterns of electricity consumption.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación aplicadaspa
dc.format.extentxiii, 70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86066
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAlquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., and Rasheed, M. B. (2022). A performance comparison of machine learning algorithms for load forecasting in smart grid. IEEE Access, 10:48419–48433spa
dc.relation.referencesAnamika and Kumar, N. (2016). Market clearing price prediction using ann in indian electricity markets. pages 454–458. Institute of Electrical and Electronics Engineers Inc.spa
dc.relation.referencesAnderson, O. and Yu, N. (2022). Learning to steal electricity in power distribution systems with deep reinforcement learning. Institute of Electrical and Electronics Engineers Inc.spa
dc.relation.referencesAro, M., Piira, K., and M aki, K. (2021). Business model for household flexibility- a case study. pages 20–23spa
dc.relation.referencesAwan, M.B.andMa, Z.(2023). Building energy flexibility: definitions, sources, indicators, and quantification methods, pages 17–40. Elsevier.spa
dc.relation.referencesAxpo, Energy, B., en microeconomia, D. R. D. C., Pool, E., iet energy, Energy, K., Energy, S., Sympower, Voltalis, and Cuerva (2022). Manifiesto para el desarrollo de la flexibilidad de la demanda en españa. Publicado por Energy Pool. El manifiesto aboga por el desarrollo de un marco legislativo y procedimental para la flexibilidad de la demanda en España, en linea con la Directiva (UE) 944/2019spa
dc.relation.referencesAzam, M. F. and Younis, M. S. (2021). Multihorizon electricity load and price forecasting using an interpretable multihead self-attention and eemd-based framework. IEEE Access, 9:85918–85932.spa
dc.relation.referencesBarai, G. R., Krishnan, S., and Venkatesh, B. (2015). Smart metering and functionalities of smart meters in smart grid- a review. pages 138–145spa
dc.relation.referencesBarragan, D. E. C., Archilli, G. B., and Silva, L. C. P. D. (2020). Data-driven indicators applied to power distribution systemsspa
dc.relation.referencesBebic, J. Z., Berry, I. M., James, A. N., and Lee, D. O. (2019). Quantifying electric load flexibility using smart meter dataspa
dc.relation.referencesBelton, C. A. and Lunn, P. D. (2020). Smart choices? an experimental study of smart meters and time-of-use tariffs in ireland. Energy Policy, 140:111243spa
dc.relation.referencesCanizes, B., Mota, B., Ribeiro, P., and Vale, Z. (2022). Demand response driven by distribution network voltage limit violation: A genetic algorithm approach for load shifting. IEEE Access, 10:62183–62193spa
dc.relation.referencesCarmon, D., Navon, A., Machlev, R., Belikov, J., and Levron, Y. (2020). Readiness of small energy markets and electric power grids to global health crises: Lessons from the covid-19 pandemic. IEEE Access, 8:127234–127243spa
dc.relation.references(CASIO), C. I. S. O. (2016). What the duck curve tells us about managing a green gridspa
dc.relation.referencesCEPAL, N. (2019). La agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para america latina y el caribe. objetivos, metas e indicadores mundiales. Publicacion de la CEPAL que aborda la Agenda 2030 para el Desarrollo Sostenible y su relevancia para America Latina y el Caribe, incluyendo objetivos, metas e indicadores mundialesspa
dc.relation.referencesChebbo, L., Bazzi, A. M., Yassine, A., Karaki, S. H., and Ghaddar, N.(2021). Tou tariff system using data from smart meters. In 2021 IEEE Power and Energy Conference at Illinois (PECI), pages 1–5spa
dc.relation.referencesChen, Z., Amani, A. M., Yu, X., and Jalili, M. (2023). Control and optimisation of power grids using smart meter data: A review. Sensors, 23spa
dc.relation.referencesComision de Regulacion de Energia y Gas (2022). Respuesta de la demanda en el sistema interconectado nacional- hoja de ruta documento de consulta publicaspa
dc.relation.referencesComision Europea (2022). Una transicion hacia una energia limpiaspa
dc.relation.referencesDeng, H., Yan, F., Wang, H., Fang, L., Zhou, Z., Zhang, F., Xu, C., and Jiang, H. (2021). Electricity price prediction based on lstm and lightgbm. pages 286–290. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesDepartamento Nacional de Planeacion, Ministerio del Trabajo and Ministerio de Minas y Energia, Ministerio de Comercio Industria y Turismo and Ministerio de Ambiente y Desarrollo Sostenible, and Ministerio de Transporte and Ministerio de Ciencia Tecnologia e Innovacion (2022). Documento conpes 4075- politica de transicion energeticaspa
dc.relation.referencesApproximating nash equilibrium in day-ahead electricity market bidding with multi-agent deep reinforcement learning. Journal of Modern Power Systems and Clean Energy, 9:534–544spa
dc.relation.referencesDuan, N., Huang, C., Sun, C. C., and Min, L. (2022). Smart meters enabling voltage monitoring and control: The last mile voltage stability issue. IEEE Transactions on Industrial Informatics, 18:677–687spa
dc.relation.referencesENELX (2023). ¿como funciona la respuesta a la demanda y por que es importante?spa
dc.relation.referencesFacultad de Ciencias Fisicas y Matematicas Universidad de Chile, de la Energia, C., Nacional, S. E., Palma, R., Matus, M., Torres, ., Benavides, C., Sierra, E., Sepulveda, R., and Riquelme, F. (2019). Concepto de flexibilidad en el sistema electrico nacionalspa
dc.relation.referencesFraija, A., Agbossou, K., Henao, N., Kelouwani, S., Fournier, M., and Hosseini, S. S. (2022). A discount-based time-of-use electricity pricing strategy for demand response with minimum information using reinforcement learning. IEEE Access, 10:5401854028spa
dc.relation.referencesFu, Y., Zhang, Z., and Li, T. (2021). Electricity market price prediction based on differential evolutionary algorithm and neural network. pages 999–1004. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesGao, H. X., Kuenzel, S., and Zhang, X. Y. (2022). A hybrid convlstm based anomaly detection approach for combating energy theft. IEEE Transactions on Instrumentation and Measurement, 71spa
dc.relation.referencesGao, S., Song, T. E., Liu, S., Zhou, C., Xu, C., Guo, H., Li, X., Li, Z., Liu, Y., Jiang, W., Wang, J., and Wang, S. (2021). Joint optimization of planning and operation in multi-region integrated energy systems considering flexible demand response. IEEE Access, 9:75840–75863spa
dc.relation.referencesGuerrero-Prado, J. S., Alfonso-Morales, W., and Caicedo Bravo, E. F. (2021). A data analytics/big data framework for advanced metering in frastructure data. Sensors, 21spa
dc.relation.referencesGyamfi, S., Krumdieck, S., and Urmee, T. (2013). Residential peakelectricity demand response—highlights of some behavioural issues. Renewable and Sustainable Energy Reviews, 25:71–77spa
dc.relation.referencesHeghedus, C., Segarra, S., Chakravorty, A., and Chunming, R. (2019). Neural network architectures for electricity consumption forecastingspa
dc.relation.referencesHonarmand, M. E., Hosseinnezhad, V., Hayes, B., Shafie-Khah, M., and Siano, P. (2021). An overview of demand response: From its origins to the smart energy community. IEEE Access, 9:96851–9687spa
dc.relation.referencesImani, M. H., Bompard, E., Colella, P., and Huang, T. Predictive methods of electricity price: an application to the italian electricity marketspa
dc.relation.referencesKitchenham, B. and Brereton, P. (2013). A systematic review of systematic review process research in software engineeringspa
dc.relation.referencesKumar, R., Ranjan, R., and Verma, M. C. (2021). A new approach for long term electricity load forecasting for uttarakhand state power utilities using artificial neural network. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesLepolesa, L. J., Achari, S., and Cheng, L. (2022). Electricity theft detection in smart grids based on deep neural network. IEEE Access, 10:39638–39655spa
dc.relation.referencesLi, Y., Li, J., Shang, Y., and Qian, H. (2020). Risk forecast to electricity retail market based multiple risk factors of electricity retail companies. pages 95–100. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesLi, Z., Wanwei, L., and Dehghaion, P. (2023). Auto-encoder neural network based monthly electricity consumption forecasting method using hourly dataspa
dc.relation.referencesLiu, L., Li, F., Cheng, Z., Zhou, Y., Shen, J., Li, R., and Xiong, S. (2022). Non-intrusive load monitoring method considering the time-segmented state probability. IEEE Access, 10:39627–39637spa
dc.relation.referencesMalbasic, B. and Pandzic, H. (2022). Requirements, challenges and experiences of practical demand response in households. pages 81–86. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesMamun, A. A., Sohel, M., Mohammad, N., Sunny, M. S. H., Dipta, D. R., and Hossain, E. (2020). A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access, 8:134911–134939spa
dc.relation.referencesMinisterio de Minas y Energia, U. (2022). Plan de accion indicativo (pai)– para el desarrollo del programa de uso de racional y eficiente de la energia – proure 2022-2030spa
dc.relation.referencesMittal, D. A., Liu, S., and Xu, G. (2020). Electricity price forecasting using convolution and lstm models. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesMortensen, L. K., Shaker, H. R., Santos, A. Q., and Veje, C. T. (2021). Fault area location in electrical distribution system using smart meter data. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesMunem, M., Bashar, T. M. R., Roni, M. H., Shahriar, M., Shawkat, T. B., and Rahaman, H. (2020). Electric power load forecasting based on multivariate lstm neural network using bayesian optimization. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesNaciones Unidas (1997). Protocolo de kioto de la convencion marco de las naciones unidas sobre el cambio climaticospa
dc.relation.referencesNaciones Unidas (2015). Acuerdo de paris. Convencion Marco de las Naciones Unidas sobre el Cambio Climaticospa
dc.relation.referencesNawaz, A., Hafeez, G., Khan, I., Jan, K. U., Li, H., Khan, S. A., and Wadud, Z. (2020). An intelligent integrated approach for efficient demand side management with forecaster and advanced metering infrastructure frameworks in smart grid. IEEE Access, 8:132551–132581spa
dc.relation.referencesNaz, A., Javaid, N., Asif, M., Javed, M. U., Ahmed, A., Gulfam, S. M., Shafiq, M., and Choi, J. G. (2021). Electricity consumption forecasting using gated-fcn with ensemble strategy. IEEE Access, 9:131365–131381spa
dc.relation.referencesNicolson, M. L., Fell, M. J., and Huebner, G. M. (2018). Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence. Renewable and Sustainable Energy Reviews, 97:276–289spa
dc.relation.referencesOthman, M. S. M., Johari, D., Musirin, I., Rahman, T. K. A., and Ismail, N. F. N. (2010). Artificial neural network-based forecast for electricity consumption in malaysia. pages 24–28spa
dc.relation.referencesOtt, R. L. and Longnecker, M. (2016). An Introduction to Statistical Methods and Data Analysis. Cengage Learning, Australia; Brazil; Mexico; Singapore; United Kingdom; United States, 7 editionspa
dc.relation.referencesParizad, A. and Hatziadoniu, C. J. (2021). Using prophet algorithm for pattern recognition and short term forecasting of load demand based on seasonality and exogenous features. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesParkash, B., Lie, T. T., Li, W., and Tito, S. R. (2022). Hierarchical structure based energy consumption forecasting in top-down approach. pages 1732–1737. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesPawar, S. and Momin, B. F. (2017). Smart electricity meter data analytics: A brief review. In 2017 IEEE Region 10 Symposium (TENSYMP), pages 1–5, Cochin, India. IEEEspa
dc.relation.referencesPinto, T., Sousa, T. M., and Vale, Z. (2012). Dynamic artificial neural network for electricity market prices forecast. pages 311–316spa
dc.relation.referencesPrograma de las Naciones Unidas para el Desarrollo (2015). Objetivo 13- acci´on por el clima, objetivos de desarrollo sosteniblespa
dc.relation.referencesRajabi, A., Eskandari, M., Ghadi, M. J., Li, L., Zhang, J., and Siano, P. (2020). A comparative study of clustering techniques for electrical load pattern segmentation. Renewable and Sustainable Energy Reviews, 120:109628spa
dc.relation.referencesRestrepo, J. A., Sierra, S. E., and Rosero, J. A. (2018). Load curve characterization based on real time measurements: Case of study in colombia. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America(T&D-LA), Lima, Peruspa
dc.relation.referencesRosero Garcia, J., Zambrano P, A. A., and Duarte, O. (2018).Implementation of an energy demand forecasting model under a smart grids environment. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America (T&D-LA), Lima, Peru. IEEEspa
dc.relation.referencesRuensukon, R., Tephiruk, N., Hongesombut, K., and Romphochai, S. (2021). Effects of covid-19 on electrical energy demand based on spatial analysis a case study of phetchaburi, thailand. In 2021 9th International Electrical Engineering Congress (iEECON), pages 137–140, Pattaya, Thailandspa
dc.relation.referencesSafhi, H. M., Frikh, B., and Ouhbi, B. (2020). Energy load forecasting in big data contextspa
dc.relation.referencesSajjad, I. A., Chicco, G., Aziz, M., and Rasool, A. (2014). Potential of residential demand flexibility- italian scenario. IEEE Computer Societyspa
dc.relation.referencesSalamanca, W. M., Alvarez, D. L., Garcia, J. A., Marin, J. S., and Gomez-Luna, E. (2019). State estimator assessment platform in distribution systems with advanced metering infrastructure and distributed generation using real time simulations. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesSchirmer, P. A. and Mporas, I. (2023). Non-intrusive load monitoring: A review. IEEE Transactions on Smart Grid, 14:769–784spa
dc.relation.referencesShafiei, M., Golestaneh, F., Ledwich, G., Nourbakhsh, G., Gooi, H. B., and Arefi, A. (2020). Fault detection for low-voltage residential distribution systems with low-frequency measured data. IEEE Systems Journal, 14:5265–5273spa
dc.relation.referencesSouibgui, M., Atigui, F., Zammali, S., Cherfi, S., and Ben Yahia, S. (2019). Data quality in etl process: A preliminary study. Procedia Computer Science, 159:676–687. Presented at the 23rd International Conference on Knowledge-Based and Intelligent Information and Engineering Systemsspa
dc.relation.referencesTan, M., Yuan, S., Li, S., Su, Y., Li, H., and He, F. H. (2020). Ultra-short term industrial power demand forecasting using lstm based hybrid ensemble learning. IEEE Transactions on Power Systems, 35:2937–2948spa
dc.relation.referencesTao, Y., Qiu, J., Lai, S., Wang, Y., and Sun, X. (2023). Reserve evaluation and energy management of micro-grids in joint electricity markets based on non-intrusive load monitoring. IEEE Transactions on Industry Applications, 59:207–219spa
dc.relation.referencesU.S. Energy Information Administration (2022). How many smart meters are installed in the united states, and who has them? Frequently Asked Questions (FAQs). [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?id=108&t=3spa
dc.relation.referencesVassiliadis, P. and Simitsis, A. (2002). Conceptual modeling for etl processes. In Proceedings of the 2002 ACM CIKM International Conference on Information and Knowledge Management, pages 14–21, McLean, Virginia, USA. ACM. DOLAP’02spa
dc.relation.referencesVitiello, S., Andreadou, N., Ardelean, M., and Fulli, G. (2022). Smart metering roll-out in europe: Where do we stand? cost benefit analyses in the clean energy package and research trends in the green deal. Energies, 15(7)spa
dc.relation.referencesWang, F., Li, K., Dui´ c, N., Mi, Z., Hodge, B.-M., Shafie-khah, M., and Catalao, J. P. (2018). Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns. Energy Conversion and Management, 171:839–854spa
dc.relation.referencesWang, S., Duan, J., Shi, D., Xu, C., Li, H., Diao, R., and Wang, Z. (2020). A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning. IEEE Transactions on Power Systems, 35:4644–4654spa
dc.relation.referencesWelikala, S., Dinesh, C., Ekanayake, M. P. B., Godaliyadda, R. I., and Ekanayake, J. (2019). Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting. IEEE Transactions on Smart Grid, 10:448–461spa
dc.relation.referencesHistoricos de demanda, curva de demanda promedio en Colombia. Consumo– historico. [Online]. Available: https://www.xm.com.co/consumo/historicos-de-demandaspa
dc.relation.referencesXue, L., Cheng, L., Li, Y., and Mao, Y. (2021). Quantum machine learning for electricity theft detection: an initial investigation. pages 204–208. IEEEspa
dc.relation.referencesZheng, Z., Yang, Y., Niu, X., Dai, H. N., and Zhou, Y. (2018). Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial Informatics, 14:1606–1615spa
dc.relation.referencesZhou, Y., Zhang, X., Tang, Y., Mu, Z., Shao, X., Li, Y., and Cai, Q.(2021). Convolutional neural network and data augmentation method for electricity theft detection. pages 1525–1530. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesZhu, C., Zhu, L., and Liu, B. (2022). A prediction method of anti electricity stealing based on big data of electric power. pages 939–945. Institute of Electrical and Electronics Engineers Incspa
dc.relation.referencesZor, K., Timur, O., and Teke, A. (2017). A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting. Institute of Electrical and Electronics Engineers Incspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.proposalFlexibilidad de la demandaspa
dc.subject.proposalVariabilidad de la demandaspa
dc.subject.proposalEnergía eléctricaspa
dc.subject.proposalRespuesta de la demandaspa
dc.subject.proposalAnálisis de datosspa
dc.subject.proposalEsquema tarifario diferencialspa
dc.subject.proposalTime-of-use (ToU)eng
dc.subject.proposalInfraestructura de medición avanzada (AMI)spa
dc.subject.proposalMedición inteligentespa
dc.subject.proposalMedidores inteligentesspa
dc.subject.proposalDemand flexibilityeng
dc.subject.proposalDemand variabilityeng
dc.subject.proposalElectric powereng
dc.subject.proposalDemand response (DR)eng
dc.subject.proposalData analysiseng
dc.subject.proposalDifferential tariff schemeeng
dc.subject.proposalAdvanced Metering Infrastructure (AMI)eng
dc.subject.proposalSmart meteringeng
dc.subject.proposalSmart meterseng
dc.subject.unescoEnergía eléctricaspa
dc.subject.unescoElectric powereng
dc.subject.unescoCostesspa
dc.subject.unescoCostseng
dc.subject.wikidataDemanda (economía)spa
dc.subject.wikidatademandeng
dc.titleDeterminar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencialspa
dc.title.translatedDetermine the variability of electrical energy demand to evaluate the potential use of a differential tariff schemeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015456255.2024.pdf
Tamaño:
1.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: