Influencia del tratamiento superficial de las fibras de fique en las propiedades mecánicas del compuesto fibra-matriz cementante

dc.contributor.advisorMonsalve Arias, Mónicaspa
dc.contributor.advisorRodríguez Baracaldo, Rodolfospa
dc.contributor.authorCoudert, Loïcspa
dc.date.accessioned2021-01-14T19:54:23Zspa
dc.date.available2021-01-14T19:54:23Zspa
dc.date.issued2020-01-13spa
dc.description.abstractEl uso de fibras naturales como refuerzo para materiales de la construcción civil ha crecido en las últimas décadas y abre un nuevo campo de investigación y de industrialización. Estás fibras tienen buenas propiedades mecánicas y presentan las ventajas de ser biodegradables, económicas, y abundantes. Sin embargo, el problema mayor de las fibras naturales es su tendencia a ser muy sensible al medio ambiente alcalino de una matriz cementante, y a degradarse rápidamente, necesitando así un tratamiento preventivo. En este trabajo se investiga el efecto de dos de estos tratamientos, una alcalinización con hidróxido de sodio y un recubrimiento superficial con parafina liquida, en las propiedades mecánicas un mortero reforzado con fibras. El material compuesto aquí investigado se presenta en forma de láminas de mortero reforzados con tejidos de fique, una fibra natural colombiana. Se evaluó la eficiencia de los tratamientos en las fibras mediante espectroscopia infrarroja con transformada de Fourier (FTIR), ensayos de tracción, microscopía electrónica de barrido (SEM) y medición de la tasa de absorción de agua. Se analizó el comportamiento en flexión de las láminas, calculando la energía promedio absorbida y el esfuerzo máximo admisible. Se concluyó que ambos tratamientos protegen eficientemente la superficie de las fibras y que no tienen influencia significativa en la resistencia mecánica. El recubrimiento con parafina parece afectar negativamente la capacidad de absorción de energía del material compuesto.spa
dc.description.abstractThe study of the use of natural fibers as reinforcement for materials in civil construction has grown during the last decades and opens a new field of investigation and industrialization. They have good mechanical properties and present the advantages of being biodegradable, economic, and abundant. However, the major problem of natural fibers is their tendency of being very sensitive to the alkaline environment of a cementitious matrix, and to degrade quite rapidly, thus requiring preventive treatment. This work investigates the effect of two of these treatments, an alkalization with sodium hydroxide, and a superficial covering with liquid paraffin, on the mechanical properties of a fiber reinforced mortar. The composite material thus researched is presented in the form of mortar sheets reinforced with fique fabrics, a natural Colombian fiber. The efficiency of the treatments on the fibers was evaluated by Fourier transform spectrophotometry (FTIR), tensile tests, electronic microscopy observation (SEM) and measurement of the water absorption rate. The bending behavior of the sheets was analyzed, calculating the average energy absorbed and the maximum admissible stress. It was concluded that, without being optimal, both treatments efficiently protect the surface of the fibers and do not have a significant influence on the mechanical resistance. The paraffin coating seems to negatively affect the energy absorption capacity of the composite material.spa
dc.description.additionalLínea de investigación: Materiales sostenibles para la construcción civilspa
dc.description.degreelevelMaestríaspa
dc.format.extent110spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78742
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.references1. Plant-based natural fibre reinforced cement composites: A review. Onuaguluchi, O., & Banthia, N. 16 de 02 de 2016, Cement and Concrete Composites, págs. 96-108.spa
dc.relation.referencesNatural fiber reinforced concrete. Torgal, F., & Jalali, S. 2011, Fibrous and Composite Materials for Civil Engineering Applications, págs. 154-167.spa
dc.relation.referencesKeulemans, G. The problem with reinforced concrete. Theconversation. [En línea] 29 de 11 de 2018. http://theconversation.com/the-problem-with-reinforced-concrete-56078.spa
dc.relation.referencesInfluence of jute fiber on concrete properties. Islam, M. S., & Ahmed, S. J. 2018, Construction and Building Materials, 189, págs. 768-776.spa
dc.relation.referencesImprovement of mechanical properties of green concrete by treatment of the vegetals fibers. Sellami, A., Merzoud, M., & Amziane, S. 2013, Construction and Building Materials, 47, págs. 1117-1124.spa
dc.relation.referencesDurability of alkali-sensitive fibres in concrete. Bergström, S. G., & Gram, H. 1984, International Journal of Cement Composites and Lightweight Concrete, 6, págs. 75-80.spa
dc.relation.referencesGornet, Laurent. Généralités sur les matériaux composites. Engineering school. s.l. : cel-00470296v1, 2008.spa
dc.relation.referencesAucher, Jérémie. Etude comparative de composites à matrices thermoplastique ou thermodurcissable. INSA de Rouen : s.n., 2009. NNT : 2009ISAM0012. tel-00557897.spa
dc.relation.referencesRafaï, Noureddine. Les composants de la matrice cementaire (rappels et intéractions). CPBC. 2008.spa
dc.relation.referencesPortland cement: its composition, raw materials, manufacture, testing and analysis. Meade, Richard Kidder. 1906, The Chemical Publishing Co, págs. 4-14.spa
dc.relation.referencesPierre Witier, Gérard Platret. Analyse et caractérisation de matériaux de construction. s.l. : Éditions Techniques ingénieur, 2009.spa
dc.relation.referencesMineral-based matrices for textile-reinforced concrete. Mechtcherine, V., Schneider, K., Brameshuber, W. 2016, Textile Fibre Composites in Civil Engineering, págs. 25-43.spa
dc.relation.referencesFlexural Strengthening of Reinforced Concrete Beams with Textile Reinforced Concrete (TRC). Amir, S. L., Raphael, C., Emmanuel, F., & Patrice, H. 2011, Advances in FRP Composites in Civil Engineering, págs. 665-667.spa
dc.relation.referencesStat of the Art Review : Strengthening of Reinforced Concrete Structures - Different Strengthening Techniques . Khalid Heiza, Ahmed Nabil, Nageh Meleka, Magdy Tayel. 2014. Sixth International Conference on Nano-Technology in Construction (NTC).spa
dc.relation.referencesManufacturing of textiles for civil engineering applications. Gries, Raina, Quadflieg, & Stolyarov. 2016, Textile Fibre Composites in Civil Engineering, págs. 3-24.spa
dc.relation.referencesManufacturing methods for textile-reinforced concrete. Brameshuber, W. 2016, Textile Fibre Composites in Civil Engineering, págs. 45-59.spa
dc.relation.referencesBraided reinforcements for composites. Gessler, A. 2011, Composite Reinforcements for Optimum Performance, págs. 116-156.spa
dc.relation.referencesVilfayeau, Jérôme. Modélisation numérique du procédé de tissage des renforts fibreux pour matériauxcomposites. s.l. : INSA de Lyon, 2014. tel-01153224.spa
dc.relation.referencesInvestigations on the bearing behaviour and application potential of textile reinforced concrete. Hegger, J., & Voss, S. 2008, Engineering Structures, 30, págs. 2050-2056.spa
dc.relation.referencesContribution to direct tensile testing of textile reinforced concrete (TRC) composites. Contamine, R., Larbi, A. S., & Hamelin, P. 2011, Materials Science and Engineering: A, 528, págs. 8589-8598.spa
dc.relation.referencesBonds in textile-reinforced concrete composites. Peled, A. 2016, Textile Fibre Composites in Civil Engineering, págs. 63-99.spa
dc.relation.referencesGeometrical characteristics and efficiency of textile fabrics for reinforcing cement composites. Peled, A. 2000, Cement and Concrete Research, págs. 781-790.spa
dc.relation.referencesFiber-reinforced concrete: An overview after 30 years of development. Zollo, R. F. 1997, Cement and Concrete Composites, 19, págs. 107-122.spa
dc.relation.referencesFracture energy of natural fibre reinforced concrete. Merta, I., & Tschegg, E. 2013, Construction and Building Materials, 40, págs. 991-997.spa
dc.relation.referencesAn appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets. Delvasto, Toro, Perdomo, & Gutiérrez. 2010, Construction and Building Materials, págs. 187-192.spa
dc.relation.referencesFique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior. Gañán, P., & Mondragon, I. 2004, Journal of Materials Science, 39, págs. 3121-3128.spa
dc.relation.referencesAmilcar Mojica Pimiento, Joaquin Paredes Vega. El Cultivo Del Fique En El Departamento de Santander. 2004.spa
dc.relation.referencesDaniel Cruz Hermida, Rodoflo Medina Terán. Cadena Agroindustrial del Fique. http://bibliotecadigital.agronet.gov.co. [En línea] 08 de 02 de 2008. http://bibliotecadigital.agronet.gov.co/bitstream/11348/5260/1/2008519105246_BULLETS_CADEFIQUE_2008.pdf.spa
dc.relation.referencesImprovement of mechanical properties of green concrete by treatment of the vegetals fibers. A.Sellami, M.Merzoud, S.Amziane. 2013, Construction and Building Materials, Vol. 47, págs. 1117-1124.spa
dc.relation.referencesFique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Hoyos, C. G., Alvarez, V. A., Rojo, P. G., & Vázquez, A. 5, 2012, Fibers and Polymers, Vol. 13, págs. 632–640.spa
dc.relation.referencesFibras de fique una alternativa para el reforzamiento de plásticos. Influencia de la modificación superficial. . Mario Fernando Muñoz-Velez, Miguel Angel Hidalgo-Salazar, José Herminsul Mina-Hernandez. 2, 2014, Biotecnología en el Sector Agropecuario y Agroindustrial , Vol. 12, págs. 60-70.spa
dc.relation.referencesJabbar, Abdul. Sustainable Jute-Based Composite Materials. SpringerBriefs in Applied Sciences and Technology. 2017.spa
dc.relation.referencesStudies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Ramakrishna, G., & Sundararajan, T. 2005, Cement and Concrete Composites, págs. 575-582.spa
dc.relation.referencesDegradation mechanisms of natural fiber in the matrix of cement composites. Wei, J., & Meyer, C. 2015, Cement and Concrete Research, págs. 1-16.spa
dc.relation.referencesEffect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Dhakal, H., Zhang, Z., & Richardson, M. 2007, Composites Science and Technology, págs. 1674–1683.spa
dc.relation.referencesChemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Mwaikambo, Ansell,. 2002, Journal of Applied Polymer Science, págs. 2222-2234spa
dc.relation.referencesMechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Venkateshwaran, N., ElayaPerumal, A., Alavudeen, A., & Thiruchitrambalam, M. 2011, Materials and Design, págs. 4017-4021.spa
dc.relation.referencesDevelopment of vegetable fibre–mortar composites of improved durability. Filho, Ghavami, England, Scrivener. 2003, Cement and Concrete Composites, págs. 185-196.spa
dc.relation.referencesEffect of silica fume on steel fiber bond characteristics in reactive powder concrete. Chan, Y., & Chu, S. 7, 2004, Cement and Concrete Research, Vol. 34, págs. 1167-1172.spa
dc.relation.referencesEffect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. 2016, Composites Part A: Applied Science and Manufacturing, Vol. 90, págs. 589-597.spa
dc.relation.referencesCharacterization of fiber surface treatments in natural fiber composites by infrared and Raman spectroscopy. Mosiewicki, Marcovich, Aranguren. 2011, Interface Engineering of Natural Fibre Composites for Maximum Performance, págs. 117-145.spa
dc.relation.referencesDry etching plasma applied to fique fibers: influence on their mechanical properties and surface appearance. P. Luna, A. Mariño, J. Lizarazo-Marriaga, O. Beltrán. 2017, Procedia Engineering, págs. 141-147.spa
dc.relation.referencesUso de fibras naturales de lechuguilla como refuerzo en concreto. César A. Juárez Alvarado, Patricia Rodríguez López, Raymundo Rivera Villarreal, Ma. de los Ángeles Rechy de Von Roth. 2004, Ingenierías, págs. 7-19.spa
dc.relation.referencesEffect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Ming Caia, Hitoshi Takagi, Antonio N.Nakagaito, YanLi, Geoffrey I.N. Waterhouse. 2016, Composites Part A: Applied Science and Manufacturing, Volume 90,, págs. 589-597.spa
dc.relation.referencesFique fiber-reinforced polyester composites : Effects of fiber surface treatments on mechanical behavior. P. Gañan, I. Mondragon. 2004, Journal of Material Science, Vol. 39, págs. 3121-3128.spa
dc.relation.referencesCharacterization of natural fiber surfaces and natural fiber composites. Sgriccia, N., Hawley, M., & Misra, M. 10, 2008, Composites Part A: Applied Science and Manufacturing, Vol. 39, págs. 1632–1637.spa
dc.relation.referencesStatistical methods in psychology journals: Guidelines and explanations. Wilkinson. 1999, American Psychologist, págs. 594-604.spa
dc.relation.referencesSaporta. Probabilités, analyse des données et statistique. 2011.spa
dc.relation.referencesHinkelmann. Design and analysis of experiments. 2012.spa
dc.relation.referencesMontgomery. Design and analysis of experiments. 2020.spa
dc.relation.referencesLuna, P., Lizarazo-Marriaga, J., Luna, L., Ortiz, J., Mayorga, D.,. Mechanical behavior of natural fiber textile reinforced mortar sheets. s.l. : Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesPerformance of “Agave lecheguilla” natural fiber in portland cement composites exposed to severe environment conditions. Juárez, C., Durán, A., Valdez, P., & Fajardo, G. 2007, Building and Environment, págs. 1151–1157.spa
dc.relation.referencesChemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Li, X., Tabil, L. G., & Panigrahi, S. 2007, Journal of Polymers and the Environnement, págs. 25-33.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalFibras de fiquespa
dc.subject.proposalFique fiberseng
dc.subject.proposalMorterospa
dc.subject.proposalMortareng
dc.subject.proposalAlkalizationeng
dc.subject.proposalAlcalinizaciónspa
dc.subject.proposalParafinaspa
dc.subject.proposalParaffineng
dc.subject.proposalEnergy absorptioneng
dc.subject.proposalAbsorción de energíaspa
dc.subject.proposalSustainable composite materialseng
dc.subject.proposalComportamiento mecánicospa
dc.subject.proposalCivil constructioneng
dc.subject.proposalMateriales compuestos sosteniblesspa
dc.subject.proposalConstrucción civilspa
dc.titleInfluencia del tratamiento superficial de las fibras de fique en las propiedades mecánicas del compuesto fibra-matriz cementantespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Loic Coudert Final.pdf
Tamaño:
5.19 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: