Desarrollo de Nanomateriales para el geo-almacenamiento de CO2 en yacimientos someros

dc.contributor.advisorCortés Correa, Farid Bernardospa
dc.contributor.advisorCarrasco Marín, Franciscospa
dc.contributor.authorRodriguez Acevedo, Elizabeth Cristinaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.corporatenameUniversidad de Granadaspa
dc.contributor.researchgroupFenómenos de Superficie - Michael Polanyispa
dc.date.accessioned2020-03-13T21:23:38Zspa
dc.date.available2020-03-13T21:23:38Zspa
dc.date.issued2020-02-06spa
dc.description.abstractEl proceso de captura y almacenamiento de carbono (CCS por sus siglas en inglés) ha sido propuesto como un método efectivo para la reducción de las emisiones de CO2 provenientes de la industria, pero su implementación a nivel industrial no ha sido exitosa debido a consideraciones técnico-económicas asociadas a dos etapas principales: 1) Separación inicial del CO2 de los gases de combustión y 2) Inyección del CO2 en depósitos geológicos profundos, más de 300 m, en donde el CO2. A estas condiciones el CO2 se encuentra en condiciones supercríticas y su almacenamiento se debe principalmente al llenado de la estructura porosa del yacimiento. Este trabajo propone por primera vez en el mundo, un proceso mejorado de captura y almacenamiento de carbono, e-CCS, en el cual la etapa inicial de captura/separación de CO2 es suprimida y los gases de combustión son inyectados directamente al yacimiento superficial (<300 m). En este caso, el proceso de selectiva adsorción controla la captura in-situ de CO2 gaseoso y su almacenamiento. Para esto, es indispensable modificar la superficie de yacimiento con el fin de incrementar la capacidad de adsorción y la selectividad del CO2. Adicional a esto, el agente modificante no debe obstruir la estructura porosa natural del yacimiento con el fin de evitar problemas operacionales. En este sentido, la nanotecnología, por primera vez en el mundo, podría ser usada como agente modificador de la superficie del yacimiento, debido a ventajas relacionadas con la síntesis a medida, obteniendo materiales con características fisicoquímicas específicas al proceso de adsorción selectiva; Además, su tamaño nanométrico permite su uso sin obstrucción del medio poroso del yacimiento. En este trabajo fueron sintetizadas y caracterizadas diversas nanoestructuras. Luego, arenisca tipo Ottawa y arenisca de yacimientos reales de crudo, fueron impregnadas con nanofluidos compuestos por nanomateriales dispersos en agua desionizada. El desempeño de estos sistemas en el proceso de adsorción fue evaluado a diferentes condiciones de temperatura (0, 25 and 50 ° C) y presión (3 × 10-3 MPa a 3.0 MPa), tratando de simular las condiciones de un yacimiento. Para los mejores nanomateriales el sistema fue modelado y simulado a diferentes condiciones de presión y concentraciones de CO2-N2, por medio de la Teoría de la Solución Ideal Adsorbida (IAST por sus siglas en inglés), usando datos experimentales obtenidos y el software libre PyIAST. Los resultados obtenidos son prometedores y competitivos en comparación con los reportado en la literatura, además en la aplicación se obtienen incrementos de más de 60000% en la capacidad de adsorción de CO2 con concentraciones de 20% en masa de nanomaterial.spa
dc.description.abstractThe implementation of carbon capture and storage process (CCS) has been proposed as an effective method to reduce anthropogenic CO2 emissions from industry. However, its implementation has been unsuccessful to date, mainly due to the technical issues and high costs associated with two main stages: 1) CO2 separation from flue gas and 2) CO2 injection in deep geological deposits, more than 300 m. At these conditions, CO2 is in supercritical conditions, and CO2 capture and storage are mainly due to the inter-particle volume filling. This study proposes, for the first time, an enhanced CCS process (e-CCS), in which the stage of CO2 separation is removed, and the flue gas is injected directly in shallow reservoirs located at less than 300 m deep. In e-CCS, the adsorptive phenomena control gaseous CO2 capture and storage in situ. For this, it is necessary to add a surface modifying agent to the porous medium to improve the selective adsorption capacity to CO2. Besides, the modifying agent should not affect the naturally porous structure of the deposit to avoid operational problems. In this way, nanotechnology, for the first time for a CCS process, could be used as modifying media due to their characteristics can be customized, obtaining specific chemical-physical properties for the selective adsorption process. Also, the nanometric size allows its application in geological deposits. In this work, different nanostructures were synthesized and characterized. After that, Ottawa sandstone and real oilfield sandstone were impregnated with nanofluids, which are composed of deionized water and dispersed nanoparticles. The CO2 adsorption performance of nanomaterials was evaluated at different conditions of temperature (0, 25, and 50 ° C) and pressure (3 × 10-3 MPa to 3.0 MPa) to mimic the reservoir conditions. For the best nanomaterials, the adsorption process at reservoir condition was also modeled and evaluated at different mixing and pressure conditions, through the Ideal Adsorbed Solution Theory-IAST, using experimental information obtained. Each stage was carried out under conditions similar to the real operation in case of a possible application. The obtained results for each material are promising and competitive with those reported in the literature, obtaining increments of more than 60000% at 20% of nanomaterials mass fraction.spa
dc.description.additionalTesis de Doctorado realizada en el marco de un convenio de doble titulación entre la Universidad Nacional de Colombia-Sede Medellín y la Universidad de Granada en España. Con la participación de la Université de Lorraine (Francia). Tesis premiada con el máximo reconocimiento europeo "Cum Laude" y mención internacional y europea. En proceso de evaluación para el máximo reconocimiento nacional "Tesis Laureada". Doctorado en Ingeniería . Sistemas energéticosspa
dc.description.degreelevelDoctoradospa
dc.description.projectBecas doctorales - Convocatoria 647-2014spa
dc.description.sponsorshipColcienciasspa
dc.format.extent162spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76082
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.relationArtículos de investigación derivados de cada capítulo de la tesisspa
dc.relation.referencesT. L. Root, J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds, "Fingerprints of global warming on wild animals and plants," Nature, vol. 421, p. 57, 2003.spa
dc.relation.referencesL. D. Harvey, Global warming: Routledge, 2018.spa
dc.relation.referencesH. Baer and M. Singer, Global warming and the political ecology of health: Emerging crises and systemic solutions: Routledge, 2016.spa
dc.relation.referencesD. A. Lashof and D. R. Ahuja, "Relative contributions of greenhouse gas emissions to global warming," Nature, vol. 344, p. 529, 1990.spa
dc.relation.referencesT. R. Anderson, E. Hawkins, and P. D. Jones, "CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models," Endeavour, vol. 40, pp. 178-187, 2016.spa
dc.relation.referencesJ. Tollefson. (2019, 2019). The hard truths of climate change — by the numbers. Available: https://www.nature.com/immersive/d41586-019-02711-4/index.htmlspa
dc.relation.referencesNASA. (2019, March 30). Global Climate Change. Vital Signs of the Planet. Available: https://climate.nasa.gov/vital-signs/carbon-dioxide/spa
dc.relation.referencesR. J. Norby and Y. Luo, "Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi‐factor world," New Phytologist, vol. 162, pp. 281-293, 2004.spa
dc.relation.referencesM. M. Halmann, Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products: CRC press, 2018.spa
dc.relation.referencesP. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, "erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, vol. 408, p. 750, 2000.spa
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.spa
dc.relation.referencesE. P. A. US-EPA. (2019). Global Greenhouse Gas Emissions Data. Available: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-dataspa
dc.relation.referencesO. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, et al., "IPCC, 2014: Summary for Policymakers, In: Climate Change 2014, Mitigation of Climate Change," in Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed, 2014.spa
dc.relation.referencesY. Tan, W. Nookuea, H. Li, E. Thorin, and J. Yan, "Property impacts on Carbon Capture and Storage (CCS) processes: A review," Energy Conversion and Management, vol. 118, pp. 204-222, 2016.spa
dc.relation.referencesN. G. C. Change, "Vital Signs of the Planet," Earth Science Communications Team at NASA’s Jet Propulsion Laboratory. Accessed June, vol. 30, 2018.spa
dc.relation.referencesJ. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and L. Westfall, "International energy outlook 2016 with projections to 2040," USDOE Energy Information Administration (EIA), Washington, DC (United States …2016.spa
dc.relation.referencesB. Metz, O. Davidson, and H. De Coninck, Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change: Cambridge University Press, 2005.spa
dc.relation.referencesN. G. L. (2009) Saved by Sequestration? Nature Geoscience. 809.spa
dc.relation.referencesM. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, et al., "Carbon capture and storage (CCS): the way forward," Energy & Environmental Science, vol. 11, pp. 1062-1176, 2018.spa
dc.relation.referencesW. Knorr, "Is the airborne fraction of anthropogenic CO2 emissions increasing?," Geophysical Research Letters, vol. 36, 2009.spa
dc.relation.referencesP. Cook, R. Causebrook, J. Gale, K. Michel, and M. Watson, "What have we learned from small-scale injection projects?," Energy Procedia, vol. 63, pp. 6129-6140, 2014.spa
dc.relation.referencesI. IEA, "World energy outlook 2011," Int Energy Agency, vol. 666, 2011.spa
dc.relation.referencesE. Rodriguez Acevedo, F. B. Cortés, C. A. Franco, F. Carrasco-Marín, A. F. Pérez-Cadenas, V. Fierro, et al., "An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres," Materials, vol. 12, p. 2088, 2019.spa
dc.relation.referencesH. Balat and C. Öz, "Technical and Economic Aspects of Carbon Capture an Storage—A Review," Energy Exploration & Exploitation, vol. 25, pp. 357-392, 2007.spa
dc.relation.referencesC. Gough, Carbon capture and its storage: an integrated assessment: Routledge, 2016.spa
dc.relation.referencesC. Gough, "State of the art in carbon dioxide capture and storage in the UK: An experts’ review," International Journal of Greenhouse Gas Control, vol. 2, pp. 155-168, 2008.spa
dc.relation.referencesE. P.-C. Bailon-García, Agustín F.; Rodriguez Acevedo, Elizabeth; Carrasco-Marín, Francisco, "Nanoparticle Fabrication Methods," in Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation, C. A. a. C. C. Franco, Farid B, Ed., 1 ed: Nova Science Publishers, 2018, pp. 69-150.spa
dc.relation.referencesC. A. C. C. Franco, Farid B, Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation: Nova Science Publishers, 2018.spa
dc.relation.referencesC. A. Franco, R. Zabala, and F. B. Cortés, "Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields," Journal of Petroleum Science and Engineering, vol. 157, pp. 39-55, 2017.spa
dc.relation.referencesC. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.spa
dc.relation.referencesI. Moncayo-Riascos, C. A. Franco, and F. B. Cortés, "Dynamic Molecular Modeling and Experimental Approach of Fluorocarbon Surfactant-Functionalized SiO2 Nanoparticles for Gas-Wettability Alteration on Sandstones," Journal of Chemical & Engineering Data, 2019.spa
dc.relation.referencesY. Hurtado, C. Beltrán, R. D. Zabala, S. H. Lopera, C. A. Franco, N. N. Nassar, et al., "Effects of Surface Acidity and Polarity of SiO2 Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs," Energy & fuels, vol. 32, pp. 5824-5833, 2018.spa
dc.relation.referencesD. Yang, S. Wang, and Y. Zhang, "Analysis of CO2 migration during nanofluid-based supercritical CO2 geological storage in saline aquifers," Aerosol Air Qual. Res, vol. 14, pp. 1411-1417, 2014.spa
dc.relation.referencesJ. Silvestre-Albero and F. R. Reinoso, "Nuevos materiales de carbón para la captura de CO2," Boletín del Grupo Español del Carbón, pp. 2-6, 2012.spa
dc.relation.referencesY. Ma, Z. Wang, X. Xu, and J. Wang, "Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2," Chinese Journal of Catalysis, vol. 38, pp. 1956-1969, 2017.spa
dc.relation.referencesX.-q. Zhang, W.-c. Li, and A.-h. Lu, "Designed porous carbon materials for efficient CO2 adsorption and separation," New Carbon Materials, vol. 30, pp. 481-501, 2015.spa
dc.relation.referencesT. J. Bandosz, M. Seredych, E. Rodríguez-Castellón, Y. Cheng, L. L. Daemen, and A. J. Ramírez-Cuesta, "Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions," Carbon, vol. 96, pp. 856-863, 2016.spa
dc.relation.referencesG. P. Lithoxoos, A. Labropoulos, L. D. Peristeras, N. Kanellopoulos, J. Samios, and I. G. Economou, "Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study," The Journal of Supercritical Fluids, vol. 55, pp. 510-523, 2010.spa
dc.relation.referencesM. Bikshapathi, A. Sharma, A. Sharma, and N. Verma, "Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2," Chemical Engineering Research and Design, vol. 89, pp. 1737-1746, 2011.spa
dc.relation.referencesS. Chowdhury and R. Balasubramanian, "Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets," Journal of CO2 Utilization, vol. 13, pp. 50-60, 2016.spa
dc.relation.referencesA. Alonso, J. Moral-Vico, A. A. Markeb, M. Busquets-Fité, D. Komilis, V. Puntes, et al., "Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane," Science of the total environment, vol. 595, pp. 51-62, 2017.spa
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.spa
dc.relation.referencesM. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, "CO2 capture by adsorption with nitrogen enriched carbons," Fuel, vol. 86, pp. 2204-2212, 2007.spa
dc.relation.referencesX. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, et al., "Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation," Microporous and Mesoporous Materials, vol. 180, pp. 114-122, 2013.spa
dc.relation.referencesY. Lin, C. Kong, Q. Zhang, and L. Chen, "Metal‐organic frameworks for carbon dioxide capture and methane storage," Advanced Energy Materials, vol. 7, p. 1601296, 2017.spa
dc.relation.referencesJ. An and N. L. Rosi, "Tuning MOF CO2 adsorption properties via cation exchange," Journal of the American Chemical Society, vol. 132, pp. 5578-5579, 2010.spa
dc.relation.referencesR. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. A. Poston, "Adsorption of CO2 on molecular sieves and activated carbon," Energy & Fuels, vol. 15, pp. 279-284, 2001.spa
dc.relation.referencesC. W. Jones and W. J. Koros, "Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors," Carbon, vol. 32, pp. 1419-1425, 1994.spa
dc.relation.referencesA. Wahby, J. M. Ramos‐Fernández, M. Martínez‐Escandell, A. Sepúlveda‐Escribano, J. Silvestre‐Albero, and F. Rodríguez‐Reinoso, "High‐surface‐area carbon molecular sieves for selective CO2 adsorption," ChemSusChem, vol. 3, pp. 974-981, 2010.spa
dc.relation.referencesX. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, "Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture," Energy & Fuels, vol. 16, pp. 1463-1469, 2002.spa
dc.relation.referencesNASA. (2019, March 30). Global Climate Change. Vital Signs of the Planet. Available: https://climate.nasa.gov/vital-signs/carbon-dioxide/spa
dc.relation.referencesN. G. C. Change, "Vital Signs of the Planet," Earth Science Communications Team at NASA’s Jet Propulsion Laboratory. Accessed June, vol. 30, 2018.spa
dc.relation.referencesJ. Tollefson. (2019, 2019). The hard truths of climate change — by the numbers. Available: https://www.nature.com/immersive/d41586-019-02711-4/index.htmlspa
dc.relation.referencesT. R. Anderson, E. Hawkins, and P. D. Jones, "CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models," Endeavour, vol. 40, pp. 178-187, 2016.spa
dc.relation.referencesR. J. Norby and Y. Luo, "Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi‐factor world," New Phytologist, vol. 162, pp. 281-293, 2004.spa
dc.relation.referencesD. A. Lashof and D. R. Ahuja, "Relative contributions of greenhouse gas emissions to global warming," Nature, vol. 344, p. 529, 1990.spa
dc.relation.referencesA. Fernandez Pales, P. Levi, and T. Vass, "Tracking Industry - IEA Report 2019," Internacional Energy Agency, IEA, https://www.iea.org/reports/tracking-industry-2019May, 2019 2019.spa
dc.relation.referencesM. M. Halmann, Chemical Fixation of Carbon DioxideMethods for Recycling CO2 into Useful Products: CRC press, 2018.spa
dc.relation.referencesP. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, "erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, vol. 408, p. 750, 2000.spa
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.spa
dc.relation.referencesB. Metz, O. Davidson, and H. De Coninck, Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change: Cambridge University Press, 2005.spa
dc.relation.referencesM. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, et al., "Carbon capture and storage (CCS): the way forward," Energy & Environmental Science, vol. 11, pp. 1062-1176, 2018.spa
dc.relation.referencesY. Ma, Z. Wang, X. Xu, and J. Wang, "Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2," Chinese Journal of Catalysis, vol. 38, pp. 1956-1969, 2017.spa
dc.relation.referencesX. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, et al., "Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation," Microporous and Mesoporous Materials, vol. 180, pp. 114-122, 2013.spa
dc.relation.referencesA. Chen, S. Li, Y. Yu, L. Liu, Y. Li, Y. Wang, et al., "Self-catalyzed strategy to form hollow carbon nanospheres for CO2 capture," Materials Letters, vol. 185, pp. 63-66, 2016.spa
dc.relation.referencesH. R. a. R. Simmon. (2011, July 24). The Carbon Cycle. Available: https://earthobservatory.nasa.gov/features/CarbonCycle/page1.phpspa
dc.relation.referencesI. IEA, "World energy outlook 2011," Int Energy Agency, vol. 666, 2011.spa
dc.relation.referencesP. Cook, R. Causebrook, J. Gale, K. Michel, and M. Watson, "What have we learned from small-scale injection projects?," Energy Procedia, vol. 63, pp. 6129-6140, 2014.spa
dc.relation.referencesH. Balat and C. Öz, "Technical and Economic Aspects of Carbon Capture an Storage—A Review," Energy Exploration & Exploitation, vol. 25, pp. 357-392, 2007.spa
dc.relation.referencesC. Gough, Carbon capture and its storage: an integrated assessment: Routledge, 2016.spa
dc.relation.referencesC. Gough, "State of the art in carbon dioxide capture and storage in the UK: An experts’ review," International Journal of Greenhouse Gas Control, vol. 2, pp. 155-168, 2008.spa
dc.relation.referencesN. Álvarez-Gutiérrez, M. Gil, F. Rubiera, and C. Pevida, "Adsorption performance indicators for the CO2/CH4 separation: Application to biomass-based activated carbons," Fuel Processing Technology, vol. 142, pp. 361-369, 2016.spa
dc.relation.referencesD. Yang, S. Wang, and Y. Zhang, "Analysis of CO2 migration during nanofluid-based supercritical CO2 geological storage in saline aquifers," Aerosol Air Qual. Res, vol. 14, pp. 1411-1417, 2014.spa
dc.relation.referencesM. E. Casco, M. Martínez-Escandell, J. Silvestre-Albero, and F. Rodríguez-Reinoso, "Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure," Carbon, vol. 67, pp. 230-235, 2014.spa
dc.relation.referencesE. P.-C. Bailon-García, Agustín F.; Rodriguez Acevedo, Elizabeth; Carrasco-Marín, Francisco, "Nanoparticle Fabrication Methods," in Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation, C. A. a. C. C. Franco, Farid B, Ed., 1 ed: Nova Science Publishers, 2018, pp. 69-150.spa
dc.relation.referencesC. A. C. C. Franco, Farid B, Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation: Nova Science Publishers, 2018.spa
dc.relation.referencesC. A. Franco, R. Zabala, and F. B. Cortés, "Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields," Journal of Petroleum Science and Engineering, vol. 157, pp. 39-55, 2017.spa
dc.relation.referencesI. Moncayo-Riascos, C. A. Franco, and F. B. Cortés, "Dynamic Molecular Modeling and Experimental Approach of Fluorocarbon Surfactant-Functionalized SiO2 Nanoparticles for Gas-Wettability Alteration on Sandstones," Journal of Chemical & Engineering Data, 2019.spa
dc.relation.referencesY. Hurtado, C. Beltrán, R. D. Zabala, S. H. Lopera, C. A. Franco, N. N. Nassar, et al., "Effects of Surface Acidity and Polarity of SiO2 Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs," Energy & fuels, vol. 32, pp. 5824-5833, 2018.spa
dc.relation.referencesL. Cardona, D. Arias-Madrid, F. Cortés, S. Lopera, and C. Franco, "Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO-Functionalized SiO2 nanoparticulated catalysts," Catalysts, vol. 8, p. 132, 2018.spa
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.spa
dc.relation.referencesC. A. Franco, N. N. Nassar, M. A. Ruiz, P. Pereira-Almao, and F. B. Cortés, "Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media," Energy & Fuels, vol. 27, pp. 2899-2907, 2013.spa
dc.relation.referencesS.-P. Kang and H. Lee, "Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements," Environmental science & technology, vol. 34, pp. 4397-4400, 2000.spa
dc.relation.referencesH. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, et al., "Progress in carbon dioxide separation and capture: A review," Journal of environmental sciences, vol. 20, pp. 14-27, 2008.spa
dc.relation.referencesX. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, "Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture," Energy & Fuels, vol. 16, pp. 1463-1469, 2002.spa
dc.relation.referencesS. Chowdhury and R. Balasubramanian, "Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets," Journal of CO2 Utilization, vol. 13, pp. 50-60, 2016.spa
dc.relation.referencesA. Wahby, J. M. Ramos‐Fernández, M. Martínez‐Escandell, A. Sepúlveda‐Escribano, J. Silvestre‐Albero, and F. Rodríguez‐Reinoso, "High‐surface‐area carbon molecular sieves for selective CO2 adsorption," ChemSusChem, vol. 3, pp. 974-981, 2010.spa
dc.relation.referencesH. S. Choi and M. P. Suh, "Highly selective CO2 capture in flexible 3D coordination polymer networks," Angewandte Chemie International Edition, vol. 48, pp. 6865-6869, 2009.spa
dc.relation.referencesV. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, et al., "Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets," Chemical communications, vol. 48, pp. 735-737, 2012.spa
dc.relation.referencesH. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity," Science, vol. 356, p. eaab0530, 2017.spa
dc.relation.referencesC. M. Simon, B. Smit, and M. Haranczyk, "pyIAST: Ideal adsorbed solution theory (IAST) Python package," Computer Physics Communications, vol. 200, pp. 364-380, 2016.spa
dc.relation.referencesM. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, "CO2 capture by adsorption with nitrogen enriched carbons," Fuel, vol. 86, pp. 2204-2212, 2007.spa
dc.relation.referencesJ. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, and D. Zhao, "A controllable synthesis of rich nitrogen‐doped ordered mesoporous carbon for CO2 capture and supercapacitors," Advanced Functional Materials, vol. 23, pp. 2322-2328, 2013.spa
dc.relation.referencesT. J. Bandosz, M. Seredych, E. Rodríguez-Castellón, Y. Cheng, L. L. Daemen, and A. J. Ramírez-Cuesta, "Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions," Carbon, vol. 96, pp. 856-863, 2016.spa
dc.relation.referencesX.-q. Zhang, W.-c. Li, and A.-h. Lu, "Designed porous carbon materials for efficient CO2 adsorption and separation," New Carbon Materials, vol. 30, pp. 481-501, 2015.spa
dc.relation.referencesG. P. Lithoxoos, A. Labropoulos, L. D. Peristeras, N. Kanellopoulos, J. Samios, and I. G. Economou, "Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study," The Journal of Supercritical Fluids, vol. 55, pp. 510-523, 2010.spa
dc.relation.referencesM. Bikshapathi, A. Sharma, A. Sharma, and N. Verma, "Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2," Chemical Engineering Research and Design, vol. 89, pp. 1737-1746, 2011.spa
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.spa
dc.relation.referencesB. Chen, Z. Yang, G. Ma, D. Kong, W. Xiong, J. Wang, et al., "Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities," Microporous and Mesoporous Materials, vol. 257, pp. 1-8, 2018.spa
dc.relation.referencesW.-J. Son, J.-S. Choi, and W.-S. Ahn, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials," Microporous and Mesoporous Materials, vol. 113, pp. 31-40, 2008.spa
dc.relation.referencesY.-R. Dong, N. Nishiyama, Y. Egashira, and K. Ueyama, "Basic Amid Acid-Assisted Synthesis of Resorcinol− Formaldehyde Polymer and Carbon Nanospheres," Industrial & engineering chemistry research, vol. 47, pp. 4712-4716, 2008.spa
dc.relation.referencesJ. An and N. L. Rosi, "Tuning MOF CO2 adsorption properties via cation exchange," Journal of the American Chemical Society, vol. 132, pp. 5578-5579, 2010.spa
dc.relation.referencesS. Cavenati, C. A. Grande, and A. E. Rodrigues, "Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures," Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.spa
dc.relation.referencesS. Himeno, T. Komatsu, and S. Fujita, "High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons," Journal of Chemical & Engineering Data, vol. 50, pp. 369-376, 2005.spa
dc.relation.referencesL.-Y. Meng and S.-J. Park, "Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates," Journal of colloid and interface science, vol. 386, pp. 285-290, 2012.spa
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.spa
dc.relation.referencesE. P.-C. Bailon-García, Agustín F.; Rodriguez Acevedo, Elizabeth; Carrasco-Marín, Francisco, "Nanoparticle Fabrication Methods," in Formation Damage in Oil and Gas Reservoirs. Nanotechnology Applications for its Inhibition/Remediation, C. A. a. C. C. Franco, Farid B, Ed., 1 ed: Nova Science Publishers, 2018, pp. 69-150.spa
dc.relation.referencesT. J. Bandosz, M. Seredych, E. Rodríguez-Castellón, Y. Cheng, L. L. Daemen, and A. J. Ramírez-Cuesta, "Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions," Carbon, vol. 96, pp. 856-863, 2016.spa
dc.relation.referencesN. Tzabar and H. ter Brake, "Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride," Adsorption, vol. 22, pp. 901-914, 2016.spa
dc.relation.referencesM. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. Pis, "CO2 capture by adsorption with nitrogen enriched carbons," Fuel, vol. 86, pp. 2204-2212, 2007.spa
dc.relation.referencesA. Arenillas, K. Smith, T. Drage, and C. Snape, "CO2 capture using some fly ash-derived carbon materials," Fuel, vol. 84, pp. 2204-2210, 2005.spa
dc.relation.referencesR. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. A. Poston, "Adsorption of CO2 on molecular sieves and activated carbon," Energy & Fuels, vol. 15, pp. 279-284, 2001.spa
dc.relation.referencesN. Álvarez-Gutiérrez, M. Gil, F. Rubiera, and C. Pevida, "Adsorption performance indicators for the CO2/CH4 separation: Application to biomass-based activated carbons," Fuel Processing Technology, vol. 142, pp. 361-369, 2016.spa
dc.relation.referencesM. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, et al., "Unprecedented CO 2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation," Chemical Communications, vol. 48, pp. 10283-10285, 2012.spa
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.spa
dc.relation.referencesA. Chen, S. Li, Y. Yu, L. Liu, Y. Li, Y. Wang, et al., "Self-catalyzed strategy to form hollow carbon nanospheres for CO2 capture," Materials Letters, vol. 185, pp. 63-66, 2016.spa
dc.relation.referencesY. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, et al., "A low‐concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size," Angewandte Chemie International Edition, vol. 49, pp. 7987-7991, 2010.spa
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.spa
dc.relation.referencesS. Schaefer, V. Fierro, M. Izquierdo, and A. Celzard, "Assessment of hydrogen storage in activated carbons produced from hydrothermally treated organic materials," international journal of hydrogen energy, vol. 41, pp. 12146-12156, 2016.spa
dc.relation.referencesS. Schaefer, V. Fierro, A. Szczurek, M. Izquierdo, and A. Celzard, "Physisorption, chemisorption and spill-over contributions to hydrogen storage," international journal of hydrogen energy, vol. 41, pp. 17442-17452, 2016.spa
dc.relation.referencesA. Abdeljaoued, N. Querejeta, I. Durán, N. Álvarez-Gutiérrez, C. Pevida, and M. Chahbani, "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO2/CH4 Separation," Energies, vol. 11, p. 1748, 2018.spa
dc.relation.referencesM. E. Casco, M. Martínez-Escandell, J. Silvestre-Albero, and F. Rodríguez-Reinoso, "Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure," Carbon, vol. 67, pp. 230-235, 2014.spa
dc.relation.referencesA. Alonso, J. Moral-Vico, A. A. Markeb, M. Busquets-Fité, D. Komilis, V. Puntes, et al., "Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane," Science of the total environment, vol. 595, pp. 51-62, 2017.spa
dc.relation.referencesS. Himeno, T. Tomita, K. Suzuki, and S. Yoshida, "Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite," Microporous and Mesoporous Materials, vol. 98, pp. 62-69, 2007.spa
dc.relation.referencesY. Ma, Z. Wang, X. Xu, and J. Wang, "Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2," Chinese Journal of Catalysis, vol. 38, pp. 1956-1969, 2017.spa
dc.relation.referencesJ. Dunne, R. Mariwala, M. Rao, S. Sircar, R. Gorte, and A. Myers, "Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite," Langmuir, vol. 12, pp. 5888-5895, 1996.spa
dc.relation.referencesS. Himeno, T. Komatsu, and S. Fujita, "High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons," Journal of Chemical & Engineering Data, vol. 50, pp. 369-376, 2005.spa
dc.relation.referencesJ. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, and D. Zhao, "A controllable synthesis of rich nitrogen‐doped ordered mesoporous carbon for CO2 capture and supercapacitors," Advanced Functional Materials, vol. 23, pp. 2322-2328, 2013.spa
dc.relation.referencesW.-J. Son, J.-S. Choi, and W.-S. Ahn, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials," Microporous and Mesoporous Materials, vol. 113, pp. 31-40, 2008.spa
dc.relation.referencesY.-R. Dong, N. Nishiyama, Y. Egashira, and K. Ueyama, "Basic Amid Acid-Assisted Synthesis of Resorcinol− Formaldehyde Polymer and Carbon Nanospheres," Industrial & engineering chemistry research, vol. 47, pp. 4712-4716, 2008.spa
dc.relation.referencesN. Tzabar and H. ter Brake, "Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride," Adsorption, vol. 22, pp. 901-914, 2016.spa
dc.relation.referencesS. Cavenati, C. A. Grande, and A. E. Rodrigues, "Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures," Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.spa
dc.relation.referencesD. J. Babu, M. Bruns, R. Schneider, D. Gerthsen, and J. r. J. Schneider, "Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials," The Journal of Physical Chemistry C, vol. 121, pp. 616-626, 2017.spa
dc.relation.referencesJ. Dunne, R. Mariwala, M. Rao, S. Sircar, R. Gorte, and A. Myers, "Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite," Langmuir, vol. 12, pp. 5888-5895, 1996.spa
dc.relation.referencesR. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. A. Poston, "Adsorption of CO2 on molecular sieves and activated carbon," Energy & Fuels, vol. 15, pp. 279-284, 2001.spa
dc.relation.referencesX. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, et al., "Microwave synthesis and characterization of MOF-74 (M= Ni, Mg) for gas separation," Microporous and Mesoporous Materials, vol. 180, pp. 114-122, 2013.spa
dc.relation.referencesJ. An and N. L. Rosi, "Tuning MOF CO2 adsorption properties via cation exchange," Journal of the American Chemical Society, vol. 132, pp. 5578-5579, 2010.spa
dc.relation.referencesZ. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q. Ren, X. Lu, et al., "Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic framework," Langmuir, vol. 27, pp. 13554-13562, 2011.spa
dc.relation.referencesB. Chen, Z. Yang, G. Ma, D. Kong, W. Xiong, J. Wang, et al., "Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities," Microporous and Mesoporous Materials, vol. 257, pp. 1-8, 2018.spa
dc.relation.referencesM. Franco-Aguirre, R. D. Zabala, S. H. Lopera, C. A. Franco, and F. B. Cortés, "Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs," Journal of Natural Gas Science and Engineering, vol. 51, pp. 53-64, 2018.spa
dc.relation.referencesC. M. Simon, B. Smit, and M. Haranczyk, "pyIAST: Ideal adsorbed solution theory (IAST) Python package," Computer Physics Communications, vol. 200, pp. 364-380, 2016.spa
dc.relation.referencesR. J. White, K. Tauer, M. Antonietti, and M.-M. Titirici, "Functional hollow carbon nanospheres by latex templating," Journal of the American Chemical Society, vol. 132, pp. 17360-17363, 2010.spa
dc.relation.referencesJ. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, et al., "Recent advances in solid sorbents for CO 2 capture and new development trends," Energy & Environmental Science, vol. 7, pp. 3478-3518, 2014.spa
dc.relation.referencesI. S. Organization. (2019, 10 July, 2019). About Sugar. Available: https://www.isosugar.org/sugarsector/sugarspa
dc.relation.referencesM. Agrawal, S. Gupta, A. Pich, N. E. Zafeiropoulos, and M. Stamm, "A facile approach to fabrication of ZnO− TiO2 hollow spheres," Chemistry of Materials, vol. 21, pp. 5343-5348, 2009.spa
dc.relation.referencesK. Huang and S. Dai, "Carbon Membranes for CO2 Separation," Materials for Carbon Capture, pp. 215-236.spa
dc.relation.referencesC. W. Jones and W. J. Koros, "Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors," Carbon, vol. 32, pp. 1419-1425, 1994.spa
dc.relation.referencesA. Wahby, J. M. Ramos‐Fernández, M. Martínez‐Escandell, A. Sepúlveda‐Escribano, J. Silvestre‐Albero, and F. Rodríguez‐Reinoso, "High‐surface‐area carbon molecular sieves for selective CO2 adsorption," ChemSusChem, vol. 3, pp. 974-981, 2010.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalNanomaterialseng
dc.subject.proposalNanomaterialesspa
dc.subject.proposalDióxido de carbono-CO2spa
dc.subject.proposalCarbon dioxide-CO2eng
dc.subject.proposalAdsorciónspa
dc.subject.proposalAdsorptioneng
dc.subject.proposalCarbon capture and storage process-CCSeng
dc.subject.proposalProceso de captura y almacenamiento de carbono-CCSspa
dc.subject.proposalShallow reservoirseng
dc.subject.proposalYacimientos somerosspa
dc.titleDesarrollo de Nanomateriales para el geo-almacenamiento de CO2 en yacimientos somerosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43924250.2020.pdf
Tamaño:
6.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: