Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas

dc.contributor.advisorGutiérrez Betancur, Sergio Armando
dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.authorParra Jiménez, Jhon Alexander
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.date.accessioned2022-03-08T14:48:28Z
dc.date.available2022-03-08T14:48:28Z
dc.date.issued2021-12-01
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl incremento en la implementación de dispositivos ciberfísicos conectados a internet en los últimos años los ha vuelto un foco de interés para posibles atacantes que ven una oportunidad para vulnerar sistemas que se componen de estos dispositivos como lo son los sistemas IoT. Debido a las condiciones particulares de dichos dispositivos como su capacidad de procesamiento, la duración de su batería, entre otros, se añade un reto adicional para poder proteger la información asociada a los sistemas IoT en términos de disponibilidad, confidencialidad e integridad. Por esto, en el presente trabajo de investigación se propone un método basado en la unión de redes neuronales convolucionales y redes neuronales recurrentes para la detección y clasificación de ataques de denegación de servicios en el contexto IoT. Para este método se transforman los flujos de datos a un formato de imágenes de tres canales, método que ha probado ser efectivo para la detección de ataques que comprometen la ciberseguridad. El modelo generado tiene resultados prometedores con una tasa de clasificación correcta de más del 99% en la detección de ataques y una tasa superior al 96% para la clasificación de los ataques abordados. (Texto tomado de la fuente)spa
dc.description.abstractThe increase in the adoption of cyber-physical devices connected to the Internet in recent years has made them a focus of interest for possible attackers who see an opportunity to violate systems that are made up with these devices, such as IoT systems. Due to the conditions of these devices such as their processing capacity, their battery life, among others, an additional challenge is added to be able to protect the information associated with IoT systems in terms of availability, confidentiality, and integrity. For this reason, in this research we propose a method based on the union of convolutional neural networks and recurrent neural networks for the detection and classification of denial-of-service attacks in the IoT context. For this method, the data flows are transformed into a three- channel image format, a method that has proven to be effective for detecting attacks that compromise cybersecurity. The generated model has promising results with an accuracy of more than 99% in the detection of attacks and a rate greater than 96% for the classification of the addressed attacks.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaRedes neuronales artificiales, computación evolutiva, y reconocimiento de patronesspa
dc.format.extentxii, 64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81148
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.referencesAbbas, S., Faisal, M., Rahman, H. U., Khan, M. Z., Merabti, M., & Khan, A. U. (2018). Masquerading attacks detection in mobile ad hoc networks. IEEE Access, 55013- 55025.spa
dc.relation.referencesAlaba, F. A., Othman, M., Hashem, I. A., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 10-28.spa
dc.relation.referencesAl-Garadi, M. A., Mohamed, A., Al-Ali, A., Du, X., & Guizani, M. (2020). A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. IEEE Communications Surveys & Tutorials.spa
dc.relation.referencesAlguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212-223.spa
dc.relation.referencesAmanullah, M. A., Habeeb, R. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A. S., . . . Imran, M. (2020). Deep learning and big data technologies for IoT security. Computer Communications.spa
dc.relation.referencesAnand, P., Singh, Y., Selwal, A., Alazab, M., Tanwar, S., & Kumar, N. (2020). IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges. IEEE Access, 168825-168853.spa
dc.relation.referencesBaig, Z. A., Sanguanpong, S., Firdous, S. N., Vo, V. N., Nguyen, T. G., & So-In, C. (2020). Averaged dependence estimators for DoS attack detection in IoT networks. Future Generation Computer Systems, 102, 198-209.spa
dc.relation.referencesBiswas, S., Sajal, M., Afrin, T., Bhuiyan, T., & Hassan, M. (2018). A study on remote code execution vulnerability in web applications. International Conference on Cyber Security and Computer Science (ICONCS 2018). Safranbolu.spa
dc.relation.referencesBošnjak, L., Sreš, J., & Brumen, B. (2018). Brute-force and dictionary attack on hashed real-world passwords. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (págs. 1161-1166). IEEE.spa
dc.relation.referencesBrun, O., Yin, Y., Gelenbe, E., Kadioglu, Y. M., Augusto-Gonzalez, J., & Ramos, M. (2018). Deep Learning with Dense Random Neural Networks for Detecting Attacks Against IoT-Connected Home Environments. International ISCIS Security Workshop (págs. 79-89). Springer.spa
dc.relation.referencesChaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2018). Network Intrusion Detection for IoT Security based on Learning Techniques. IEEE Communications Surveys & Tutorials, 2671-2701.spa
dc.relation.referencesChollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition (págs. 1251-1258). IEEE.spa
dc.relation.referencesCui, L., Yang, S., Chen, F., Ming, Z., Lu, N., & Qin, J. (2018). A survey on application of machine learning for Internet of Things. International Journal of Machine Learning and Cybernetics.spa
dc.relation.referencesDeogirikar, J., & Vidhate, A. (2017). Security attacks in IoT: A survey. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), (págs. 32-37).spa
dc.relation.referencesDiro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 761-768.spa
dc.relation.referencesDoshi, R., Apthorpe, N., & Feamster, N. (2018). Machine Learning DDoS Detection for Consumer Internet of Things Devices. 2018 IEEE Security and Privacy Workshops (SPW), 29-35.spa
dc.relation.referencesElrawy, M. F., Awad, A. I., & Hamed, H. F. (2018). Intrusion detection systems for IoT- based smart environments: a survey. Journal of Cloud Computing, 1-20.spa
dc.relation.referencesFrustaci, M., Pace, P., Aloi, G., & Fortino, G. (2017). Evaluating critical security issues of the IoT world: Present and future challenges. IEEE Internet of things journal, 5(4), 2483-2495.spa
dc.relation.referencesGaleano-Brajones, J., Carmona-Murillo, J., Valenzuela-Valdés, J. F., & Luna-Valero, F. (2020). Detection and Mitigation of DoS and DDoS Attacks in IoT-Based Stateful SDN: An Experimental Approach. Sensors.spa
dc.relation.referencesGarg, S., Aujla, G. S., Kumar, N., & Batra, S. (2019). Tree-based attack--defense model for risk assessment in multi-UAV networks. IEEE Consumer Electronics Magazine, 35-41.spa
dc.relation.referencesHaddad Pajouh, H., & Parizi, R. (2019). A Survey on Internet of Things Security: Requirements, Challenges, and Solutions. Internet of Things.spa
dc.relation.referencesHameed, A., & Alomary, A. (2019). Security Issues in IoT: A Survey. International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (págs. 1-5). IEEE.spa
dc.relation.referencesHasan, M., Islam, M. M., Zarif, M. I., & Hashem, M. (2019). Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things.spa
dc.relation.referencesHassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures. IEEE Access, 7, 82721-82743.spa
dc.relation.referencesHe, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. European conference on computer vision (págs. 630-645). Springer.spa
dc.relation.referencesHumayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-Physical Systems Security – A Survey. IEEE Internet of Things Journal, 4(6), 1802-1831.spa
dc.relation.referencesHussain, F., Abbas, S. G., Husnain, M., Fayyaz, U. U., Shahzad, F., & Shah, G. A. (2020). IoT DoS and DDoS Attack Detection using ResNet. arXiv preprint arXiv:2012.01971.spa
dc.relation.referencesHussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Communications Surveys & Tutorials.spa
dc.relation.referencesIbitoye, O., Shafiq, O., & Matrawy, A. (2019). Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks. 2019 IEEE Global Communications Conference (GLOBECOM) (págs. 1-6). IEEE.spa
dc.relation.referencesIcontec. (2017). NTC-ISO-IEC Tecnología de la información. Técnicas de seguridad. Sistemas de gestión de seguridad de la información (SGSI). Visión general y vocabulario.spa
dc.relation.referencesInjadat, M., Moubayed, A., & Shami, A. (2020). Detecting botnet attacks in IoT environments: an optimized machine learning approach. arXiv preprint arXiv:2012.11325.spa
dc.relation.referencesKhan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395-411.spa
dc.relation.referencesKitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, Keele University and Durham University.spa
dc.relation.referencesKoroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 779-796.spa
dc.relation.referencesLin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 1125-1142.spa
dc.relation.referencesLiu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on Cyber-physical Systems. IEEE/CAA Journal of Automatica SINICA, 4(1), 27-40.spa
dc.relation.referencesKeras. (s.f.). Keras. Recuperado el 2 de Mayo de 2021, de https://keras.io/api/applications/spa
dc.relation.referencesLu, Y., & Da Xu, L. (2018). Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics. IEEE Internet of Things Journal, 6(2), 2103-2115.spa
dc.relation.referencesMakhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., & Ni, W. (2018). Anatomy of Threats to the Internet of Things. IEEE Communications Surveys & Tutorials, 1636-1675.spa
dc.relation.referencesMeneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of Threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182-8201.spa
dc.relation.referencesMiloslavskaya, N., & Tolstoy, A. (2018). Internet of Things: information security challenges and solutions. Cluster Computing, 103-119.spa
dc.relation.referencesMohanta, B. K., Jena, D., Satapathy, U., & Patnaik, S. (2020). Survey on IoT Security:Challenges and Solution using Machine Learning, Artificial Intelligence and Blockchain Technology. Internet of Things, 100227.spa
dc.relation.referencesMossberger, K., Tolbert, C., & McNeal, R. S. (2007). Digital citizenship: The Internet, society, and participation. MIT Press.spa
dc.relation.referencesNeshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., & Ghani, N. (2019). Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-scale IoT Exploitations. IEEE Communications Surveys & Tutorials, 2702-2733.spa
dc.relation.referencesParviainen, P., Tihinen, M., M., Kääriäinen, J., & Tep. (2017). Tackling the digitalization challenge: how to benefit from digitalization in practice. International journal of information systems and project management, 5(1), 63-67.spa
dc.relation.referencesPaudel, R., Muncy, T., & Eberle, W. (2019). Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data) (págs. 5249-5258). IEEE.spa
dc.relation.referencesPokhrel, S., Abbas, R., & Aryal, B. (2021). IoT Security: Botnet detection in IoT using Machine learning. arXiv preprint arXiv:2104.02231.spa
dc.relation.referencesReinsel, D., Gantz, J., & Rydning, J. (2018). Data age 2025: the digitization of the world from edge to core. (Paper Doc# US44413318), 1-29.spa
dc.relation.referencesRoopak, M., Tian, G. Y., & Chambers, J. (2019). Deep learning models for cyber security in IoT networks. IEEE 9th annual computing and communication workshop and conference (CCWC) (págs. 0452-0457). IEEE.spa
dc.relation.referencesRoopak, M., Tian, G. Y., & Chambers, J. (2020). An Intrusion Detection System Against DDoS Attacks in loT Networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC) (págs. 0562-0567). IEEE.spa
dc.relation.referencesShafiq, M., Tian, Z., Bashir, A. K., Du, X., & Guizani, M. (2020). IoT malicious traffic identification using wrapper-based feature selection mechanisms. Computers & Security, 101863.spa
dc.relation.referencesSmith, R., Palin, D., Ioulianou, P. P., Vassilakis, V. G., & Shahandashti, S. F. (2020). Battery draining attacks against edge computing nodes in IoT networks. Cyber- Physical Systems, 96-116.spa
dc.relation.referencesStatista Research. (2020). Internet of Things (IoT) active device connections installed base worldwide from 2015 to 2025. Obtenido de https://www.statista.com/statistics/1101442/iot-number-of-connected-devices- worldwide/spa
dc.relation.referencesStellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., & Lopez, J. (2018). A Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services. IEEE Communications Surveys & Tutorials, 3453-3495.spa
dc.relation.referencesSusilo, B., & Sari, R. F. (2020). Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information, 11(5).spa
dc.relation.referencesSzegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition (págs. 2818-2826). IEEE.spa
dc.relation.referencesTahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based solutions for security of Internet of Things (IoT): A survey. Journal of Network and Computer Applications.spa
dc.relation.referencesUjjan, R. M., Pervez, Z., Dahal, K., Bashir, A. K., Mumtaz, R., & González, J. (2020). Towards sFlow and adaptive polling sampling for deep learning based DDoS detection in SDN. Future Generation Computer Systems, 111, 763-779.spa
dc.relation.referencesVarga, P., Plosz, S., Soos, G., & Hegedus, C. (2017). Security threats and issues in automation IoT. 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS) (págs. 1-6). IEEE.spa
dc.relation.referencesWaheed, N., He, X., Ikram, M., Usman, M., Hashmi, S. S., & Usman, M. (2020). Security and Privacy in IoT Using Machine Learning and Blockchain: Threats and Countermeasures. ACM Computing Surveys (CSUR).spa
dc.relation.referencesXiao, L., Wan, X., Lu, X., Zhang, Y., & Wu, D. (2018). IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Processing Magazine, 41-49.spa
dc.relation.referencesYang, Y., Wu, L., Yin, G., Li, L., & Zhao, H. (2017). A Survey on Security and Privacy Issues in Internet-of-Things. IEEE Internet of Things Journal, 1250-1258.spa
dc.relation.referencesYin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954-21961.spa
dc.relation.referencesYin, D., Zhang, L., & Yang, K. (2018). A DDoS Attack Detection and Mitigation With Software-Defined Internet of Things Framework. IEEE Access, 6, 24694-24705.spa
dc.relation.referencesYugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications.spa
dc.relation.referencesZeadally, S., & Jabeur, N. (2016). Cyber-physical system design with sensor networking technologies. Institution of Engineering and Technology.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembComputer Storage Devices
dc.subject.lembDispositivos de almacenamiento (Computadores)
dc.subject.lembFirewalls (Computer science)
dc.subject.lembFirewalls (Computadores)
dc.subject.proposalInternet de las Cosasspa
dc.subject.proposalCiberseguridadspa
dc.subject.proposalAprendizaje Profundospa
dc.subject.proposalAmenazasspa
dc.subject.proposalRedes Convolucionalesspa
dc.subject.proposalRedes Recurrentesspa
dc.subject.proposalIoTeng
dc.subject.proposalCibersecurityeng
dc.subject.proposalDeep Learningeng
dc.subject.proposalDoSeng
dc.subject.proposalConvolutional Neural Networkeng
dc.subject.proposalRecurrent Neural Networkeng
dc.titleUn método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosasspa
dc.title.translatedA Method Based on Deep Learning for the Early Detection and Characterization of Cybersecurity Incidents in Internet of Things Deviceseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030660760.2021.pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: