Synchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillation

dc.contributor.advisorPoveda Jaramillo, Germánspa
dc.contributor.advisorMesa Sánchez, Óscar Joséspa
dc.contributor.authorSalas Parra, Hernán Daríospa
dc.contributor.researchgroupPosgrado en Aprovechamiento de recursos hidráulicosspa
dc.coverage.countryColombiaspa
dc.date.accessioned2020-09-08T21:45:43Zspa
dc.date.available2020-09-08T21:45:43Zspa
dc.date.issued2020-08-28spa
dc.descriptionilustraciones, mapas, tablasspa
dc.description.abstractHydroclimatology of Colombia is highly influenced by El Niño - Southern Oscillation (ENSO), which conditions the hydrological response over Colombia, increasing (decreasing) rainfall and streamflows during La Niña (El Niño) depending on the location in the country. This dissertation presents an approach based on synchronization techniques to study the interdependence between ENSO and hydrological variables in Colombia. To that end, we use synchronization techniques such as Phase synchronization (PS) that is based on the physical properties of weakly coupled periodic oscillators, and Generalized Synchronization (GS) that is based on properties of recurrence of non-linear dynamical systems. Furthermore, we quantify interannual hydroclimatic anomalies (HyAns) using diverse methods to evaluate the sensitivity of linear and non-linear interdependence quantifiers. Our main findings reveal that: (1) we need of quantifying the uncertainty of HyAns in terms of magnitude, sign, timing, and phases of ENSO, because HyAns methods induce an important error source and bias on the interdependence analysis and modeling of climate time series; (2) We find that the positive (negative) HyAns experienced in the Pacific, the Caribbean and the Andean regions of Colombia, during La Niña (El Niño), are phase-locked with the ENSO. Moreover, we provide evidence that the ENSO signal is phase-locked with the annual cycle of rainfall in some regions of Colombia. Furthermore, other macro-climatic processes also show significant PS such as the Pacific Decadal Oscillation (PDO) and the North Atlantic Oscillation (NAO); (3) The Caribbean, the CHOCO, and the Orinoco Low-Level Jets (LLJs), and the Cross-Equatorial Flow (CEF) constitute an interdependence mechanism and contribute to explaining hydrological anomalies in Colombia during the phases of ENSO. During La Niña (El Niño), GS is strong (weak) for the Caribbean and the CHOCO LLJs whereas GS is moderate (strong) for the Orinoco LLJ. Moreover, moisture advection by the Caribbean and CHOCO LLJs exhibit synchrony with HyAns at 0 to 2 (2 to 4) month-lags over north-western Colombia and the Orinoco LLJ moisture advection synchronizes with HyAns at similar month-lags over the Amazon region of Colombia. This work provides new evidence on the non-linear interactions between hydro-climatic processes in Colombia and ENSO, and constitute an unexplored approach to the understanding of climatic anomalies in tropical South America.eng
dc.description.abstractLa hidroclimatología de Colombia está fuertemente influenciada por El Niño - Oscilación del Sur (ENSO), el cual condiciona la respuesta hidrológica en Colombia, incrementando (disminuyendo) la lluvia y los caudales durante La Niña (El Niño) según la región de Colombia. Esta disertación presenta un enfoque basado en técnicas de sincronización para estudiar la interdependencia entre ENSO y las variables hidrológicas en Colombia. Para tal fin, usamos técnicas de sincronización tales como: Sincronización de Fases (PS) que está basada en propiedades físicas de osciladores periódicos débilmente acoplados, y Sincronización Generalizada (GS) que está basada en propiedades de recurrencia de sistemas dinámicos no-lineales. Además, cuantificamos las anomalias hidroclimáticas a escala interanual (HyAns) usando diversos métodos para evaluar la sensibilidad de los cuantificadores de interdependencia lineales y no-lineales. Nuestros principales hallazgos revelan que: (1) Es necesario cuantificar la incertidumbre de las HyAns en términos de la magnitud, signo, momento de ocurrencia y fase de ENSO porque los métodos HyAns inducen una importante fuente de error y sesgo para el análisis de interdependencia y modelación de series climáticas; (2) Encontramos que las anomalías positivas (negativas) en las regiones Pacífico, Caribe, y Andes de Colombia, durante La Niña (El Niño), están enfasadas con el ENSO. Además, presentamos evidencia que la señal de ENSO está enfasada con el ciclo anual de la lluvia en algunas regiones de Colombia. Adicionalmente, otros procesos macroclimáticos también exhiben sincronización de fase significativa tales como la Oscilación Decadal del Pacifico (PDO) y la Oscilación del Atlántico Norte (NAO); (3) La advección de humedad por las corrientes de Chorro de bajo nivel del Caribe, CHOCO y Orinoco, así como el Flujo Cruzado Ecuatorial (CEF) constituyen mecanismos de interdependencia y contribuyen a explicar las anomalías hidrológicas en Colombia durante las fases de ENSO. Durante La Niña (El Niño), GS es fuerte (débil) para las corrientes del Caribe y CHOCO mientras GS is moderada (fuerte) para la corriente del Orinoco. Además, la advección de humedad por las corrientes del Caribe y CHOCO exhiben sincronización con las anomalías con 0 a 2 (2 a 4) meses de rezago sobre el noroccidente Colombiano y la advección de humedad por la corriente del Orinoco se sincroniza con las anomalías de lluvia con tiempos de rezago similares sobre la región amazónica de Colombia. Este trabajo proporciona nueva evidencia sobre las interaciones no-lineales entre los procesos hidroclimáticos en Colombia y ENSO, y además constituye un enfoque inexplorado para el entendimiento de las anomalias climáticas en el norte de Sur America. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchgroupHidroclimatologíaspa
dc.format.extentxiv, 119 páginas + 1 Anexospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSalas, H. D., Synchronization and interdependence between the cycles of Colombia’s hydroclimatology and El Niño-Southern Oscillation. PhD. Thesis. Universidad Nacional de Colombia - Sede Medellín, 2020.spa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78420
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesCoelho, C., Uvo, C., and Ambrizzi, T. Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theor Appl Climatol 71, 185-197 (2002). https://doi.org/10.1007/s007040200004spa
dc.relation.referencesGrimm, A. M., and M. T. Zilli, 2009: Interannual Variability and Seasonal Evolution of Summer Monsoon Rainfall in South America. J. Climate, 22, 2257-2275, https://doi.org/10.1175/2008JCLI2345.1.spa
dc.relation.referencesPoveda, G., Mesa O.J. (1999) The low level westerly jet (Choco jet) and two other jets in Colombia: climatology and variability during ENSO phases (in Spanish), Revista Academia Colombiana de Ciencias Exactas, 23(89): 517-528.spa
dc.relation.referencesPoveda, G., Jaramillo, L., Vallejo, L.F. (2014) Seasonal precipitation patterns along pathways of South American low‐level jets and aerial rivers, Water Resources Research, 50(1), 98-118.spa
dc.relation.referencesMuñoz, P., Gorin, G., Parra, N., Vel\'asquez, C., Lemus, D., Monsalve-M, C., Jojoa, M., Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ, Quaternary Science Reviews, 155, 159-178.spa
dc.relation.referencesHoyos, I., Dominguez, F., Cañón-Barriga, J., Martínez, J.A., Nieto, R., Gimeno, L., Dirmeyer, P.A. (2017) Moisture origin and transport processes in Colombia, northern South America, Clim. Dyn., DOI 10.1007/s00382-017-3653-6.spa
dc.relation.referencesJaramillo, L., Poveda, G., Mejía, J.F. (2017) Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM, Int. J. Climatol., DOI: 10.1002/joc.5009spa
dc.relation.referencesCarvajal, L.F., Salazar,J.E., Mesa, O. J., Poveda, G. (1998) Hydrological prediction in Colombia using singular spectral analysis and the maximum entropy method, Hydraulic Engineering in Mexico (in Spanish). Vol. XIII, 1, 07-16.spa
dc.relation.referencesPoveda, G., Mesa O.J., Waylen, P. (2003) Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation, Kluwer Academic Publishers, Dordrecht, 351-371, ISBN 1-4020-1529-1, 424 p.spa
dc.relation.referencesHurtado, A. F., Poveda, G. (2009) Linear and global space‐time dependence and Taylor hypotheses for rainfall in the tropical Andes, Journal of Geophysical Research: Atmospheres, 114(D10).spa
dc.relation.referencesCarmona, A.M., Poveda, G. (2014) Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition, Climatic Change, 123, 301-313.spa
dc.relation.referencesDonner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J.: Recurrence networks -- a novel paradigm for nonlinear time series analysis, New J. Phys., 12, 033025, https://doi.org/10.1088/1367-2630/12/3/033025, 2010.spa
dc.relation.referencesArnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. E.: A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D, 134, 419-430, 1999.spa
dc.relation.referencesLe Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. J.: Non-linear analyses of interictal EEG map the brain interdependences in human focal epilepsy, Physica D, 127, 250-266, 1999.spa
dc.relation.referencesSchiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T.: Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble, Phys. Rev. E, 54, 6708-6724, https://doi.org/10.1103/PhysRevE.54.6708, 1996.spa
dc.relation.referencesRosenblum, M. G., Pikovsky, A. S., and Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196, https://doi.org/10.1103/PhysRevLett.78.4193, 1997.spa
dc.relation.referencesPikovsky, A., Rosenblum, M., Kurths, J. (2001) Synchronization: A universal concept in nonlinear sciences. Cambridge University Press.spa
dc.relation.referencesStolbova, V., Martin, P., Bookhagen, B., Marwan, N., and Kurths, J.:Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka, Nonlinear Proc. Geoph., 21, 901-917, 2014.spa
dc.relation.referencesMalik, N., Bookhagen, B., Marwan, N., and Kurths, J.: Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks, Clim. Dynam., 39, 971-987, 2012.spa
dc.relation.referencesRheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P.,Gerstengarbe, F.-W., and Werner, P.: Non-linear time series analysis of precipitation events using regional climate networks for Germany, Clim. Dynam., 46, 1065-1074, 2016.spa
dc.relation.referencesAgarwal, A., N. Marwan, M. Rathinasamy, B. Merz, and J. Kurths, Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach, Nonlinear Process. Geophys., 2017.spa
dc.relation.referencesMarwan, N., Romano, M.C., Thiel, M., Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2006.11.001spa
dc.relation.referencesFraedrich, K., Muller, K., Climate anomalies in Europe associated with ENSO extremes, Int. J. Climatol., 12(1), 25-31 (1992).spa
dc.relation.referencesChandler, T. J. Teleconnections linking worldwie climate anomalies, Dyn. Atmos. Ocean., 17(1), 79-81 (1992).spa
dc.relation.referencesMason, S.L., Goddard, L. Probabilistic Precipitation Anomalies Associated with ENSO, Bull. Am. Meteorol. Soc., 82(4), 619-638 (2001).spa
dc.relation.referencesHegerl, G.C., Bronnimann, S., Schurer, A., \& Cowan, T. The early 20th century warming: Anomalies, causes, and consequences, Wiley Interdiscip. Rev. Clim. Chang., 9(4), 1-20 (2018).spa
dc.relation.referencesBrohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111(D12), D12106 (2006).spa
dc.relation.referencesLange, H., Sippel, S. Rosso, O. A. Nonlinear dynamics of river runoff elucidated by horizontal visibility graphs. Chaos An Interdiscip. J. Nonlinear Sci., 28(7),075520, doi:10.1063/1.5026491 (2018).spa
dc.relation.referencesSalas, H. D., Poveda, G., Mesa, O. J. Marwan, N. Generalized Synchronization between ENSO and Hydrological variables in Colombia: A Recurrence Quantification Approach. Front. Appl. Math. Stat., 6(3), DOI: 10.3389/fams.2020.00003 (2020).spa
dc.relation.referencesSalas, J. D., Delleur, J. W., Yevjevich, V. L.Lane, W. Applied Modeling of Hydrologic Time Series (Water Resources Publications, 1980).spa
dc.relation.referencesDouglass, D. H. The Pacific sea surface temperature, Phys. Lett. A, 376(2), 128-135, 10.1016/j.physleta.2011.10.042 (2011).spa
dc.relation.referencesDouglass, D. H., Knox, R. S. The Sun is the climate pacemaker I. Equatorial Pacific Ocean temperatures, Phys. Lett. A, 379(9), 823-829 (2015).spa
dc.relation.referencesVautard, R., Yiou, P. Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Phys. D Nonlinear Phenom., 58(1-4), 95-126 (1992).spa
dc.relation.referencesGhil, M. Advanced spectral methods for climatic time series, Rev. Geophys., 40(1), 1003 (2002).spa
dc.relation.referencesHuang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 454(1971), 903-995 (1998).spa
dc.relation.referencesWu, Z., Huang, N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., DOI: 10.1142/s1793536909000047 (2008).spa
dc.relation.referencesCai, W. et al. Climate impacts of the El Niño-Southern Oscillation on South America. Nat. Rev. Earth andEnviron., DOI: 10.1038/s43017-020-0040-3 (2020).spa
dc.relation.referencesPoveda, G. The hydro-climatology of Colombia: A synthesis from inter-decadal to diurnal timescales (in spanish). Rev. Acad. Colomb. Cienc., 28, 201-222 (2004).spa
dc.relation.referencesPoveda, G., Mesa, O. J. Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. J. Clim., 10(10), 2690-2702, 10.1175/1520-0442(1997)010\<2690:FBHPIT\>2.0.CO;2 (1997).spa
dc.relation.referencesPoveda, G., Álvarez, D. M., Rueda, O. A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots, DOI:10.1007/s00382-010-0931-y (2011).spa
dc.relation.referencesAndreoli, R. V. et al. The influence of different El Niño types on the South American rainfall. Int. J. Climatol., 37(3), 1374-1390, DOI:10.1002/joc.4783 (2017).spa
dc.relation.referencesBedoya-Soto, J. M., Poveda, G., Trenberth, K. E., Vélez-Upegui, J. J. Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands, Theor. Appl. Climatol., 135(3-4), 1531-1544, DOI:10.1007/s00704-018-2452-2 (2019).spa
dc.relation.referencesPoveda, G. et al. High Impact Weather Events in the Andes. Front. Earth Sci., DOI: 10.3389/feart.2020.00162 (2020).spa
dc.relation.referencesPoveda, G. et al. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather. Rev., 133 (1), 228-240, DOI:10.1175/MWR-2853.1 (2005).spa
dc.relation.referencesBedoya-Soto, J. M., Poveda, G., Sauchyn, D. New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales. Water, 10(8), 1095, DOI: 10.3390/w10081095 (2018).spa
dc.relation.referencesPoveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., Mantilla, R. I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res., 37(8), 2169-2178, DOI:10.1029/2000WR900395 (2001).spa
dc.relation.referencesWu, Z. et al. The modulated annual cycle: An alternative reference frame for climate anomalies. Clim. Dyn., 31 (7-8), 823-841, DOI:10.1007/s00382-008-0437-z (2008).spa
dc.relation.referencesFedorov, A. V., Philander, S. G. Is El Nino changing?, Science, 288(5473), 1997-2002, DOI: 10.1126/science.288.5473.1997 (2000).spa
dc.relation.referencesThoning, K. W., Tans, P. P. Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res., 94(D6), 8549-8565, DOI: 10.1029/JD094iD06p08549 (1989).spa
dc.relation.referencesZhang, J., Wu, Y. k-Sample tests based on the likelihood ratio. Comput. Stat. Data Analysis, DOI: 10.1016/j.csda.2006.08.029 (2007).spa
dc.relation.referencesZhang, J. Powerful goodness-of-fit tests based on the likelihood ratio. J. Royal Stat. Soc. Ser. B: Stat. Methodol., 64(2), 281-294, DOI:10.1111/1467-9868.00337 (2002).spa
dc.relation.referencesPearson, K. Note on regression and inheritance in the case of two parents. Proc. Royal Soc. Lond. (1895).spa
dc.relation.referencesWolter, K., Timlin, M. S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31(7), 1074-1087, DOI: 10.1002/joc.2336 (2011).spa
dc.relation.referencesTerray, P., Delecluse, P., Labattu, S., Terray, L. Sea surface temperature associations with the late Indian summer monsoon. Clim. Dyn., 21(7-8), 593-618, DOI:10.1007/s00382-003-0354-0 (2003).spa
dc.relation.referencesBoschat, G., Simmonds, I., Purich, A., Cowan, T., Pezza, A. B. On the use of composite analyses to form physical hypotheses: An example from heat wave - SST associations. Sci. Reports, 6(1), 29599, DOI: 10.1038/srep29599 (2016).spa
dc.relation.referencesXie, Z., Duan, A., Tian, Q. Weighted composite analysis and its application: an example using ENSO and geopotential height. Atmospheric Sci. Lett., 18(11), 435-440, DOI: 10.1002/asl.786 (2017).spa
dc.relation.referencesNicholls, N. The Insignificance of Significance Testing, Bull. Am. Meteorol. Soc., 82(5), 981-986, DOI:10.1175/1520-0477(2001)082\<0981:caatio\>2.3.co;2 (2001).spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi (IGAC), Natural regions of Colombia, https://www.igac.gov.co (2020).spa
dc.relation.referencesHurtado-Montoya, A. F., Mesa-Sanchez, O. J. Reanalysis of monthly precipitation fields in Colombian territory. DYNA, DOI: 10.15446/dyna.v81n186.40419 (2014).spa
dc.relation.referencesLehner, B., Verdin, K., Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data, Eos, Trans. Am. Geophys. Union, 89(10), 93 (2008).spa
dc.relation.referencesDaly, C., Neilson, R. P., Phillips, D. L. A. Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteorol., 33(2), 140-158, DOI: 10.1175/1520-0450(1994)033\<0140:astmfm\>2.0.co;2 (2002).spa
dc.relation.referencesFunk, C. et al. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Sci. Data,2(1), 150066, DOI: 10.1038/sdata.2015.66 (2015).spa
dc.relation.referencesWolter, K., Timlin, M. S. Measuring the strength of ENSO events: How does 1997/98 rank?, Weather, 53(9), 315-324 (1998).spa
dc.relation.referencesRasmusson, E. M., Carpenter, T. H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Ni\ño. Mon. Wea. Rev., 110(5): 354-384 (1982).spa
dc.relation.referencesTrenberth, K. E., Stepaniak, D. P. Indices of El Niño evolution. J. Clim., 14(8), 1697-1701 (2001).spa
dc.relation.referencesKashyap, R., Ramachandra, R. Dynamic stochastic models from empirical data (Academic press, New York, 1976).spa
dc.relation.referencesSmith, S. W. The Scientist and Engineer's Guide to Digital Signal Processing. In The Scientist and Engineer's Guide to Digital Signal Processing, DOI: 10.1007/BF02834636 (California Technical Pub. San Diego, 1999).spa
dc.relation.referencesHuang, N. E., Shen, S. S. P. Hilbert-Huang Transform And Its Applications (World Scientific, 2005).spa
dc.relation.referencesFlandrin, P., Goncalves, P., Rilling, G. EMD equivalent filter banks, from interpretation to applications (World Scientific, 2005).spa
dc.relation.referencesWu, Z., Huang, N. E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Royal Soc. A: Math. Phys. Eng. Sci., 460 (2046), 1597-1611 (2004).spa
dc.relation.referencesAhdesmäki, M., Lähdesmäki, H., Pearson, R., Huttunen, H., Yli-Harja, O. Robust detection of periodic time series measured from biological systems. BMC Bioinforma. DOI: 10.1186/1471-2105-6-117 (2005).spa
dc.relation.referencesCórdoba-Machado, S., Palomino-Lemus, R., Gámiz-Fortis, S. R., Castro-Díez, Y., Esteban-Parra, M. J. Assessing the impact of El Niño Modoki on seasonal precipitation in Colombia. Glob. Planet. Chang., DOI: 10.1016/j.gloplacha.2014.11.003 (2015).spa
dc.relation.referencesCórdoba-Machado, S., Palomino-Lemus, R., Gámiz-Fortis, S. R., Castro-Díez, Y., Esteban-Parra, M. J. Influence of tropical Pacific SST on seasonal precipitation in Colombia: prediction using El Niño and El Niño Modoki. Clim. Dyn., 44(5-6), 1293-1310 (2015).spa
dc.relation.referencesAmerican Meteorological Society. AMS glossary of meteorology. http://glossary.ametsoc.org/wiki (2018).spa
dc.relation.referencesNational Oceanic and Atmospheric Administration (NOAA). Climate indices. http://www.cpc.ncep.noaa.gov/data/indices/soi(2018).spa
dc.relation.referencesKawale, J. et al. Anomaly construction in climate data: Issues and challenges. NASA Conference on Intelligent Data Understanding (CIDU) (2011).spa
dc.relation.referencesArias, P.A., Martínez, Vieira, S.C. (2015) Moisture sources to the 2010-2012 anomalous wet season in northern South America, Clim. Dyn., DOI 10.1007/s00382-015-2511-7.spa
dc.relation.referencesBedoya-Soto, J.; Poveda, G. New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales. In Proceedings of the 1st Int. Electron. Conf. Hydrol. Cycle, 12-16 November 2017; Sciforum Electronic Conference Series, Vol. 1, 2017 ; doi:10.3390/CHyCle-2017-04875spa
dc.relation.referencesBedoya-Soto, J. M., Poveda, G., Trenberth, K. E., and Vélez-Upegui, J. J. (2018). Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands. Theoretical and Applied Climatology, pp. 1-14. https://doi.org/10.1007/s00704-018-2452-2spa
dc.relation.referencesBrown, R., Kocarev, L. (2000) A unifying definition of synchronization for dynamical systems, Chaos, 10(2), 344-349.spa
dc.relation.referencesChiang, J. C. H., and D. J. Vimont (2004 ) Analagous meridional modes of atmosphere-ocean variability in the tropical Pacific and tropical Atlantic. J. Climate, 17(21), 4143-4158.spa
dc.relation.referencesEnfield, D.B., A. M. Mestas-Nuñez and P.J. Trimble (2001) The Atlantic multidecadal oscillation and it's relation to rainfall and river flows in the continental U.S., Geophysical Research Letters, 28, 2077-2080.spa
dc.relation.referencesEnfield, D.B., Mestas-Nuñez, A. M., Mayer, D. A., and Cid-Serrano, L. (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?, J. Geophys. Res. Ocean., 104, 7841-7848.spa
dc.relation.referencesGabor, D. (1946) Theory of communication, Proc IEE London, 93, 429-457.spa
dc.relation.referencesGershunov, A. and T.P. Barnett (1998) Interdecadal modulation of ENSO teleconnections. Bulletin of the American Meteorological Society, 79 (12), 2715-2725.spa
dc.relation.referencesGhil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P. (2002) Advanced spectral methods for climatic time series, Reviews of geophysics, 40(1), 1-41.spa
dc.relation.referencesHoyos, I. (2017) Transport of atmospheric humidity in Colombia: origin, variability and coupling with global climatic phenomena (in spanish). Ph.D. dissertation, Universidad de Antioquia.spa
dc.relation.referencesHuang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, E.H., Zheng, Q., Tung, C.C., Liu, H.H. (1998) The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis, Proc Roy Soc Lond, 454A, 903-995.spa
dc.relation.referencesHuang, N.E., Shen, Z., Long, S.R (1999) A new view of nonlinear water waves-the Hilbert spectrum, Ann Rev Fluid Mech, 31, 417-457.spa
dc.relation.referencesHuang, N.E., Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Reviews of Geophysics, 46, 1-23.spa
dc.relation.referencesHuang, N.E., Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Reviews of Geophysics, 46, 1-23.spa
dc.relation.referencesHurtado-Montoya, A. and Mesa, O.J. (2014) Reanalysis of monthly precipitation fields in Colombian territory, Dyna, 81(186), 251-258.spa
dc.relation.referencesMantua, N.J. (2001) The Pacific Decadal Oscillation. In: Encyclopedia of Global Environmental Change, John Wiley and Sons, Inc.spa
dc.relation.referencesMantua, N. J. and Hare, S. R. (2002) The Pacific Decadal Oscillation, J. Oceanogr., 58, 35-44.spa
dc.relation.referencesMartin, E. R., and Schumacher, C. (2011). The caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. Journal of Climate, 24(22), 5935-5950. https://doi.org/10.1175/JCLI-D-11-00134.1spa
dc.relation.referencesMapes, B.E., Warner, T.T., Xu, M., Negri, A.J. (2003a). Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context, Monthly Weather Review, 131(5), 799-812.spa
dc.relation.referencesWarner, T.T., Mapes, B.E., Xu, M. (2003) Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations, Monthly Weather Review, 131(5), 813-829.spa
dc.relation.referencesMapes, B.E., Warner, T.T., Xu, M. (2003b) Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore, Monthly Weather Review, 131(5), 830-844.spa
dc.relation.referencesMontoya, G., Pelkowski, J., Eslava, J.A. (2001) Sobre los alisios del nordeste y la existencia de una corriente en el Piedemonte Oriental Andino, Rev. Acad. Colomb. Cienc., 25 (96), 363-370.spa
dc.relation.referencesMuñoz, E., Busalacchi, A.J., Nigam, S. and Ruiz-Barradas, A. (2008) Winter and summer structure of the Caribbean low-level jet, J. Clim., 21, 1260-1276.spa
dc.relation.referencesPanter, P. (1965) Modulation, Noise, and Spectral Analysis, New York, McGraw-Hill.spa
dc.relation.referencesPoveda, G., Mesa OJ. (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena, Journal of climate, 10(10), 2690-2702.spa
dc.relation.referencesPoveda, G., Mesa O.J. (2000) On the existence of Lloro (the rainiest locality on earth): enhanced ocean-land-atmosphere interaction by a low-level jet, Geophysical research letters, 27 (11), 1675-1678.spa
dc.relation.referencesPoveda, G., Jaramillo, A., Gil, M.M., Quiceno, N., Mantilla, R.I. (2001) Seasonally in ENSO related precipitation, river discharges, soil moisture, and vegetation index in Colombia, Water resources research, 37 (8), 2169-2178.spa
dc.relation.referencesPoveda, G. (2004) The hydro-climatology of Colombia: A synthesis from inter-decadal to diurnal timescales (in spanish). Rev. Acad. Colomb. Cienc. 28(107): 201-222, 200. ISSN: 0370-3908.spa
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P.A., Toro, V.G., Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228-240. https://doi.org/10.1175/MWR-2853.1spa
dc.relation.referencesPoveda, G., Alvarez, D.M., Rueda, O.A. (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots, Clim Dyn, 36, 2233, doi:10.1007/s00382-010-0931-y.spa
dc.relation.referencesPoveda, G., Jaramillo, L., and Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98-118. https://doi.org/10.1002/2013WR014087spa
dc.relation.referencesPoveda, G., Lopez, S., Isaza, A. (2015) Geographic delimitation of regions exhibiting bimodal, transitional and unimodal annual cycles of rainfall within the inter-tropics. International Conference on the Water and Energy cycles in the Tropics, 17-19 November 2015, Paris, France.spa
dc.relation.referencesLe Van Quyen, M., Foucher, J., Lachaux, J., Rodriguez, E., Lutz, a, Martinerie, J., and Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of Neuroscience Methods, 111(2), 83-98. https://doi.org/http://dx.doi.org/10.1016/S0165-0270(01)00372-7spa
dc.relation.referencesRato, R.T., Ortigueira, M.D., Batista, A.G. (2008) On the HHT, its problems, and some solutions, Mechanical Systems and Signal Processing, 22, 1374-1394.spa
dc.relation.referencesRasmusson, E., Carpenter, T. (1982) Variations in tropical sea surface temperature and surface winds fields associated with the Southern Oscillation El Niño, Mon Weather Rev, 110, 354-384.spa
dc.relation.referencesRosenblum, M., Pikovsky, A., Kurths, J., Schafer, C., Tass, P.A. (2001) Phase synchronization: from theory to data analysis, Handbook of biological physics, 4, 279-321.spa
dc.relation.referencesRueda, O. A., and G. Poveda (2006), Space-time variability of the CHOCO jet and its effect on the Colombian Pacific coast hydroclimatology [in Spanish], Meteorol. Colombiana, 10, 132-145.spa
dc.relation.referencesSarachik, E.S. and Cane, M.A. (2010) The El Niño - Sourthern Oscillation Phenomenon, Cambridge University Press.spa
dc.relation.referencesStein, K., Timmermann, A., Schneider (2011) Phase synchronization of the El Niño-Sourthern Oscillation with the annual cycle, Physical review letters, PRL 107, 128501.spa
dc.relation.referencesStein, K., Timmermann, A., Schneider, N., Jin, F.F., Stuecker, M.F. (2014) ENSO seasonal synchronization theory, Journal of Climate, 27(14), 5285-5310.spa
dc.relation.referencesSpracklen, D. V., S. R. Arnold, and C. M. Taylor (2012), Observations of increased tropical rainfall preceded by air passage over forests, Nature, 489, 282-285, doi:10.1038/nature11390.spa
dc.relation.referencesSchiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T. (1996). Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 54(6), 6708-6724. https://doi.org/10.1103/PhysRevE.54.6708spa
dc.relation.referencesTorrealba, E., Amador, J. (2010) La corriente en chorro de bajo nivel de los Llanos Venezolanos de Sur America, Revista de climatologia, 10,1-20, ISSN 1578-8768.spa
dc.relation.referencesTass, P., Rosenblum, M., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J. (1998) Phys. Rev. Lett. 81, 3291-3294.spa
dc.relation.referencesTroch, P. A., Carrillo, G., Sivapalan, M., Wagener, T., and Sawicz, K.(2013) Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution, Hydrol. Earth Syst. Sci., 17, 2209-2217, doi:10.5194/hess-17-2209-2013.spa
dc.relation.referencesTrenberth, K., Stepaniak, D. (2001) Indices of El Niño evolution, J. Clim, 14, 1697-1701.spa
dc.relation.referencesUrrea, V., Ochoa, A., Mesa, O. Rainfall Seasonality in Colombia. Water Resources Research (submitted)spa
dc.relation.referencesVelez, J.I., Poveda, G., Mesa, O.J., (2000) Hydrological balances of Colombia (in Spanish). COLCIENCIAS-UPME, ISBN: 958-9352-25-1.spa
dc.relation.referencesVon Storch, H. Bürger, G., Schnur, R., Von Storch, J-S (1995) Principal oscillation patterns: A review, Journal of climate, 8, 377-399.spa
dc.relation.referencesWang, H., Fu, R. (2002). Cross-Equatorial Flow and Seasonal Cycle of Precipitation over South America, Journal of Climate, 15, 1591-1608.spa
dc.relation.referencesWang, C. (2007). Variability of the Caribbean Low-Level Jet and its relations to climate. Climate Dynamics, 29(4), 411-422. https://doi.org/10.1007/s00382-007-0243-zspa
dc.relation.referencesWang, W.C., Chau, K.W., Xu, D.M., Chen, X.Y. (2015) Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition, Water Resources Management, 29(8), 2655-2675.spa
dc.relation.referencesWaylen, P., Poveda, G. (2002) El Niño-Southern Oscillation and aspects of western South American hydro-climatology, Hydrological Processes, 16(6), 1247-1260.spa
dc.relation.referencesWu, Z., Huang, N.E. (2005) Ensemble empirical mode decomposition: a noise-assisted data analysis method, Center for Ocean-Land-Atmosphere Studies Technical Report 193, ftp://grads.iges.org/pub/ctr/ctr_193.pdf.spa
dc.relation.referencesWu, Z., Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv Adaptive Data Anal, 1, 1-41.spa
dc.relation.referencesWu, Z., Huang, N.E., Schneider, E.K., Kirtman, B.P., Sarachik, E.S., Huang, N.E., Tucker, C.J. (2008) The modulated annual cycle: an alternative reference frame for climate anomalies, Clim Dyn, 31, 823-841.spa
dc.relation.referencesZhang, Y., J.M. Wallace and D.S. Battisti (1997) ENSO-like Interdecadal Variability: 1900-93. Journal of Climate, Vol. 10, 1004-1020.spa
dc.relation.referencesJiménez-Sánchez, G., , Markowski, P. M., Jewtoukoff, V., Young, G. S. and Stensrud, D. J. (2019) The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model, J. Geophys. Res. Atmos., 124, 10696 -10711.spa
dc.relation.referencesBalanov, A., Janson, N., Postnov, D., Sosnovtseva, O., Synchronization: From simple to complex. Heidelberg, Springer-Verlag Berlin, pp. 435,ISBN 978-3-540-72127-7.spa
dc.relation.referencesBrown, R., Kocarev, L. (2000) A unifying definition of synchronization for dynamical systems, Chaos, 10(2), 344-349.spa
dc.relation.referencesRulkov, N.F., Sushchik, M. M., Tsimring, L. S. and Abarbanel, H. D. I. (1995) Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E.spa
dc.relation.referencesSchiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T. (1996) Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble, Phys. Rev. E, 54, 6708-6724, https://doi.org/10.1103/PhysRevE.54.6708.spa
dc.relation.referencesArnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. E. (1999) A robust method for detecting interdependences: application to intracranially recorded EEG, Physica D, 134, 419-430.spa
dc.relation.referencesLe Van Quyen, M., Martinerie, J., Adam, C., and Varela, F. J. (1999) Non-linear analyses of interictal EEG map the brain interdependences in human focal epilepsy, Physica D, 127, 250-266.spa
dc.relation.referencesQuiroga, R. Q., Kraskov, A., Kreuz, T., and Grassberger, P. (2002) Performance of different synchronization measures in real data: a case study on electroencephalographic signals, Phys. Rev. E, 65,041903, https://doi.org/10.1103/PhysRevE.65.041903.spa
dc.relation.referencesZbilut, J. P., Webber, C. L. (2006) Recurrence Quantification Analysis, Wiley Encyclopedia of Biomedical Engineering, DOI: 10.1002/9780471740360.edb1355.spa
dc.relation.referencesMarwan, N., Romano, M.C., Thiel, M., \& Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports. https://doi.org/10.1016/j.physrep.2006.11.001spa
dc.relation.referencesRomano, M. C., Thiel, M., Kurths, J. (2004) Generalized Synchronization Indices based on Recurrence in Phase Space, 742, 330-336.spa
dc.relation.referencesRosenblum, M. G., Pikovsky, A. S., and Kurths, J. (1997) From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196, https://doi.org/10.1103/PhysRevLett.78.4193.spa
dc.relation.referencesTass, P., Rosenblum, M. G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., and Freund, H.J. (1998) Detection of n: m phase locking from noisy data: application to magnetoencephalography, Phys. Rev. Lett., 81, 3291-3294, https://doi.org/10.1103/PhysRevLett.81.329.spa
dc.relation.referencesRosenblum, M., Pikovsky, A., Kurths, J., Schäfer, C., Tass, P.A. (2001) Phase synchronization: from theory to data analysis, Handbook of biological physics, 4, 279-321.spa
dc.relation.referencesStolbova, V., Martin, P., Bookhagen, B., Marwan, N., and Kurths, J. (2014) Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka, Nonlinear Proc. Geoph., 21, 901-917.spa
dc.relation.referencesMalik, N., Bookhagen, B., Marwan, N., and Kurths, J. (2012) Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks, Clim. Dynam., 39, 971-987.spa
dc.relation.referencesRheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P.,Gerstengarbe, F.-W., and Werner, P.(2016) Non-linear time series analysis of precipitation events using regional climate networks for Germany, Clim. Dynam., 46, 1065-1074.spa
dc.relation.referencesAgarwal, A., N. Marwan, M. Rathinasamy, B. Merz, and J. Kurths (2017) Multi-scale event synchronization analysis for unravelling climate processes: A wavelet-based approach, Nonlinear Process. Geophys.spa
dc.relation.referencesPoincaré, H. (1890) Sur la probleme des trois corps et les équations de la dynamique, Acta Mathematica, 13, 1–271.spa
dc.relation.referencesTakens, F. (1981), Detecting strange attractors in turbulence, D. Rand, L.-S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, Springer, Berlin, pp. 366–381.spa
dc.relation.referencesMarwan, N. A historical review of recurrence plots, European Physical Journal: Special Topics, 164: 3. https://doi.org/10.1140/epjst/e2008-00829-1.spa
dc.relation.referencesWebber, C.L., Marwan, N. (2014) Recurrence quantification analysis: Theory and best practices. Springer Cham Heidelberg New York Dordrecht London, pp. 421, DOI 10.1007/978-3-319-07155-8.spa
dc.relation.referencesFeldhoff, J. H. Donner, R. V. Donges, J.F., Marwan, N. Kurths, J. (2013) Geometric Signature of Complex Synchronisation Scenarios. EPL 102, 3, doi.org/10.1209/0295-5075/102/30007spa
dc.relation.referencesSenthilkumar, D. V., Suresh, R., Lakshmanan, N., Kurths, J. (2013) Global Generalized Synchronization in Networks of Different Time-Delay Systems. EPL 103.5, doi: 10.1209/0295-5075/103/50010spa
dc.relation.referencesSuresh, R., Senthilkumar, D.V., Lakshmanan, M., Kurths, J. (2016) Emergence of a Common Generalized Synchronization Manifold in Network Motifs of Structurally Different Time-Delay Systems. Chaos, Solitons and Fractals 93: 235–245.spa
dc.relation.referencesHobbs, B., Ord, A. (2018) Nonlinear Dynamical Analysis of GNSS Data: Quantification, Precursors and Synchronisation, Progress in Earth and Planetary Science (2018) 5:36,doi.org/10.1186/s40645-018-0193-6spa
dc.relation.referencesSullivan, A., J.-J. Luo, A. C. Hirst, D. Bi, W. Cai and He, J. (2016) Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. \textit{Scientific Reports}, 6, 38540; doi: 10.1038/srep38540spa
dc.relation.referencesAshok, K., Behera, S. K., Rao, S. A., Weng, H., Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal Of Geophysical Research. 112: 1-27.spa
dc.relation.referencesAshok, K., Yamagata, T. (2009). The El Niño with a difference. Nature. 461: 481-484.spa
dc.relation.referencesGill, A. E. (1980) Some simple solutions for heat-induced tropical circulation. Quart. J .R. Met. Soc., 106:447-462spa
dc.relation.referencesWeng, H., Behera, S. K. and Yamagata, T. (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events, Clim. Dyn. 32, doi:10.1007/s00382-008-0394-6 (2009).spa
dc.relation.referencesKalnay, E. et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77.3: 437–471.spa
dc.relation.referencesTorrealba, E., Amador, J. (2010) La corriente en chorro de bajo nivel de los Llanos Venezolanos de Sur América, Revista de climatología, 10,1-20, ISSN 1578-8768.spa
dc.relation.referencesEckmann, J.-P., Kamphorst, S. O., Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics Letters, 4(9), 973–977. https://doi.org/10.1209/0295-5075/4/9/004spa
dc.relation.referencesPackard, N. H., Crutchfield, J. P., Farmer, J. D., Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45(9), 712–716. https://doi.org/10.1103/PhysRevLett.45.712spa
dc.relation.referencesFraser, A. M., Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2), 1134–1140. https://doi.org/10.1103/PhysRevA.33.1134spa
dc.relation.referencesKantz, H., Schreiber, T. (2004). Nonlinear Time Series Analysis. Nonlinear Time Series Analysis (Vol. 47). https://doi.org/10.1198/tech.2005.s306spa
dc.relation.referencesMarwan, N. (2011) How to avoid potential pitfalls in recurrence plot based data analysis. Int J Bifurc Chaos, 21:1003-1017.spa
dc.relation.referencesMindlin, G.M., Gilmore, R. (1992) Topological analysis and synthesis of chaotic time series. Physica D 58(1–4), 229–242.spa
dc.relation.referencesZbilut, J.P., Webber Jr., C.L. (1992) Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3-4), 199-203.spa
dc.relation.referencesRomano, M. C., Thiel, M., Kurths, J., Von Bloh, W. (2004). Multivariate recurrence plots. Physics Letters, Section A: General, Atomic and Solid State Physics, 330(3–4), 214–223. https://doi.org/10.1016/j.physleta.2004.07.066spa
dc.relation.referencesMarwan, N. Zou, Y., Wessel, N., Riedl, M. Kurths, J. (2013) Estimating coupling directions in the cardiorespiratory system using recurrence properties, Phil Trans R Soc A 371:20110624. http://dx.doi.org/10.1098/rsta.2011.0624spa
dc.relation.referencesArnhold, J., Grassberger, P., Lehnertz, K., Elger, C. E. (1999). A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D: Nonlinear Phenomena, 134(4), 419–430. https://doi.org/10.1016/S0167-2789(99)00140-2spa
dc.relation.referencesThiel, M., Romano, M.C., Kurths, J. Rolfs, M., Kliegl, R. (2006) Twin surrogates to test for complex synchronisation. Europhys Lett, 75:535–541. doi:10.1209/epl/i2006-10147-0spa
dc.relation.referencesThiel, M., Romano, M.C., Kurths, J. Rolfs, M., Kliegl, R. (2008) Generating Surrogates from Recurrences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. Vol. 366. N.p., 2008. 545–557. Web.spa
dc.relation.referencesHolm, S. (1979) A simple sequentially rejective multiple test procedure, Scand. J. Stat.spa
dc.relation.referencesAbdi, H. (2007) The Bonferonni and Šidák Corrections for Multiple Comparisons, Encyclopedia of Measurement and Statistics.spa
dc.relation.referencesDouglass, D. H. (2011). The Pacific sea surface temperature. Physics Letters, Section A: General, Atomic and Solid State Physics, 376(2), 128-135. https://doi.org/10.1016/j.physleta.2011.10.042spa
dc.relation.referencesDouglass, D. H., and, Knox, R. S. (2015). The Sun is the climate pacemaker I. Equatorial Pacific Ocean temperatures. Physics Letters, Section A: General, Atomic and Solid State Physics, 379(9), 823-829. https://doi.org/10.1016/j.physleta.2014.10.057spa
dc.relation.referencesAfyouni, S., Smith, S.M.,Nichols, T.E. (2019) Effective Degrees of Freedom of the Pearson’s Correlation Coefficient under Autocorrelation, NeuroImage, 199, 609-625.spa
dc.relation.referencesBonner, W.D. (1968) Climatology of the low level jet, Mon. Weather Rev. Vol. 96 (12), 833-850.spa
dc.relation.referencesStensrud, D. J. (1996) Importance of low-level jets to climate: A review, J. Clim., 9, 1698-1711.spa
dc.relation.referencesGimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C.J.C., Taschetto, A. S., Ramos, A.M., Kumar, R., Marengo, J. (2016) Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events, Annu. Rev. Environ. Resour., 41, 117-41.spa
dc.relation.referencesHoyos, I., Dominguez, F., Cañon-Barriga, J., Martínez, J.A., Nieto, R., Gimeno, L., Dirmeyer, P.A. (2017) Moisture origin and transport processes in Colombia, northern South America, Clim Dyn, DOI 10.1007/s00382-017-3653-6.spa
dc.relation.referencesPoveda, G., and Mesa, O. J. (1996) The extreme phases of ENSO (El Niño and La Niña) y its influence on the Colombian hydrology (in spanish), Ingeniería Hidráulica en México, Vol. XI,1, 21-37.spa
dc.relation.referencesTroch, P. A., Carrillo, G., Sivapalan, M., Wagener, T., and Sawicz, K.(2013) Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution, Hydrol. Earth Syst. Sci., 17, 2209-2217, doi:10.5194/hess-17-2209-2013.spa
dc.relation.referencesAndrés-Doménech, I., García-Bartual, R., Montanari, A., and Marco, J. B. (2015). Climate and hydrological variability: The catchment filtering role. Hydrology and Earth System Sciences, 19(1), 379-387. http://doi.org/10.5194/hess-19-379-2015.spa
dc.relation.referencesMuñoz, E., Bussalacchi, A.J., Nigam, S., Ruiz-Barradas, A. (2007) Winter and Summer structure of the Caribbean Low-Level Jet, Journal of Climate, 21, 1260-1276.spa
dc.relation.referencesSakamoto, M.S., Ambrizzi, T., and Poveda, G. Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011 (2012): 1–11.spa
dc.relation.referencesGarcía-Serrano, J., Cassou, C., Douville, H., Giannini, A. and Doblas-Reyes, F. J. (2017) Revisiting the ENSO teleconnection to the tropical North Atlantic, J. Clim.,30, 6945-6957.spa
dc.relation.referencesBuiles-Jaramillo, A., Ramos, A. M. T., Poveda, G. (2018) Atmosphere-Land Bridge between the Pacific and Tropical North Atlantic SST's through the Amazon River basin during the 2005 and 2010 droughts, Chaos, CHAOS 28, 085705.spa
dc.relation.referencesArango-Ruda, E., Poveda, G., (2018) Efectos de El Niño y La Niña sobre la hidrología de la Amazonia colombiana, Colombia Amazónica, No. 11, 2018, 33-58.spa
dc.relation.referencesHersbach, H., et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 2020.spa
dc.relation.referencesStein, K., Timmermann, A., Schneider (2011) Phase synchronization of the El Niño-Sourthern Oscillation with the annual cycle, Physical review letters, PRL 107, 128501.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.proposalHydrologyeng
dc.subject.proposalHidrologíaspa
dc.subject.proposalClimatologyeng
dc.subject.proposalClimatologíaspa
dc.subject.proposalFlow rateseng
dc.subject.proposalFenómeno del niñospa
dc.subject.proposalEl Niño - Oscilación del Surspa
dc.subject.proposalEl Niño - Southern Oscillation (ENSO)eng
dc.subject.proposalCaudalesspa
dc.titleSynchronization and interdependence between the cycles of Colombia's hydroclimatology and El Niño-Southern Oscillationeng
dc.title.translatedSincronización e interdependencia entre los ciclos de la hidroclimatología de Colombia y El Niño-Oscilación del Surspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1026131017.2020b.pdf
Tamaño:
6.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Recursos Hidráulicos. Anexo
Cargando...
Miniatura
Nombre:
1026131017.2020.pdf
Tamaño:
14.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: